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ABSTRACT Fingerprint-based biometric systems have experienced a large development in the past. In spite
of many advantages, they are still vulnerable to attack presentations (APs). Therefore, the task of determining
whether a sample stems from a live subject (i.e., bona fide) or from an artificial replica is a mandatory require-
ment which has recently received a considerable attention. Nowadays, when the materials for the fabrication
of the Presentation Attack Instruments (PAIs) have been used to train the Presentation Attack Detection
(PAD) methods, the PAIs can be successfully identified in most cases. However, current PAD methods
still face difficulties detecting PAIs built from unknown materials and/or unknown recepies, or acquired
using different capture devices. To tackle this issue, we propose a new PAD technique based on three
image representation approaches combining local and global information of the fingerprint. By transforming
these representations into a common feature space, we can correctly discriminate bona fide from attack
presentations in the aforementioned scenarios. The experimental evaluation of our proposal over the LivDet
2011 to 2019 databases, yielded error rates outperforming the top state-of-the-art results by up to 72% in
the most challenging scenarios. In addition, the best representation achieved the best results in the LivDet
2019 competition (overall accuracy of 96.17%).

INDEX TERMS Local feature encoding, presentation attack detection, fingerprint, probabilistic visual

vocabulary, visual vocabulary.

I. INTRODUCTION

Biometric recognition is based on the observation of
distinctive anatomical and behavioural characteristics to
automatically recognise a subject [1]. Among other biometric
characteristics, fingerprints offer a high recognition accu-
racy and at the same time enjoy a high popular acceptance.
Despite of these advantages, fingerprint-based recognition
systems can be circumvented by launching Attack Presenta-
tions (APs), in which an artificial fingerprint, denoted as Pre-
sentation Attack Instrument (PAI), is presented to a capture
device [2]-[5].
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We would like to highlight that the threat posed by PAIs is
not reduced to an academic issue. In 2000 Zwiesele et al. [6]
reported that they fooled three commercial fingerprint capture
devices with PAIs made of india rubber. Then, two years later
Matsumoto et al. [4] analysed the vulnerabilities of eleven
commercial fingerprint-based biometric systems to gummy
fingerprints. The experimental evaluation showed that 68%
to 100% of the PAIs built with cooperative methods were
accepted as bona fide presentations (i.e., genuine or live
fingers). In 2009, Japan reported the detection of presentation
attacks in one of its airports, and in 2013, a Brazilian doctor
used artificial silicone fingerprints to tamper a biometric
attendance system at the Sao Paulo hospital [7].

In order to tackle those severe security threats, the devel-
opment of Presentation Attack Detection (PAD) techniques,
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TABLE 1. Summary of the studies focused on fingerprint PAD generalisation.

Study Approach Known-env Unknown PAIs Cross-sensor Cross-DB

Rattani et al. [8] Weibull-calibrated SVM - D-EER = 19.70% - -

Ding & Ross [9] Ensemble of several one-class SVMs - D-EER = 17.60% - -

Nogueira et al.(VGG) [10] Feasibility of three CNNs ACER = 3.87% ACER = 6.30% ACER = 19.80%  ACER = 30.70%
for fingerprint PAD generalisation

Pala & Bhanu (TripleNet) [11]  Triple CNNs over random extracted patches ACER =2.41% ACER =5.86% ACER =25.25% ACER = 15.20%

Chugh & Jain (FSB-v1)[12]  Lneeption-v2 trained for classifying ACER = 1.70% ACER =3.50% ACER=16.60%  ACER = 18.90%

minutiae-centred local patches

MobileNet trained for classifying

Chugh & Jain (FSB-v2) [13] minutiae-centred local patches

ACER = 1.11% ACER =2.93% ACER = 14.59% ACER =17.91%

Selection of the most feasible PAI species

Chugh & Jain [14] to cover the deep feature space

- BPCERS00 = 24.76% - -

Engelsma & Jain [15] Ensemble of several GANs

- BPCERS500 = 50.20% - -

Universal Material Translator (UMT) to generate

Gajawada et al. [16] synthetic PAIs, thereby improving PAD generalisation

- BPCER1000 = 21.96% - -

Universal Material Generator (UMG)
to style transfer between known PAI species
to improve its generalisation capability

Chugh & Jain (FSG) [17]

BPCER1000 = 8.22%
Avg. Acc. =95.88

BPCER1000 = 56.77%
Avg. Acc. = 80.63%

Park et al. (TinyFCN) [18] Lightweight CNN on the fire module of the SqueezeNet

ACER = 1.43% ACER = 1.90% - -

Ensemble of several encodings to define

Proposed method a common feature space from known PAIs

ACER = 1.74% ACER =4.32% ACER =4.08% ACER =9.15%

ACER: Average Classification Error Rate; D-EER: Detection Equal Error Rate; BPCER:

which automatically detect PAIs presented to the biomet-
ric capture device, is required. This area of research has
attracted a lot of attention within the biometric research
community not only for fingerprint systems [19], [20], but
also for other biometric characteristics such as face [21] or
iris [22]. These PAD methods can be widely classified as
hardware- or software-based approaches. Whereas the former
requires dedicated, and mostly expensive, specific hardware,
software-based approaches focus on dynamic or static prop-
erties and features extracted from the same biometric sam-
ples used for recognition purposes. Therefore, software-based
methods are less expensive, and will be the focus of this work.

The newest fingerprint PAD techniques based on deep
learning and textural features have shown to be a powerful
tool to detect most PAIs [10]-[13], [18], [23]. However, they
share a common limitation: they depend both on i) the mate-
rial used for fabricating the PAIs, and ii) the capture device
used for acquiring the fingerprint samples. More specifically,
their error rates are increased by a factor of five to 18 times
when either PAIs’ materials or capture devices utilised are not
known a priori (see Tab. 1).

In order to address in this work the issue of general-
isation to unknown factors, we analyse the combination
of local features (i.e., Scale-Invariant Feature Transform,
SIFT [24]) with three different general purpose feature encod-
ing approaches, which have shown remarkable results in
object classification tasks [25]-[27]: i) Bag of Words (BoW),
ii) Vector of Locally Aggregated Descriptors (VLAD), and
iii) Fisher Vector (FV). The local descriptors, computed over
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Bona fide Presentation Classification Error Rate. These metrics are defined in Sect. IV

the image gradient, allow capturing different geometrical
artefacts produced by materials used for generating the PAIs.
By assuming that unknown attacks share homogeneous fea-
tures such as texture, shape, and appearance with known PAI
species, the aforementioned encoding approaches assign each
local descriptor (i.e., SIFT) to the closest entry in a visual
vocabulary [28]. This visual vocabulary defines a common
feature space, thereby allowing a better generalisation to
unknown attacks or capture devices.

In order to evaluate the performance of the proposed
methods and to allow the reproducibility of the results,
we conduct a thorough experimental evaluation on the well-
known LivDet 2011, LivDet 2013, LivDet 2015, and LivDet
2019 databases. The performance is reported in compliance
with the ISO/IEC 30107-3 international standard on PAD
evaluation [5], thereby allowing a rigorous analysis of the
results. The experimental evaluation shows the capacity of
the new method to be used in high security applications.
In addition, we would like to highlight that the proposed
method in the Fingerprint Liveness Detection Competition
2019 achieved the best detection performance with an aver-
age accuracy of 96.17% [29]. This database was designed to
evaluate the PAD generalisation performance over unknown
PAIs.

The remainder of this paper is organized as follows: related
works are summarised in Sect. II. In Sect. III, we describe
the proposed PAD methods. The experimental evaluation is
presented in Sect. IV. Finally, conclusions and future work
directions are presented in Sect. V.

5807



IEEE Access

L. J. Gonzélez-Soler et al.: Fingerprint PAD Based on Local Features Encoding for Unknown Attacks

Il. RELATED WORK

The task of determining whether a sample stems from a live
subject (i.e., it is a bona fide presentation - BP) or from an
artificial replica (i.e., it is an attack presentation - AP) is still
an open problem, which has received a considerable amount
of attention in the recent past [19], [20], [30]. As it was men-
tioned in Sect. I, we focus on static software-based fingerprint
PAD methods, since they are the most cost efficient. Those
techniques can be broadly categorised as perspiration-, pore-
, image quality-, and texture-based approaches. In our work,
we review those texture methods built upon deep learning
and addressing scenarios with unknown factors. A summary
of fingerprint PAD algorithms considered in this work is
reported in Tab. 1. For further details on other methods,
the reader is referred to [19], [20], [30].

A. TRADITIONAL CNN-BASED TECHNIQUES

Recently, the broad advances experienced by deep learning
approaches and their success in several computer vision tasks
have led to the development of powerful architectures for
fingerprint PAD. Those schemes have, in turn, significantly
outperformed any earlier PAD techniques.

Nogueira et al. [10] benchmarked three classic Convo-
lutional Neural Networks (CNNs). One of their proposals
achieved the best results in the LivDet 2015 competition, with
an overall accuracy of 95.5%. In spite of those promising
results, the main limitation of these methods is that they learn
features from a whole image with a fixed size. In many cases,
within the LivDet databases, the Region of Interest (ROI)
covers only a small area of the entire image (e.g., 19% for
some subsets of LivDet 2011), thus not being large enough
to allow an efficient PA detection. This is highlighted by the
results achieved on the LivDet 2011 - Italdata dataset, where
the Average Classification Error Rate (ACER) increased up
t0 9.2%.

In order to address the small ROI issue, Pala and
Bhanu [11] proposed training a triple CNN, which is fed with
arandomly extracted patch of a fixed size per image. Despite
the improvement with respect to the previous holistic-image-
based approach [10], its error rates showed a poor detec-
tion performance for Italdata 2011 (i.e., ACER of 5.10%).
Based on the fact that PAIs produce spurious minutiae on
a fingerprint image, Chugh er al. [12], [13] proposed a
deep learning framework for independently classifying local
patches around the extracted minutiae. The final BP vs. AP
decision was defined as the average between PAD scores of
the local patches. This approach additionally allows finding
AP regions inside a sample, even if the PAI only covers part
of the underlying fingerprint. The method, named Fingerprint
Spoof Buster (FSB-v2) [13], achieved the lowest ACER val-
ues reported so far over the LivDet databases.

Finally, Park et al. proposed in [18] an efficient CNN
based on the fire module of the SqueezeNet to optimise the
hardware and time requirements. The experimental evalua-
tion over the LivDet 2011 to 2015 showed that the proposed
CNN outperformed, for some datasets, the FSB-v1 [12], at the
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same time reducing over 6 times the execution time. How-
ever, a benchmark of this PAD method against FSB-v2 [13]
under more challenging unknown attack scenarios or capture
devices has not been carried out yet.

To sum up, the main drawback of the aforementioned
methods is their high dependency both on the PAI fabrica-
tion materials and the capture device, thereby resulting in a
high accuracy decrease for challenging scenarios, as depicted
Tab. 1. It should be observed that the detection performance
of traditional CNN-based methods is substantially decreased
by a factor of two to 10 times when PAIs at hand are:
i) unknown in training, ii) acquired with an unknown capture
device, or iii) obtained with the same capture device, yet at
different acquisition conditions and years.

B. ANOMALY DETECTION-BASED TECHNIQUES

In order to tackle previous generalisation issues, several
anomaly detection-based approaches built upon handcrafted
features have been followed. Given that the detection of
unknown PAIs can be seen like an open set recognition
problem,! Rattani ef al. [8] proposed an automatic adaptation
of Weibull-calibrated support vector machines (SVMs) which
is relatively robust for open set recognition. The experimental
results for the LivDet 2011 database showed that detection
equal error rates (D-EERs) oscillated between 20 and 30%
in the presence of unknown PAI species. Over the LivDet
2011 dataset, Ding and Ross analysed an ensemble of one-
class SVMs trained only on BP samples in [9], which lowered
the error rates to 10-22% over the same dataset.

More recently, in an extension of FSB [13], Chugh and
Jain [14] identified a subset of six out of 12 PAI species
to cover the entire PAI deep feature space, hence yielding
a detection performance similar to known attacks scenarios.
That is, training the FSB with only those six PAI species and
testing on all 12 species results in a BPCER = 10.24% at
APCER = 0.2%, very close to the BPCER = 9.03% when
eleven PAI species are used for training. In spite of these
impressive results, it should be noted that the selection of the
training PAI plays a crucial role in this study.

This dependency is highlighted again by Engelsma and
Jain in [15], where multiple generative adversarial networks
(GANSs) are trained on bona fide images acquired with the
RaspiReader sensor. From the same 12 PAI species, six are
used for training and six for testing. In a benchmark with the
method proposed in [9], the GANs outperform the SVMs.
However, the average BPCERs achieved for an APCER =
0.2% vary from 31.02% to 68.58%, depending on the training
set used. This shows again a high sensitivity to different
training datasets. In addition, this approach is not directly
comparable to those based on conventional (e.g., Cross-
match or Greenbit) capture devices, since a specific hardware,
namely the RaspiReader, was used to acquire the samples.

1Open—set problems address the possibility of new classes during testing,
that were not seen during training.
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FIGURE 1. Proposed PAD approach overview. First, dense-SIFT descriptors are computed at different scales over the whole input image.
These features are subsequently encoded using a previously learned visual vocabulary by means of three different approaches: a) BoWw, b)
FV, and c) VLAD. The fingerprint descriptor per encoding is separately classified using a linear SVM.

Gajawada et al. tried to tackle this dependency on the
PAI species contained in the training set from a different
perspective in [16]. They propose a so-called deep learn-
ing based ‘“Universal Material Translator” (UMT). Given
a reduced number (e.g., five) of samples from a new PAI
species, the UMT extracts their main appearance features to
embed them into a database of bona fide samples, in order
to generate synthetic samples of the new PAI species. Those
synthetic samples can then be utilised to train any CNN.
Over the LivDet 2015 database, the authors showed how the
proposed approach can improve up to 17% the detection rates,
achieving a remarkable BPCER of 21.96% for an APCER =
0.1%. However, it should be noted that this method does
require some samples (i.e., five) of the analysed unknown PAI
species.

Finally, by assuming that unknown PAIs species share
texture (style) information with known PAIs, Chugh and
Jain [17] extended the work in [16] by combining tex-
ture styles of pre-defined PAI species to generate new syn-
thetic unknown PAIs. Those synthetic data could, in turn,
be employed as training to enhance the generalisation
capability of any end-to-end PAD approach. To that end,
the authors proposed an “Universal Material Generator”
(UMG), which, unlike [16], required no unknown PAI species
to train. The experimental protocol reported a slight detection
performance improvement against the proposed baseline and
LivDet 2017 winner [31] (i.e., an average accuracy of 95.88%
vs. 95.44% for the baseline and 94.01% for the LivDet
winner). However, the cross-sensor evaluation showed a
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poor detection performance (i.e., an average accuracy
of 80.63%).

In this context, our method tackles the issue of
detection performance degradation in absence of knowl-
edge on relevant factors (i.e., attack species, capture
devices, or databases) by transforming the local descriptors
extracted from the fingerprint samples into a common feature
space. Building upon that PAIs share homogeneous texture
information with known PAIs and heterogeneous with those
bona fide presentations, this representation allows a defini-
tion of semantic sub-groups from known samples to improve
the generalisation capabilities to more challenging scenarios,
not needing any samples of the unknown attacks for training.

Ill. PROPOSED METHOD

Fig. 1 shows an overview of the proposed PAD approach
which is based on the aforementioned three different fea-
ture encoding approaches. In the first common processing
step, the Pyramid Histogram of Visual Words (PHOW) [32]
algorithm is used to extract local features from the whole
input image: the so-called dense Scale-Invariant Feature
Transform (dense-SIFT) descriptors (Sect. III-A). Subse-
quently, three encoding methods are applied to transform the
local descriptors into a common feature space: i) Bag-of-
Words (BoW) [25] (Sect. III-B1), ii) Fisher Vector (FV) [28]
(Sect. ITI-B2), and iii) Vector Locally Aggregated Descriptors
(VLAD) [33] (Sect. III-B3). Finally, the bona fide (BP) vs
attack presentation (AP) decision for a sample at hand is taken
by a linear Support Vector Machine (SVM) (Sect. III-C).
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FIGURE 2. BP vs. AP ridge patterns. a) good quality BP ridge pattern;
b) AP whose ridge pattern was affected by the coarseness of the artificial
material employed on its fabrication.

A. LOCAL FEATURES EXTRACTION: DENSE-SIFT
DESCRIPTORS

As local feature descriptors we have chosen the dense-
SIFT approach, computed over the image gradient, since
they can capture lower coherence areas introduced by the
coarseness of different PAI fabrication materials, as depicted
in Fig. 2. In particular, the Pyramid Histogram Of visual
Words (PHOW) approach proposed by [32] computes the
SIFT descriptors densely at fixed points on a regular grid with
uniform spacing S (e.g., 5 pixels), as illustrated in Fig. 3 (left).
For each point in the grid, the dense-SIFT descriptor com-
putes the gradient vector for each pixel in the feature point’s
neighbourhood (Fig. 3, top right), taking into account 8 dif-
ferent directions. Subsequently, a normalized 8-bin histogram
of gradient directions (Fig. 3, bottom right) is built over 4 x 4
sample regions. In addition, in order to account for the scale
variation between fingerprints, these dense-SIFT descriptors
are computed over four circular patches or windows with
different scales 0 = {5, 7, 10, 12}. Therefore, each point in
the grid is represented by four SIFT descriptors (i.e., one per
o) comprising a total number of 128 features (i.e., 4 x 4 8-bin
histograms).

It should be noted that windows with different scales allow
extracting local information of fingerprints at different res-
olution levels, thereby detecting variable-size artefacts pro-
duced in the fabrication of PAIs. In addition, near-uniform
local patches do not yield stable keypoints or descriptors.
Therefore, we have used a fixed threshold t on the average
norm of the local gradient in order to remove local descriptors
from regions with an average norm value close to zero (i.e.,
low contrast regions).
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FIGURE 3. dense-SIFT descriptors computed at fixed points on a regular
grid, striding with an uniform spacing S and using several scales o.

B. LOCAL FEATURE ENCODING

In the second stage of the PAD algorithm, three different
feature encoding approaches for the dense-SIFT descriptors
are analysed.

1) BAG OF WORDS (BoW)

This technique was first developed for text categorization
tasks, in which a text document is assigned to one or more
categories based on its content [34]. To that end, BoW
represents a text document by a sparse histogram of word
occurrence based on a visual vocabulary. Following this idea,
Csurka et al. [25] adopted and applied this method to repre-
sent local features from an image in terms of the so-called
visual words. Our method builds upon this approach.

As proposed in [35], the BoW representation first com-
putes the visual vocabulary as a codebook with K different
centroids or visual words (see Fig. 1, top) with k-means
clustering. Then, the BoW representation is defined as the
histogram of the number of image local descriptors assigned
to each visual word. Its computation is summarised in Fig. 4.
An m-level pyramid of spatial histograms is used in order
to incorporate spatial relationships between patches. For that
purpose, the fingerprint image is partitioned into increasingly
fine sub-regions, and the dense-SIFT descriptors inside each
sub-region are assigned to the closest centroid among the K
visual words, using a fast version of k-means clustering [36].
Subsequently, the histograms inside each sub-region are com-
puted and transformed into a single and final feature vector
by a homogeneous kernel map [37].

2) FISHER VECTOR (FV)

BoW approaches encode local features using a hard assign-
ment, in which a local descriptor is only assigned to one visual
word based on a similarity function. In contrast, the Fisher
Vector (FV) method derives a kernel from a generative
model of the data (e.g., Gaussian Mixture Model, GMM),
and describes how the distribution of a set of local descrip-
tors, extracted from unknown PAlIs, differs from the known
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FIGURE 4. Example of pyramid of spatial histograms. a) Quantized
features using k-means. b) 3-level pyramid of spatial histograms built
from quantized features.

PAI distribution previously learned by the adopted genera-
tive model [28]. The aforementioned generative model can
be understood as a probabilistic visual vocabulary, thereby
allowing a soft assignment. Thus, the FV paradigm encodes
not only the number of descriptors assigned to each region,
but also their position in terms of their deviation with respect
to the pre-defined model.

As proposed in [38], we train a GMM model with diagonal
covariances from the dense-SIFT descriptors extracted on the
previous step. In particular, a GMM on K -components, which
is represented by their mixture weights (), means (i),
and covariance matrices (ox), with k = 1,..., K, allows
discovering semantic sub-groups from known PAIs and BP
samples, which could successfully enhance the detection of
unknown attacks. In order to build those semantic groups,
the dense-SIFT descriptors are firstly decorrelated using Prin-
cipal Component Analysis (PCA) [33], hence reducing their
size to d = 64 components while retaining 95% of the vari-
ance. Then, the FV representation which captures the average
statistics first-order and second-order differences between the
local features and each semantic sub-groups previously learnt
by the GMM is computed [39].

Let X be a local descriptor of size d and Sk =
{(mwx, wk,0x) : K = 1...K} aset of K semantic sub-groups
learnt by the GMM. The FV representation for X is defined
as the conditional probability:

FVx = P(X|Sk) M
= P(X|uk, or) @)

By applying Bayesian properties, we can rewrite previous
equation as:

o = ;Xd:a-(k) (M) (3)
CCNm S o )’
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SN Sy (LGN

where «;(k) is the soft assignment weight or the posterior
probability of the i-th feature X; to the k-th Gaussian [39].
Therefore, the FV representation that defines a finger-
print image is finally obtained by stacking the differences:
o= [4], ®2,.... bk, ¢,2<], thereby resultinga2-d - K =
2 .64 - K size vector.

3) VECTOR LOCALLY AGGREGATED DESCRIPTORS (VLAD)
In order to reduce the high-dimension image representation
proposed by the FV and BoW approaches, gaining in effi-
ciency and memory usage, we have finally studied the Vector
Locally Aggregated Descriptors (VLAD) methodology [33]
(see Fig. 1, third row). This is a simplified non-probabilistic
version of FV, which models the data distribution from the
accumulative distances between a local descriptor X and its
closest visual word ¢ in the visual vocabulary. Therefore, as in
the BoW approach, a visual vocabulary needs to be computed
in the first step with the k-means algorithm.

More specifically, a d-dimensional local feature descriptor
X (i.e., dense-SIFT descriptor) can be represented by a VLAD
descriptor Vx of size Kd as follows:

d

Vx=Y | > X—cij]. (5)

j=1 \X:NN(X)=c;

where X; and ¢;; denote the j-th component of X, and its
corresponding closest visual word ¢;. In our method, Vx is
subsequently L,-normalised in order to further improve the
classification accuracy.

Finally, it is important to highlight that VLAD also uses
PCA for decorrelating training data.

C. CLASSIFICATION

In order to classify the final encoded representations, sep-
arated linear SVMs have been used for each encoding
approach. SVMs are popular since they perform well in
high-dimensional spaces, avoid over-fitting and have good
generalisation capabilities. According to [40], when the
feature’s dimensionality is so greater than the number of
instances employed for training, a non-linear mapping does
not improve the performance. Therefore, the use of a linear
kernel would be good enough to achieve a high classification
accuracy.

In order to find the optimal hyperplane separating the bona
fide from the attack presentations, the optimisation algorithm
bounds the loss from below. Therefore, we have trained a
linear SVM as follows: The SVM labels the bona fide samples
as +1 and the presentation attacks as -1, thereby yielding the
corresponding W (weights) and b (bias) classifier parameters.

Subsequently, given a feature descriptor X which was pre-
viously yielded by a particular encoding approach (i.e., BoW,
FV, VLAD), the final score sy, which estimates the class of
the sample at hand, is computed as the confidence of such
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TABLE 2. PAI fabrication materials used in each dataset of the LivDet 2011 - 2019 databases, where U denotes unknown material in the test set.

DB Dataset Gelatine  Latex  PlayDoh  Silicone  Silgum  Wood glue  Ecoflex =~ Body Double ~ Modasil ~ Liquid ecoflex RTV OOMOO  Gelatine2  Mix 1 Mix 2
Biometrika ' v v v '
= Digital P. v v v
&  ltaldata v v v v v
Sagem v v v
ot} Biometrika ' v ' ' v
IS5 Italdata v v v v v
GreenBit v v v v v (U) v (U)
i Digital P. v v v ' v (U) v (U)
&  Hi_Sean v v v v v (U) v (U)
Crossmatch v v v v (U) v (U)
- GreenBit v (U) v (U) v v v v (U)
é Digital P. v (U) v (U) v v v v ()
Orcanthus v (U) v (U) v ' v v (U)
o GreenBit v v v ' v v (U) v (U) v (U)
é Digital P. v v v v v v (U) VU V(U
Orcanthus v v v ' v v () v (U) v (U)

decision (i.e., the absolute value of the score is the distance
to the hyperplane):

sx=W-x+b 6)
IV. EXPERIMENTAL EVALUATION
In this section, we evaluate and benchmark the detection
performance of each fingerprint encoding scheme described
in Sect. III. Specifically, three goals were taken into account
for the experimental protocol design: i) analyse the impact of
the key parameter K (vocabulary size) on the detection per-
formance of the three proposed PAD schemes, ii) benchmark
the detection performance of our proposals against the top
state-of-the-art approaches, and iii) study the computational
performance of the three fingerprint encoding schemes.

A. EXPERIMENTAL PROTOCOL
The proposed PAD methods were implemented in C++- using
the open-source VLFeat library.> All the experiments were
conducted on an Intel(R) Xeon(R) CPU E5-2670 v2 proces-
sor at 2.50 GHz, 378 GB RAM.

1) DATABASES

The experiments were conducted on the well-established
benchmarks from LivDet 2011 [41], LivDet 2013 [42],
LivDet 2015 [43], LivDet 2017 [31], and LivDet 2019 [44].
A summary of the PAI fabrication materials is included in
Tab. 2. It is worth noting that we leave out from our exper-
imental evaluation two datasets in LivDet 2013 (i.e. Cross-
match and Swipe) since some anomalies were detected in
their fabrication [31].

2) EVALUATION PROTOCOL AND METRICS

To reach the aforementioned objectives, the experimental
evaluation considers three different scenarios: i) known-
material and known capture device, ii) known capture device
and unknown-material, and iii) unknown capture device and
cross-database.

2http://Www.vlfeat.org/
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The detection performance is evaluated in compliance
with the ISO/IEC 30107-3 [5]: we report the Attack Pre-
sentation Classification Error Rate (APCER), which refers
to the percentage of misclassified presentation attacks for
a fixed threshold, and the Bona Fide Presentation Classifi-
cation Error Rate (BPCER), which indicates the percentage
of misclassified bona fide presentations. We also include
the Detection Error Trade-Off (DET) curves of both error
rates, as well as the BPCER for a fixed APCER of 10%
(BPCER10), 5% (BPCER20) and 1% (BPCER100).

Then, in order to establish a fair benchmark with the
existing literature, we report the ACER as the average of the
APCER and the BPCER for a fixed detection threshold §.

B. EXPERIMENTAL RESULTS

1) KNOWN-MATERIAL AND KNOWN CAPTURE

DEVICE SCENARIO

EFFECT OF THE SEMANTIC SUB-GROUPS

First, we optimise the algorithms’ detection performance in
terms of the main key parameter: the visual vocabulary size
K. To that end, we focus on the known scenario, in order to
avoid a bias due to other variables. We test the following range
of values: K = {256,512, 1024, 2048}, since K > 2048
would yield too long feature vectors, not usable for real-time
applications. Tab. 3 reports the ACER values for the adopted
K configurations. As it can be observed, the best K values on
average are K = 512 for FV and K = 1024 for VLAD and
BoW. Specifically, the FV representation reports an ACER
of 2.23%, which is approximately two and three times lower
than the ones attained by the remaining encodings (4.88%
for VLAD and 6.34% for BoW). This observation, in turn,
indicates that FV is able to successfully separate a BP from
an AP given a reduced number of semantic sub-groups built
by GMM, in contrast to the VLAD and BoW.

EFFECT OF THE FINGERPRINT QUALITY

On the other hand, we also observed in Tab. 3 that the best
performing representation (i.e., FV) achieves a poor detection
performance for two out of four datasets in LivDet 2015.
In particular, it attains an ACER of 4.30% and 6.20% for
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TABLE 3. Detection performance, in terms of ACER(%), of our proposed encodings for different K values. The best results per encoding and capture

device are highlighted in bold.

DB Dataset FV VLAD BoW
atase 256 512 1024 2048 256 512 1024 2048 256 512 1024 2048
Biometrika 2.80 4.10 5.70 6.10 8.40 8.30 8.30 8.20 8.10 7.10 6.40 7.30
= Digital P. 0.70  0.30 0.30 0.30 2.00 1.30 0.95 0.60 2.20 1.40 1.30 1.4
5 ITtaldata 320 240 4.50 5.30 9.70 16.10 13.3 12.7 16.20 7.50 12.70 19.70
Sagem 1.72 1.60 1.42 1.47 3.00 2.65 2.65 2.36 6.48 6.53 5.26 5.21
« Biometrika 0.30 0.50 0.50 0.40 2.50 3.10 1.80 2.40 3.10 2.50 1.80 1.80
5 Italdata 0.30 0.30 0.30 0.30 1.00 0.80 0.80 0.70 4.40 3.90 3.70 2.60
GreenBit 1.60 1.30 1.40 1.80 4.80 3.60 3.80 4.50 4.20 4.00 4.40 5.00
b Digital P. 7.30  6.50 6.50 6.20 9.70 9.40 8.90 9.50 16.00 14.70 13.40 13.00
5 Hi_Scan 4.60 430 4.50 4.8 6.50 6.80 5.80 6.00 1140 10.50 9.00 8.30
Crossmatch  1.06 1.03 1.03 1.03 3.62 3.62 2.50 3.28 7.03 6.21 5.40 5.34
Avg. 236 223 2.62 2.77 5.12 5.57 4.88 5.02 7.91 6.43 6.34 6.97
NFIQ2 quality score distribution
BP quality scores === AP quality scores == |ntersection
200 g 1180 600 200
180 160 1 180
160 140 500 1160
140 1201 {400 140
:ég 100 1300 158
80 80r 1 80
60 60 200 €0
40 407 40
20 20, 100 20

0 10 20 30 40 50 60 70 80 90100 O 10 20 30 40 50 60 70 80 90 100

a) Digital Persona b) Hi_Scan

FIGURE 5. NFIQ2 quality distribution for the LivDet 2015 datasets.

Hi_Scan and Digital Persona, which are respectively three
and five times worse than the ones reported by GreenBit
and Crossmatch. According to [45], most PAD techniques
submitted to LivDet 2015 did not perform well due to the
small image size. However, by analysing the fingerprint
quality provided by the NFIQ2 [46] approach for the entire
LivDet 2015 datasets in Fig. 5, we found that most BP images
in the Digital Persona and Hi_Scan datasets report a poor
NFIQ2 quality, in contrast to the ones in GreenBit and Cross-
match. Whereas 8% and 30% of the fingerprints in Digital
Persona and Hi_Scan present a good NFIQ2 quality greater
than 50% (good quality), most BP samples in GreenBit (i.e.,
63%) and Crossmatch (i.e., 72%) pose a good NFIQ2 quality.
Therefore, both capture devices include some sensor technol-
ogy which produces a high noise degree on the fingerprint
samples, and hence also affects the detection performance
of most state-of-the-art PAD methods [10], [45], even our
approach. This observation is also confirmed in Fig. 6, which
reports the detection performance of our best encoding for
different fingerprint image quality ranges over the LivDet
2015. This way, we do claim that FV performs better as the
fingerprint image quality of BP samples improves.

This handicap is depicted in Fig. 7: a poor fingerprint
image quality sample, taken from Digital Persona, is mis-
classified by our best approach. It is worth noting that one
of the key hypothesis of our work is that the fabrication of
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FIGURE 6. ACER evaluation of the FV encoding for several NFIQ2 quality
ranges.

PAIs produces artefacts on the ridge pattern which could be
correctly detected through the orientation histograms. There-
fore, we think that for those capture devices (e.g., Digital
Persona and Hi_Scan) which include a high noise degree
on the BP ridge pattern, our fingerprint representation-based
method is unable to successfully spot an attack presentation.
We should also not forget that, those high-noise fingerprint
images would not be suitable for a real fingerprint recognition
pipeline. Finally, we also do confirm that the orientation field,
representing a fingerprint ridge pattern, can be used as a
discriminative feature to detect attack presentation attempts
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TABLE 4. Benchmark in terms of the ACER(%) with the top state-of-the-art. The best results are highlighted in bold.

DB  Dataset VGG [10]  TripleNet [11] FSB-vl([12] TinyFCN [18] FSB-v2[13] FLDNet[23] FV FUSION
Biometrika 5.20 5.15 2.60 1.10 1.24 - 280 240(a=0.7,5=0.0)
—_ Digital P. 3.20 1.85 2.70 1.10 1.61 - 030 0.10 (a=0.8,8=0.0)
§ Italdata 8.00 5.10 3.25 4.75 2.45 - 240 220(x=0.8,5=0.0)
Sagem 1.70 1.23 1.80 1.56 1.39 - 142 113 (x=08,5=0.2)
Avg. 4.52 3.33 2.59 3.12 1.67 - 1.73 1.46
«n  Biometrika 1.80 0.65 0.60 0.35 0.20 0.36 030 0.30(ax=09,5=0.0)
§ Italdata 0.40 0.50 0.40 0.40 0.30 1.35 030 0.30 (a=0.1,3=0.0)
Avg. 1.10 0.58 0.50 0.38 0.25 0.86 0.30 0.30
GreenBit 4.60 - 2.00 0.20 0.68 0.53 130 1.30 (=1.0, 5 =0.0)
«~  Digital P. 5.64 - 1.76 3.40 112 3.61 620 620 (a=1.0,5=0.0)
é Hi_Scan 6.28 - 1.08 0.35 1.48 2.95 430 430(a=1.0,5=0.0)
Crossmatch 1.90 - 0.81 1.09 0.64 1.78 1.03  1.03(x=1.0,3=0.0)
Avg. 4.61 - 1.39 1.26 0.97 2.22 3.20 3.20

a) Bona fide presentation
NFIQ2 =29

b) Attack presentation
NFIQ2 =29
FIGURE 7. BP and AP samples which report the same NFIQ2 quality. a) a

misclassified BP sample whose ridges include a high noise degree, and
b) an AP image with a high noise degree.

whose capture devices do not include a high noise degree over
the BP ridge pattern.

STATE OF THE ART BENCHMARK

Once determined the best performing K values, we bench-
mark, in Tab. 4, our best encoding against the state-of-the-art
in terms of the ACER for the known scenario. The lowest
value on each row is highlighted in bold. Given that the use
of complementary information could improve the recogni-
tion capabilities of an approach, we also evaluate the fusion
between the three proposed representations (i.e., FV, VLAD,
and BoW) using a weighted sum method as follow:

sp=a-si+Bosat(l—a—p)- s, ™

where o + B < 1, and s1, 52 and s3 represent the individual
scores produced by our three encodings. Taking into account
that LivDet databases do not include a validation set, the «
and B weighted values are computed from each LivDet’s
training set. In our work, we also experimented the fusion at
feature’s level between the three fingerprint representations.
However, the new large-dimensional vectors together with
the poor detection capability reported by VLAD and BoW
features led to a detection performance degradation of this
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fusion. The large feature dimensionality in conjunction with
the low number of training samples in datasets do not allow
that the SVM finds the entire set of optimal hyperplanes to
successfully separate a BP from an AP either.

Taking a look at Tab. 4, we can observe that our FV
representation and its fusion with the other encodings achieve
the state of the art in most datasets. Specifically, the former
reports an average ACER of 1.73% and 0.30% for LivDet
2011 and LivDet 2013, respectively, which outperform four
out of five top state-of-the-art approaches, thereby confirm-
ing its detection capability for this baseline scenario. In addi-
tion, its detection performance is slightly enhanced by the
fusion for one out of three databases (i.e., 1.46% vs. 1.73%
for LivDet 2011), hence showing that the joint information
between a hard and soft assignment leads to a classification
improvement. Finally, given that the fingerprint image quality
significantly affects the PAD performance of the proposed
encodings, the benchmarking methods are unable to outper-
form on average most state-of-the-art techniques. However,
ACERs of 1.30% and 1.03%, which achieve the current state-
of-the-art PAD schemes, are respectively reported for the two
good-quality fingerprint datasets on the LivDet 2015 (i.e.,
GreenBit and Crossmatch).

IN DEPTH DETECTION PERFORMANCE ANALYSIS

It should be noted that the main goal of the present work is
not only to achieve the best performance at a single operating
point (i.e., the ACER is measured for § = 0.5) but overall
for different applications requiring either a low BPCER (i.e.,
high convenience) or low APCER (i.e., high security), and
also under more challenging and realistic conditions (i.e.,
unknown capture devices or PAI species). Fig. 8 shows the
DET curves for the proposed fusion representation over all
capture devices employed for the known scenario. As it can
be observed, a significant performance can be deployed by
the fusion for high security thresholds (i.e., APCER = 1.0%):
a remarkable average BPCER100 = 1.98% (vs. 9.68% in
FSB-vl1 [12], 4.05% in FSB-v2 [13]) for LivDet 2011 and
0.10% (vs. 0.20% in FSB-v1 [12], 0.05% in FSB-v2 [13])
for LivDet 2013. More in detail, for the entire set of capture
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DET curves for the fusion between three representations on the known scenarios
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FIGURE 8. Performance evaluation for the fusion between three representations under the known-material and known capture device scenario.

DET curves for the fusion on the unknown material scenarios
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FIGURE 9. Performance evaluation over the unknown PAI species scenarios.

devices in LivDet 2011, a BPCER in range of 0.10% - 8.20%
for any APCER < 1.0% is reported. Similar results can be
consequently observed for all capture devices in LivDet 2013:
a BPCER in range of 0.10% - 6.7% for any APCER < 1.0%.
In contrast, our fusion approach suffers a detection perfor-
mance decrease for two out of four dataset in LivDet 2015:
a joint BPCER100 = 17% for Hi_Scan and Digital Persona,
which is 12 times greater than the one reported by GreenBit
and Crossmatch (i.e., BPCER100 = 1.45%), confirms the
impact of fingerprint image quality on the encoding detection
performance.

2) KNOWN CAPTURE DEVICE AND

UNKNOWN-MATERIAL SCENARIO

As it was aforementioned, the main goal of our work is
faced scenarios with unknown factors. Therefore, we analyse
in detail the detection performance of the three fingerprint
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representations and their fusion for unknown PAI species.
This is, both training and test samples were acquired by the
same capture device, and species in the test set are unknown
for training. For the latter, we select the fixed K, «, and
B values obtained for the known-scenarios (see values in
Tab. 3). Given that LivDet 2017 database aimed the PAD
evaluation for an unknown PAI species [31], we optimised
the encodings for that database following the aforementioned
protocol in Sect. IV-B1. The performance evaluation for the
best performing representation together with the fusion are
presented in Tab. 5, and the corresponding DET curves are
shown in Fig. 9.

As it can be observed in Tab. 5, the fusion approach slightly
outperforms the single FV representation, thereby resulting
an average ACER of 2.60%, 5.26% and 5.15% for the adopted
unknown PAI species protocols. These results, in turn,
achieve the state-of-the-art techniques, hence confirming its
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TABLE 5. Detection performance of our encoding methods, in terms of ACER(%), for several unknown-material scenarios.

PAI species LivDet 2017 x
Protocol Dataset Train Test Fv FUSION ‘ FSB-v2[13] ‘ FLDNet [23] ‘ winner [31]F ‘ FSG [17]
Bioll EcoFlex, Gelatine, Latex Silgum, Woodglue 6.33 478 4.60 -
P ed by [10] Biol3 Modasil, Woodglue EcoFlex, Gelatine, Latex 1.00 1.50 1.30 0.87
roposed by Itall EcoFlex, Gelatine, Latex Silgum, Woodglue, Other | 3.78 3.60 5.20 -
Ital3 Modasil, Woodglue EcoFlex, Gelatine, Latex 0.30 0.50 0.60 0.94
Avg. 2.85 2.60 2.93 -
Crossmatch ~ Body Double, EcoFlex,PlayDoh Gelatine, OOMOO 1.34 1.34 - 2.66
. Digital ~ 8.85 8.85 - 3.06
LivDe2015 G cenbic Eg;ﬂfl’;;ogvz ?)ﬁf: Liquid EcoFlex, RTV | 420 420 ; 0.46
Hi_Scan » Wools 665 665 - 3.38
Avg. 5.26 5.26 - 2.39
Digitalf . Woodglue, EcoFlex, Gelatine, Latex, 4.92 4.84 ) B 441 4.80
LivDer2ot7+  Greendit Body Double Liquid EcoFlex 346 335 - - 3.56 2.58
Orcanthus® Y 5.62 5.62 - - 6.29 4.99
Avg. 5.33 5.15 - - 4.75 4.12
Digital Woodglue, EcoFlex, . . 6.37 - - _ 11.14 16.36
Mix 1, Mix 2
Livberojof  Greenbit Body Double, latex, iy lfi d’EC“)’;le’x 232 . . ; 0.80 0.27
vDe Orcanthus Gelatine q 279 . N . 2.55 2.50
Avg. 3.83 - - - 4.83 6.38

T The overall classification errors reported by the LivDet 2017 winner in this work are the complement of the overall accuracy achieved in [31]
% The overall classification errors reported by FSG in this work are the complement of the overall accuracy achieved in [17]

1 The overall classification errors reported are the complement of the overall accuracy achieved in [44]

* The ACER results for the encoding fusion was attained at K = 2048 for FV and BoW, and K = 1024 for VLAD.

*a=09and B=0.1.
®a=1.0and 8=0.0.

soundness for this challenging scenario. It should be noted
that for the unknown PAI species protocol described in [10],
the FV method shows an ACER below 1.00% for most
datasets, with the exception of Biometrika 2011 and Italdata
2011, which contain unknown PAIs fabricated with Silgum.
In a previous work [47], we showed how PAIs created with
Silgum correctly copied their corresponding fingerprint ridge
pattern, thereby making hard to detect by our best fingerprint
representation. On the other hand, the ACERs showed by FV
and the fusion method for LivDet 2015 also appear to be
affected by the aforementioned fingerprint quality. Specifi-
cally, Digital Persona and Hi_Scan yield an ACER of 8.85%
and 6.65%, respectively, which are worse than the ones
attained for the remaining datasets. This fingerprint quality
deterioration can be also noted for Digital Persona in LivDet
2017 and 2019: ACERs in range of 4.80% - 16.36% con-
firm the state-of-the-art shortcomings to identify AP attempts
stemming from a high-noise capture device. These error rates
also state that those algorithms depend on a careful selection
of known PAI species in order to achieve a reliable detection
performance over unknown PAI species, in contrast to our
proposed representation. This also led that the FV approach
outperformed the rest of PAD techniques in the last LivDet
2019 edition, thereby resulting in an overall classification
error rate of 3.83%.

Finally, a similarity between the ACERs reported in
Tab. 5 and detection performance shown in Fig. 9 can
be perceived. Whereas the DET curves for the unknown
PAI species protocol described in [10] show an average
BPCER100 of 4.53% (vs. 4.90% in FSB-vl [12], 4.24%
in FSB-v2 [13]), the curves for LivDet 2015 and LivDet
2017 report an average BPCER100 of 9.23% and 12.29%,
respectively.
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3) UNKNOWN CAPTURE DEVICE AND

CROSS-DATABASE SCENARIOS

In the last experimental evaluation, we assess the soundness
of our proposals in scenarios where different (i.e., unknown)
capture devices are used following the unknown capture
device and cross-database scenarios proposed by [10].

In the first set of experiments, training and test samples are
acquired using different capture devices (i.e., capture device
inter-operability analysis). Tab. 6a benchmarks in terms of the
ACER the proposed fingerprint representations against the
top state-of-the-art PAD techniques. In general and regardless
of the particular train-test combination, FV encoding and
the fusion method is able to outperform both the other two
encoding approaches and the results reported in the literature
(i.e., average ACER = 4.08% for FV and average ACER =
5.35% for FV vs. 14.59% for FSB-v2 [13]), which implies a
relative improvement of up to 72%.

Consequently, Fig. 10a) shows the corresponding security
evaluation for the fusion approach. As it may be observed,
training over the Italdata subset yields a better performance
at all operating points than training over Biometrika (grey
vs. orange and blue vs. yellow curves). Moreover, for a
fixed APCER of 1%, the fusion achieves a BPCER100 of
16.24%, which reduces by 75% the top state-of-the-art result
(BPCER100 = 52.52% for FSB-v2 [13]), thereby confirming
its soundness for this challenging scenario.

In the second experiment, the performance is evaluated
over the change of data collection over the same capture
device (i.e., train and test over the same capture device,
but acquired for LivDet 2011 and LivDet 2013, respec-
tively). We refer to this protocol as cross-database sce-
nario. In Tab. 6b, similar results like the ones reported in
Tab. 6a can be observed. Specifically, the FV encoding and
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DET curves for FV and the fusion on
the unknown capture device and cross database scenarios
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FIGURE 10. Performance evaluation over the unknown capture device and cross-database scenarios [10].

TABLE 6. ACER evaluated on the unknown capture device and
cross-database scenarios proposed by [10].

(a) Unknown capture device protocol.

Trai FV VLAD BoW FUSION ‘ FSB-v2 [13] ‘ FLDNet [23]
rain - Test

Bioll -Italll | 11.30 1930 2045 1145 25.35 -

Biol3-1Itall3 | 1.80  3.50 3.75 1.80 430 2.10

Italll - Bioll | 2.40 1520 2675  7.40 25.21 -

Itall3 - Biol3 | 0.80 190 3.00  0.75 3.50 2.90

Avg. | 408 998 1349 535 | 1459 |
(b) Cross-database protocol.

Train-Test | FY VLAD BoW FUSION ‘ FSB-v2 [13] ‘ TripleNet [11]
Bioll -Biol3 | 6.80 1570 17.80  4.00 7.60 14.00
Biol3-Bioll | 1270 10.60 3120  13.60 31.16 34.05
Italll - Itall3 | 5.60 10.00 385  5.60 6.70 8.30
Itall3 - Italll | 11.50 18.10 44.80 17.50 26.16 44.65

Avg. | 915 1360 3308 1018 | 1791 | 25.25

fusion method outperform the remaining PAD techniques
(i.e., ACER = 17.91% for FSB-v2 [13] and ACER = 25.25%
for TripleNet [11]) by up to a 64% relative improvement.

Regarding to the operational evaluation, we can note,
in Fig. 10b), that fingerprint samples acquired by the same
capture device at different years produce similar DET curves
for FV, in contrast to the fusion, which is affected by error
rates produced by BoW. In particular, Biometrika 2011 and
Biometrika 2013 yield, for FV, a joint BPCER10 = 3.60%,
BPCER20 = 7.10%, and BPCER100 = 15.10% with a stan-
dard deviation in range of 0.42% - 3.82%, thereby confirming
its soundness in this challenge scenario: current state-of-the-
art PAD techniques report a high BPCER100 of 65.06%.
Consequently, Italdata 2011 and Italdata 2013 attain a joint
BPCER10 = 12.55 £ 0.21, BPCER20 = 15.70% =+ 1.98, and
BPCER100 = 41.95 £ 9.40.

Finally, a t-SNE visualisation in Fig. 11 for the unknown
capture device and cross-database scenarios shows the
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TABLE 7. Computational performance in seconds on LivDet 2015.

K=25 K=512 K=1024 K =2048
BoWw 0.37 0.38 0.38 0.39
VLAD 1.24 1.33 1.58 1.98
FV 1.17 1.48 2.11 3.39

capability of the FV representation to separate an AP from a
BP. We can observe that feature spaces for AP samples appear
to be, at most cases, closer with each other than with those
BP attempts. Even for those testing capture devices such as
Biometrika 2011 (see Fig. 11b)), which contains PAI species
unknown in the Biometrika 2013 training set, we can note that
our approach was able to find a set of semantic sub-groups
from known samples to successfully fit those unknown PAI
species. This, in turn, confirms the aforementioned hypothe-
sis in Sect. I.

4) COMPUTATIONAL EFFICIENCY

In this last set of experiments, we study the computational
efficiency of the proposed fingerprint encodings for differ-
ent parameter configurations, as reported in Tab. 7. For this
purpose, we select the LivDet 2015 database, which con-
tains the largest images. As expected, the time employed
by our representation increases as the number of semantic
sub-groups grows. Specifically, we found that for the best K
value in which the three proposed representations achieved
their optimum detection performance, the BoW representa-
tion requires 0.38 seconds (K = 1024), VLAD 1.58 seconds
(K = 1024), and FV 1.48 seconds (K = 512) to output a
decision. The aforementioned detection performance results
together with low memory requirements (i.e., approximately
500kb) needed by each trained model lead to a good trade-off
between detection accuracy and computational efficiency.

5) FINAL REMARKS
We can summarise the main findings of the experimental
evaluation as follows:
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FIGURE 11. t-SNE visualisation of the FV common feature space for the unknown capture device and cross-database scenarios.
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Among the three encoding proposals (i.e., BoW, FV, and
VLAD), the best detection performance is obtained for
FV, and the worst for BoW.

SIFT descriptors representing the fingerprint ridge pat-
tern characteristics such as ridge shape, smoothness and
orientation, are suitable to detect attack presentation
attempts.

Experimental evaluation showed that most state-of-the-
art approaches including the proposed representations
are significantly affected by the fingerprint image qual-
ity for those samples acquired with a high noise capture
device such as Digital Persona.

The NFIQ2 quality results showed how the detection
performance of the FV encoding improved for better BP
fingerprint qualities over the LivDet 2015 database.
Experimental evaluation also showed that our best fin-
gerprint representation (i.e. FV) is able to outperform,
with a high accuracy, the top state-of-the-art in the more
realistic and challenges scenarios, in which both known
and unknown PAIs are frequently employed.

Whereas Deep learning-based fingerprint PAD approa-
ches require large databases for optimising thousands
of parameters, our proposal attained a high detection
performance optimising a small number of them (K)
from a small dataset.

FV encoding can yield an improvement up to 72%,
in more complex and realistic scenarios, even for very
high security operating points (APCER = 1%).
Experimental results demonstrated the soundness of our
best fingerprint representation to detect AP samples
acquired at different years by the same capture device:
a BPCER in range of 3.60% - 7.10% with an average
standard deviation of 2.03 for higher security thresholds
(i.e, 1% < APCER < 10%).

Further, a fusion at score’s level between three finger-
print representations deployed a performance improve-
ment at most cases, thereby resulting in a BPCER100 in
range of 1.98% - 17% in the presence of unknown PAI

species. This, in turn, confirmed that the hard quanti-
sation computed by VLAD and BoW can be used as
addition information to enhance the soft quantisation
built by the FV approach. We think that for those non-
improvement cases, a proper tuning of the fusion param-
eters could enhance its detection performance.

« Fig. 11 showed that unknown PAIs share homogeneous
characteristics with each other and heterogeneous with
those of bona fide presentations. However, the overlap
between some BP and AP samples requires new genera-
tive models in order to successfully learn the input data
distribution, and hence enhance the PAD generalisation
capabilities.

V. CONCLUSION

In this paper, we have proposed a new PAD method based on
the combination of local dense-SIFT image descriptors and
three different feature encoding approaches (i.e., FV, VLAD,
and BoW). The detection performance evaluation conducted
over most publicly available LivDet databases showed the
soundness of our best fingerprint representation (i.e., FV) in
more complex and realistic scenarios where unknown and
known attack presentation attempts are carried out. In addi-
tion, this best single encoding achieved the highest detection
accuracy on the LivDet 2019 competition [29].

In more details, the ISO-compliant evaluation in terms of
BPCER and APCER showed one of the main strengths of the
FV encoding: the low BPCERs achieved even for very high
security operating points (i.e., APCER < 1%). Specifically,
the FV approach yielded an average BPCER100 of 1.28%
for known-scenarios, 8.69% for the unknown material sce-
narios, and 11% and 24% for the unknown capture device
and cross-database scenarios, respectively, thereby achieving
the top state-of-the-art results. In addition, a fusion between
three encodings through a weighted sum approach showed an
improvement of the baselines at most cases, thereby resulting
in a BPCER100 in range of 1.98% - 17% in the presence of
unknown PAI species.

VOLUME 9, 2021



L. J. Gonzélez-Soler et al.: Fingerprint PAD Based on Local Features Encoding for Unknown Attacks

IEEE Access

In summary, previous results indicate that i) in the chal-
lenging scenarios, orientation histograms computed by the
dense-SIFT method correctly represent the ridge pattern, and
hence the artefacts produced in the fabrication of PAIs; and
ii) FV in combination with a generative model as GMM
which correctly learned the data distribution dense-SIFT
descriptors yielded a new common feature space, which
allows successfully detecting both known and unknown PAIs.

Finally, the computational efficiency evaluation showed
that BoW encoding attained efficiency results below
400 milliseconds, while VLAD and FV encodings were
above 1150 milliseconds. As future work lines, we will
improve the computational cost of the FV encodings in order
to obtain the best trade-off between detection accuracy and
computational efficiency. In order to tackle the fingerprint
image quality limitation provided by Digital Persona, we will
evaluate other texture descriptors in combination with FV.
In addition, we will evaluate a new generative model in order
to remove the GMM constraints on the input data distribution.
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