
Received December 19, 2020, accepted December 28, 2020, date of publication January 1, 2021, date of current version January 11, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3048774

On Randomness and Structure in Euclidean TSP
Instances: A Study With Heuristic Methods
GLORIA CERASELA CRIŞAN 1, ELENA NECHITA1, AND DANA SIMIAN2
1Department of Mathematics and Informatics, Vasile Alecsandri University of Bacău, 600115 Bacău, Romania
2Research Center in Informatics and Information Technology, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania

Corresponding author: Gloria Cerasela Crişan (ceraselacrisan@ub.ro)

The work of Gloria Cerasela Crişan and Elena Nechita was supported by the Ministry of Education and Research through the National
Council for the Financing of Higher Education, Romania, under Grant CNFIS-FDI-2020-0461. The work of Dana Simian was supported
by the Lucian Blaga University of Sibiu and the Hasso Plattner Foundation under Grant LBUS-RRC-2020-01.

ABSTRACT Prediction of the quality of the result provided by a specific solving method is an important
factor when choosing how to solve a given problem. The more accurate the prediction, the more appropriate
the decision on what to choose when several solving applications are available. In this article, we study
the impact of the structure of a Traveling Salesman Problem instance on the quality of the solution when
using two representative heuristics: the population-based Ant Colony Optimization (ACO) and the local
search Lin-Kernighan (LK) algorithm. The quality of the result for a solving method is measured by the
computation accuracy, which is expressed using the percent error between its solution and the optimum one.
We classify the instances in structured, semi-structured, and unstructured and perform a between classes and
inside-classes analysis. All the structured instances were solved to optimality by the ACO implementation,
which was not the case for the LK application. On small random instances, the ACO implementation
used in this paper also optimally found the solutions. We show that the quality of the results on semi-
structured and unstructured instances can be predicted using some instance parameters when using the ACO
implementation. Using the same parameters, the accuracy of the solutions provided by the Lin-Kernighan
application cannot be predicted. We also propose several new structured, clustered, and unstructured 2D
Euclidean Traveling Salesman Problem instances that can be used by the research community for further
investigations.

INDEX TERMS Ant colony optimization, traveling salesman problem, Euclidean norm, Lin-Kernighan
method.

I. INTRODUCTION
This work focuses on the study of the influence of structural
features of Traveling Salesman Problem (TSP) instances on
computational performances measured by solution quality
when solving TSP using two representative heuristics: Ant
Colony Optimization (ACO) [1] and Lin-Kernighan method
(LK) [2]. By solution quality, we understand the solution
accuracy given by the percent error between the solution and
the optimum one.

When choosing a specific solving method for a given
problem, we have to consider several aspects. When no
information on the problem instance is known, large avail-
able computational resources may orient the user’s decision
toward expensive, intensive solvers that provide an optimum

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

solution. For example, for an NP-hard problem as is the
Traveling Salesman Problem (TSP), an exact, very efficient
application used 84.8 CPU equivalent-years on a single Intel
Xeon 2.8 GHz processor for the Sweden instance [3]. In the
opposite case, when resources are scarce, a ‘‘light’’ solver
may be accepted, providing an acceptable solution. Approx-
imation or heuristic methods, which offer ‘‘good-enough’’
solutions, are recommended in this case. Sometimes a small
threshold for accepting non-optimal solutions could tremen-
dously ease the computational burden [4].

To solve the TSP means to find one least-weighted cycle
connecting all the vertices of a complete graph with weights
on edges [5]. Euclidean TSP considers that each edge weight
represents the Euclidean distance between the correspond-
ing incident vertices. Certain solver could work better on a
specific sub-class of the TSP problem, exploiting the prob-
lem specificity. Therefore, choosing a solver should be the

5312 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-1795-2297
https://orcid.org/0000-0001-9315-1788

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

result of a more informed decision. For example, for the
TSP instances where weights satisfy the triangle inequality,
the problem is approximated within a factor of 3/2. TSP with
Euclidean distances admits a polynomial-time approximation
scheme [6].

Previous works studied the impact of the problem char-
acteristics on the computational cost spent for solving it.
Besides the size, which is expected to determine in most cases
the exponential growth of the solving time, some structural
features could also impact the difficulty of exact methods.
For example, [7] investigated the impact of the coefficient of
variation of the (integer, randomly generated) distance matrix
on an exact solving method for TSP. In [8] arbitrarily large
Euclidean TSP instances that are always solved to optimality
by the Nearest-Neighbor heuristic were described. An index
for classifying small 2D Euclidean TSP instances as clus-
tered, random or regular was proposed in [9]. This index was
used for studying the human performances for solving small
TSP instances [9], [10].

In the existing literature, there were identified four main
directions in which the influence of various features on
instances of different optimization problems could be impor-
tant [11]: algorithm selection, parameter tuning, gaining
information on the instance difficulty and algorithm compu-
tational performances, and generation of new instances that
could be used as benchmarks. In the last years, different
Machine Learning (ML) approaches were used to study algo-
rithm selection for the TSP [12] and to predict the run-time
of a TSP algorithm for solving a given instance. Run-time is
one of the stopping criteria used for approximate sub-optimal
algorithms. The desired precision for a solution could not be
reached because of the limited run-time imposed [11], [13].
Neural networks proved good results in making predictions
of performance and in classifying the instances into difficult
and easy to solve [14], but linear regression, ridge regression,
regression trees, Gauss regression, random forests were also
used [11].

The algorithm LK and its variant LKH-2 [15], the multi-
agent based solver MAOS [16], the evolutionary algorithm
EAX using edge assembly crossover [11], [12], [14] and
evolutionary algorithms combining edge assembly crossover
and partition crossover [17] are on the top of approaches used
for testing the TSP algorithm selectors designed during the
time.

The per-instance algorithm selection approachwas adapted
to the TSP problem for the first time in [18]. Creating specific
instances for a study is not new. In [19] a set of artificially
created instances, with different levels of difficulty were used
to study the influence of instance features on the perfor-
mances of two variants of the LK algorithm. For algorithm
selection problems a large set of features characterizing both
the instances and the algorithm steps allows a better deci-
sion. However, when focusing on obtaining new insights
into the influence of different features on specific algo-
rithm performance, using only a few features could be also
relevant [13].

Our study aims to gain insights into TSP instances diffi-
culty based on structural features. More precisely we want
to see to what extent the structural properties influence the
hardness of TSP instances. The structural properties depend
on the instances generation process and are evaluated using
the coefficient of variation [7] and the regularity index [9].

In our investigation, we use a set of 2D Euclidean TSP
instances classified by us into three classes: structured, semi-
structured, and unstructured.

The set of structured instances is composed of 50 tetra-
hedron instances, Tnm, from [20], 18 instances generated
based on the NPeano curve from [21], and 4 instances gener-
ated based on regular tessellation with hexagons. The tetra-
hedron instances Tnm proved to be difficult when solved
with Concorde, currently considered the best exact solver
for symmetric TSP. One generic Tnm instance has n vertices
on each side of an equilateral triangle and m vertices on its
medians and is described by the total number of vertices.
For example, Tnm100 has 100 vertices. The NPeano curve
was generated in [21] based on the well-known space-filling
Peano framework. It allows a semi-regular plane tessellation
with octahedrons and squares. The semi-structured instances
are 19 national instances with vertices being real localities [3]
and 20 clustered instances randomly generated in a 106 × 106

square. Unstructured instances are 10 uniformly generated
instances in a square with side 1000, and 20 ones of the same
type generated in a 106 × 106 square.

We report on the computational performance of two imple-
mentations (one for ACO and the other one for the LK
heuristics) when considering structured, semi-structured, and
unstructured instances as well as on different sub-classes
of the structured instances used in this article. The com-
putational performance is assessed using the gap parameter
[12]. The results show that for the 2D Euclidean TSP, the
intrinsic structure of the instance influences the quality of
the results. The ACO version used in this paper solved to
optimality all the structured instances, while the LK imple-
mentation optimally solved only 43% of them. On the other
instances we show that the ACO accuracy can be predicted
with enough confidence using three parameters (details are
given in Section II.D), but these parameters do not influence
the LK accuracy. This proves that these three parameters are
not enough for making good predictions for both methods.

This paper is structured as follows: in Section II we present
the fundamentals on which the experiments performed in this
article are based. The formulation of the Traveling Salesman
Problem, the presentation of ACO and LK heuristics, and
the instances used in our experiments can be found in this
section. Section III describes and interprets the results of the
experiments performed. Conclusions are given in Section IV.

II. MATERIALS AND METHODS
A. THE TRAVELING SALESMAN PROBLEM (TSP)
Dantzig gives in [22] one of the simplest Traveling Sales-
man Problem (TSP) specifications: ‘‘In what order should

VOLUME 9, 2021 5313

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

a traveling salesman visit n cities to minimize the total dis-
tance covered in a complete circuit?’’. When described using
the Graph Theory notions, TSP supposes that a complete
weighted graph is given and seeks for a least weight Hamil-
tonian cycle [5].

In terms of linear programming, one of the most known
TSP specifications is given in [23]. It considers n points with
known distances between any two of them. Let dij be the
distance between the points i and j, with 1 ≤ i, j ≤ n, and
the n2 binary variables xij, defined as 1 if the path goes from
i to j and 0 otherwise. Then the TSP is given by the following
integer linear programming problem [23]:

min
∑n

i,j=1
dijxij (1)

under the following constraints:∑n

i=1
xij= 1, ∀1 ≤ j ≤ n (2)∑n

j=1
xij= 1, ∀1 ≤ i ≤ n (3)∑

i,jεS
xij ≤ |S| − 1, ∀S ⊂ {1, 2, . . . , n} , 2≤|S| ≤ n−1

(4)

The objective function from (1) is the total length of a
generic set of arcs. The constraints (2) / (3) force that for
any point, the considered set of arcs contains exactly one arc
which enters into/exits from that point. The constraints (4)
forbid early closings, meaning that multiple, not connected
circuits are not permitted.

TSP is an old and widely approached optimization prob-
lem, with many variants, multiple proposed solutions for each
variant, and broad applications. Different criteria are used to
classify TSP variants.

The properties of the matrix (dij)1≤i,j≤n provide a first
classification criterion. Symmetric TSP considers that the
distance matrix d is symmetric, i.e. for each pair of vertices,
the distance in both ways is the same [24]. Asymmetric TSP
supposes different distances for at least one pair of vertices
and models traffic situations as one-way roads, bottlenecks,
etc. [25]. The metric TSP is a symmetric TSP with distances
obeying the triangle inequality [26]. If the distances are
computed using a Euclidean metric, then the metric TSP is
Euclidean [27]. The most common Euclidean TSP uses the
2D norm, due to its connections with real-life situations when
routes have to be found on a map.

All the instances approached in this article are 2D
Euclidean with integer distances, i.e. the distances are integer
approximations of 2D Euclidean distances. The size of a TSP
instance is given by n.

Specific constraints were designed to adapt the TSP for-
mulation for solving practical problems from different fields.
The most natural TSP applications are in Transportation and
Logistics when efficient routes need to be found for connect-
ing cities or to deliver products [28]. Formulations based on
profit maximization or cost minimization were introduced,
leading to variations of classical TSP. For example, Profitable

Tour Problem aims to minimize the difference between travel
costs and profit; Travelling Purchaser Problem aims to min-
imize the routing and the purchasing costs when selecting
a subset of markets [29]. Additional constraints on the time
window in which every node can be visited are introduced in
the TSP with Time Windows variant [30]. Drone integration
in TSP is modeled as TSP with Drone (TSP-D) [30]. In this
case, the traveling salesman and the drone form a cooper-
ating system that starts and arrives from/at a specific point
called depot. Each client is visited by either the traveling
salesman or by the drone, which could perform independently
and simultaneously. The distances between the points (either
clients or depot) reflect the travel time between them, which
are different for the human and for the drone. The goal
of TSP-D is to visit all the clients in the shortest possible
time. Other applications with specific adaptations of the TSP
can be found in industrial manufacturing [31], genetics [32],
telecommunications [33], etc.

Uncertainty may be considered when defining TSP vari-
ants. It is integrated into TSP specification for modeling
complex real-life situations. Probabilistic TSP (PTSP) [34]
is obtained when the points are clients which do not need
everyday visits and the traveling salesman is located in a
special location (the depot). In PTSP, each client i has to be
visited with probability pi and every day each client requests
(or not) a visit from the traveling salesman. The depot is
always the starting and also the ending point of the tour
performed each day. The goal of PTSP is to find a complete
cycle with the least expected length. If the distance matrix
contains triangular fuzzy numbers and the length of a cycle is
computed by using the classical fuzzy operator for addition
⊕, then we obtain the Fuzzy TSP [35]. An Uncertain Multi-
objective Traveling Salesman Problem is introduced in [36].

As TSP is an NP-hard problem [37], the exact methods
are expected to become intractable when the problem size
(the number of vertices) increases. The best exact solver for
symmetric TSP is currently considered to be Concorde [38],
which is publicly available at [39]. We used it for computing
the optimum solutions on the new instances Peano, Hex, and
Rand that we generated to carry out this study (more details
are given in Section III.A).

Heuristic methods are widely applied for quickly obtaining
near-optimum solutions. Construction heuristics based on
Greedy strategies are usually combined with local search
methods as 2-opt or 3-opt, to obtain solutions with increased
precision. TheNearest-Neighbormethod is one of the simpler
greedy heuristic algorithms for TSP [40]. It builds a path in a
‘‘step by step’’ mode, starting from an arbitrary vertex, adding
the nearest available one, and finally returning from the start-
ing vertex. Other greedy heuristic method starts by adding
the shortest edge to the solution and continues to add edges in
increasing order of their lengths until a solution is constructed
[40]. Each edge is added if it does not prematurely close
the circuit or it does not produce a vertex with degree 3.
Therefore, this Greedy method constructs the solution by
adding separate edges that get connected while the algorithm

5314 VOLUME 9, 2021

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

evolves. The local search 2-opt starts from a solution and
tries to improve its quality by deleting a pair of edges and
reconnecting correctly the remaining parts. Similarly, 3-opt
deletes 3 edges and seeks for a better solution containingwhat
was left.

An adaptable local search heuristic with very good results
in solving symmetric TSP is the Lin-Kernighan method [2].
It starts from a feasible solution and determines the value for
a parameter k which bounds the iterative improvements using
2-opt, 3-opt,. . . , k-opt. More heuristics for TSP can be found
in [41]–[43].

Metaheuristic methods are frameworks that combine
many heuristics for solving a specific class of problems.
Different classical metaheuristic algorithms (Tabu Search,
Simulated Annealing), evolutionary algorithms (Genetic
Algorithms, Scatter Search) and nature-inspired algorithms
(Ant Colony Optimization, Cuckoo-Search, Firefly, Snail,
Monarch Butterfly Optimization, Harmony Search, Earth-
worm Optimization, Elephant Herding Optimization, Moth
Search algorithms, African Buffalo Optimization, etc.) have
been used to solve problems derived from the TSP. These
algorithms hold mechanisms for escaping from the local
optima when they are searching for global optima. For a
comprehensive presentation and comparison of the most used
metaheuristic algorithms for various types of TSPs, we refer
the reader to [44]–[49] and the references therein.

In this article, we used ACO and LK as reference heuris-
tics for solving different TSP instances and compared the
computational accuracy. These two heuristics are repre-
sentative of the two main categories of heuristics [41]:
problem–independent heuristics category (ACO) and local
search heuristics exploiting specific information on the prob-
lem domain (LK). In many studies, ACO is considered
for comparison when evaluating different new proposed
metaheuristics (e.g. Discrete Monarch Optimization [50],
African Buffalo Optimization [51], Earthworm optimiza-
tion [47].) ACO and LK are also representatives because
many other metaheuristics are hybridized using ACO or LK
in current state-of-the-art approaches. For example, the
Multi-Neighborhood Search (MNS) inspired by [52] was
used in [53] to hybridize an implementation of Population-
based ACO (PACO). This comprehensive work investigated
193 setups for hybrid population-based and local search algo-
rithms, proposing TSPSuite, a framework for analyzing mul-
tiple attributes of multiple algorithms on multiple instances.
From all the 193 hybrid algorithms analyzed in [53], 6 dif-
ferent methods using PACO were ranked in the first 6 places.
This is another reason why we considered the ACO heuristic
as a basis in our study. A successful hybrid approach using
Lin-Kernighan and Hill Climbing outperforms the state-of-
the-art methods for the Traveling Thief Problem, which com-
bines TSP with 0-1 Knapsack Problem [54].

B. ANT COLONY OPTIMIZATION
Ant Colony Optimization (ACO) [1], [55] is a metaheuristic
that mimics the foraging behavior of real ant colonies. It cap-

tures the pheromone communication system between ants.
In the beginning, ants take random ways when searching for
food. Theymark the path between the nest and food source by
laying pheromone on the ground. The other ants will follow
the path marked with the greatest quantity of pheromones.
The shortest path will accumulate in time the largest quantity
of pheromones being followed by the rest of the ants in the
colony.

Three processes are fundamental in an ACO algorithm:
Solutions generation, Daemon actions and, Pheromone trail
update [55]. Each artificial ant constructs (in parallel with
the others) a solution during the Solution generation phase.
Daemon Actions represent the centralized or distributed activ-
ities triggered by the current solutions. For example, a local
search procedure like 3-opt is applied to the solutions. During
the Pheromone update phase, the numerical values represent-
ing the pheromone quantities are updated. Each process is
implemented in a specific way, so devising different ACO
algorithms. The general description of ACO [1] is presented
in the following.
procedure ACO_MetaHeuristic

while not_termination do
generateSolutions()
daemonActions()
pheromoneUpdate()

end while
end procedure
This very general ACO framework was the starting point

for several Ant Algorithms, each one with a specific strategy
in constructing the ant paths and also in updating and evap-
orating the pheromone. When solving TSP using the ACO
approach, a fixed number of artificial agents are randomly
placed in the vertices of the TSP and each one constructs a
cycle traversing all the vertices. The construction is proba-
bilistically guided by the weights of the available edges and
also by the quantity of artificial pheromone deposited by ants
that previously used those edges. This process is iterated until
a specific ending condition is met and the algorithm exits with
the best cycle found (the one with minimum total weight) [1].

One of the first ACO algorithms tested on TSP was Ant
System (AS) [1], [56]. The probabilistic rule that governs the
path construction is given in formula (5). If the ant k is in the
vertex i, then the probability that the next vertex in the path
is j is given by pkij.

pkij =
(τij)α

/
(dij)β∑

l∈N k
i

((τil)α
/
(dil)β)

, j ∈ N k
i (5)

In formula (5), the set of the available moves from i is N k
i .

The distance between nodes i and j is dij and the amount of
the pheromones on the edge between vertices i and j is τij. The
parameters α and β set the importance of the exploitation of
previous information (stored in the pheromone matrix τ) vs.
the exploration of the graph (using the distance matrix d).

VOLUME 9, 2021 5315

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

After all ants complete their solutions, the pheromone
update is done using the formulae (6) and (7):

τij = (1− ρ) τij + ρ
∑

k
1τ kij ∀i, j (6)

1τ kij =

{
1/
Lk if the ant k used the edge (ij)

0 otherwise
(7)

Formula (6) describes the pheromone update rule. After
evaporation governed by the parameter ρ, only the used edges
receive a pheromone reinforcement. Formula (7) computes
the reinforcement corresponding to the specific ant k . It is
proportional to the inverse of the length of its path.

Multiple other versions of Ant Algorithms were later
described [57], [58], optimizing different aspects of
ACO, or created a better ACO type algorithm for a given
problem. Improving the behavior and performance of the
ACO algorithms has been achieved in various ways and is
focused on all phases of the ACO algorithm individually or by
the ensemble. Related to the first phase of the algorithm, dif-
ferent restarting procedures when a condition is fulfilled were
used for accelerating the convergence and decreasing the
computational time [59]. Usual DaemonActions are based on
the knowledge provided by the problem specificity, but can
not be exploited by the ants for improving further exploitation
process of solutions. If a local search procedure is used in the
Damon Actions phase, for improving the constructed solu-
tions, the actions undertaken are hidden from the ants. ANon-
DaemonActions procedure was proposed in [60], giving the
ants the possibility of learning the modifications applied by
the local search procedure to their solutions. More precisely,
Non-DaemonActions are swapping many edges with their
pheromone concentrations and heuristic information. After a
complete tour of the ants, a global updating rule is applied and
the Non-DaemonActions procedure is used for improving the
best solution of the current iteration. Thus, the exploitation
around the iteration-best solution is enhanced.

The pheromone update phase plays a very important role
in the algorithm performances. In [58] the pheromone con-
centration is initialized according to the path information and
a dynamic strategy is adopted both for pheromone updating
and pheromone evaporation control. Three strategies are pro-
posed in [61] for reducing the current drawbacks of ACO
while handling large instances. The first strategy consists in
improving the local search performances by using pheromone
information. In this way, candidates-set of best possible nodes
can be dynamically considered in local search. A new repre-
sentation for pheromone values, providing linear pheromone
space complexity, is proposed as a second strategy. The third
strategy focuses on speeding up the ACO algorithm and is
based on a new approach for selecting the next node.

MAX-MIN Ant System (MMAS) comes with three modi-
fications when compared to AS:
• The pheromone is forced to belong to a specific inter-
val [τmin, τmax]. The reason is to maintain a balanced
influence of all edges and therefore to induce a balanced
exploitation;

• τmax is the initial value of the pheromone on all edges.
The reason is to increase the exploration in the initial
phase.

• Only the best ant is allowed to deposit pheromone. The
reason is to orient the search towards the most promising
solutions.

For our experiments we have chosen the ACOTSPQAP
software package from [62]. It is an open collection of
efficient methods for TSP and Quadratic Assignment Prob-
lem (QAP), provided by the ACO designers, with multiple
implementations, offering adaptable choices for parameters.
Being a population-based method, the execution time for the
suggested values of parameters is expected to be larger than
the average local search execution time. Among its avail-
able algorithms, we used MAX-MIN Ant System (MMAS)
hybridized with 3-opt local search. MMAS is described in
many papers as providing very good results [45].We executed
the codewith the default values for parameters: α = 1, β = 2,
and ρ = 0.02.

C. LIN-KERNIGHAN (LK) METHOD
LK is one of the most effective approaches for solving
symmetric TSP [2]. It is a heuristic method that iter-
atively improves an admissible solution using the inter-
change strategy from k-opt, but with an adaptive k for
each iteration. In each iteration of the improvement pro-
cess the new solution is computed step by step, succes-
sively applying 2-opt, 3-opt,. . . , k-opt until no improvement
can be done to the initial admissible solution from this
iteration.

The LK method starts from an initial solution and makes a
first-improvement move when the sequence of opt operations
are applied. After a move, the sequence of tests begins again
from 2-opt. Iterated LK (ILK) maintains a pool of solutions
that are tested for improvements using the opt moves [63].
Chained LK (CLK) applies LK and if no improvement is
possible, it perturbs the current solution by using a special
4-opt move, called ‘‘double bridge’’ [64]. Efficient k-opt
implementations are proposed in [15].

Currently, LK is considered to be one of the most effi-
cient local search methods. As it works on a single solu-
tion, its computational cost is expected to be very low.
In this paper we used the online CLK implementation from
[39], executed on servers from the Arizona State University.
This remote application is efficient, and deterministic if ran
with fix seed for the random number generator. It has a
downloadable version, with fewer options, but the execution
speed on an average PC is the same as the remote exe-
cution speed. As the architecture of the remote servers is
unknown, no discussion will consider the execution time.
We focus instead on the gap, which is sometimes referred
to as accuracy. But the ACO and LK implementations are
not compared one against the other. This study discusses
their individual characteristics when solving the instances we
approached.

5316 VOLUME 9, 2021

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

D. TSP INSTANCES CHARACTERIZATION
TSP is proven to be NP-hard [37] and its Euclidean variant
is NP-complete [65]. Therefore, the computational effort for
exactly solving the problem increases exponentially with
the size of the instances. In the last decades, approximate
approaches, partially enumerated in Section II.A, gained
increased interest in solving TSP. Attempts have been made
to test the performances of some of these methods, and to
tune their parameters, on different TSP instances [66]–[68].
Runtime and accuracy on a given set of instances have been
considered as the main measures of algorithm performance.
There are multiple TSP data collections available for testing.
Some of the most known such collections are TSPLIB [70]
and TSP Test data [71]. In the last decades, the attention was
directed to the generation of instances with different hardness
levels for testing different approaches for TSP. In [68], using
an evolutionary algorithm, instances with different levels of
difficulty were generated for testing and parameters tuning of
ACO algorithms for the TSP. The instances were classified
based on the approximation ratio, i.e. the quotient between
the tour length produced by the algorithm and the length of
the exact solution generated using the Concorde solver. The
higher the approximation ratio, the heavier the instance. The
number of nodes, the edge cost distribution, and features
related to possible clusters, statistical based uniformity of an
instance are also taken into account for hardness character-
ization of instances [66], [67]. An evolutionary method to
evolve TSP instances based on sophisticated mutation oper-
ators was proposed in [69]. The method evolved instances
with different topologies, and a different behavior against two
given solvers (Edge Assembly Crossover - EAX and Modi-
fied Lin-Kernighan LKH-2), i.e. instances that are difficult
for one solver and easy for the other solver. These kinds of
sets of TSP instances allow emphasizing the advantages and
disadvantages of different TSP solvers.

In this article, we conduct an empirical study on the influ-
ence of instances structure on the quality of the solution of
the Euclidian TSP using ACO and LK approaches. To reach
our goal we used the instances from [20], [70] and our own
generated instances [72], as shown in Section III.

We classify the instances into three categories: structured,
semi-structured, and unstructured. In our study, by structure,
we understand the degree of regularity of the vertex distri-
bution. In the structured instances, the coordinates of the
vertices are found using mathematical formulae. The semi-
structured instances model the natural distribution of cities in
geographic maps. The vertices in unstructured instances are
randomly spread in a rectangle.

In our experiments, we used three sets of instances, based
on their structure.

a) The structured instances are all analytically constructed.
Their vertices are deployed using mathematical formulae.
Two subsets of structured instances were used. The first sub-
set includes the Tnm instances from [20]. The second subset
contains new Peano instances extracted from a semi-regular
tessellation with octahedrons and squares, and also new Hex

instances, derived from a regular tessellation with hexagons.
The new instances, designed specifically for this work, are
available on the webpage [72] and represent a contribution
to the open datasets available for future investigations. Con-
tributing with new TSP instances to the open datasets is a
long-standing preoccupation of the authors [43], [73], [74].

b) The semi-structured instances model the positions of
some real localities. These instances are considered semi-
structured in the literature, as they manifest specific clus-
terization of natural systems. The set of semi-structured
instances is composed of real instances from [20] and clus-
tered instances automatically generated using the portc-
gen application from the 8th DIMACS Implementation
Challenge [75].

c) The unstructured instances are instances with random
points with integer coordinates in squareswith different areas.
We use the model of Random Uniform Euclidean (RUE)
instances [11], [12] generated using portcgen [75].

More details on the instances chosen in our experiments
are provided in Section III.

In [7], the authors empirically studied the impact of the
standard deviation of the distance matrix having the average
value 10 on the execution time of an exact method for solving
TSP. The sizes of the instances were 16, 32, 48, adapted to
computing resources of that time. The results showed the
unimodal distribution of the execution time when plotted
against the standard deviation of the distance matrix.

The influence of the instance structure on the difficulty to
solve TSP by humans was studied in many articles [9], [10].
The measures used for this goal are of interest also for the
characterization of the TSP difficulty for computer methods
and solvers. Based on their regularity, the TSP instances were
classified as highly clustered, random, and highly regular [9],
[10]. The regularity of the TSP structure is characterized in
[9] by the index R, given in formula (8):

R =
2(
∑n

i=1 ri)
√
A · n

(8)

where ri is the shortest distance from i to all other vertices,
and A is the minimum area occupied by the vertices.

According to [9] the values of the R index for a different
type of TSP instances are as follows:
• for highly clustered instances, R is less than 0.24
• for random instances R is very close to 1
• for highly regular instances with vertices uniformly
spread, R is greater than 1.76.

We want to emphasize that the classification of instances
using the regularity property in the sense given in [9] and
based on the R parameter does not overlap our proposed
classification of instances in structured, semi-structured, and
unstructured, as we can see in Section III.

Another measure to predict the difficulty of a TSP instance
is the normalized knot (NK) index [76], based on the mini-
mum spanning tree (MST) built for an instance. NK index is
the division between the number of the vertices with a degree
at least 3 from the MST and the instance size. The authors

VOLUME 9, 2021 5317

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

TABLE 1. Structured instances Tnm.

showed that humans find better solutions to 2D Euclidean
TSP when the NK index is small.

A more general approach when studying the performance
of local search heuristics applied to optimization problems is
given by the impact of the fitness landscape [77]. For a given
problem, the fitness landscape a.k.a. search landscape is
the triplet (solution space, neighborhood operator, objective
function). This notion is inspired by the Adaptive Landscape
diagram from [78]. Current research highlights that the over-
all structure of the fitness landscape has a clear impact on
the performance of local search methods [79]. For example,
for a given local search method, the neutral instances were
empirically proven to bemore difficult. An instance is neutral
if two neighbor solutions could have the same value of the
objective function (i.e. fitness or cost value).

In our work we adapted and developed the methodology
from [7] and [9], using three parameters: size, the R index,
and the coefficient of variation (CV). We note that the order
parameter used in [7] is identical to the coefficient of vari-
ation. We do not investigate the impact of the NK index,
because our study considers unstructured, semi-structured,
and structured instances, and for structured instances, there
are multiple non-isomorphic MST solutions.

We investigated the evolution of the fitness value for
12 instances, four from each group. We adapted the fitness
landscape basic idea to ACO, although it is not a local search
procedure, but a construction one. Details of this adaptation
are given in Section III.C.

III. RESULTS
A. EXPERIMENTAL SETTINGS AND DESIGN
The experiments were conducted under a Linux distribution
for a quad-core Intel i3 processor at 2 GHz with 4 GB RAM.
The Ant Colony Optimization (ACO) application was run
locally with implicit parameters, with 25 artificial ants. The
Lin-Kernighan implementation from [39] was remotely used.
This application is deterministic, extremely efficient, as it
uses the best-known values for parameters; the users receive
the computation log and the computation time lasts usually
for several seconds. As mentioned in Sections II B and C,
we do not compare these two methods one against the other;
our goal is to classify the symmetric TSP instances used in
this study and to report the results of two openly available
and efficient software packages on them.

The performance on a given instance is measured using the
gap adimensional parameter, given in formula (9):

gap =
result − optimum

optimum
× 100 (9)

This parameter is widely used in the literature [12] as
it measures the quality results for all instances, no matter
what values are stored in the distance matrices and the type
of instances (structured, semi-structured, or unstructured).
The value optimum in formula (9) is the optimum length
(computed using Concorde as an exact solver for TSP) or the
best-known solution if the optimum is not known.

5318 VOLUME 9, 2021

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

For each instance, the ACO application executed ten trials
and exited with the best (gap_min), average (gap_average),
and worst (gap_max) values for the gap.

We reported the results on the three sets of instances: struc-
tured, semi-structured, and unstructured. For each instance,
we computed the R index using formula (8), and the CV
parameter specified in Section II.D using the formula (10).

CV =
Std_Dev(D)
AVG(D)

(10)

with D denoting the distance matrix. We also computed, for
all instances, the correlation between every two parameters
from size, CV, and R. We discussed the results for each data
table.

As ACO has a solution at any time, to choose when to stop
is the user’s decision. We decided to execute 10 trials for each
instance. The trial on structured and unstructured instances
lasts for 60s. The semi-structured instances with less than
3000 nodes were solved for 60s, while the execution time for
the larger ones was 300s.

The set of structured instances is composed of two subsets.
The first subset includes 50 Tnm instances from [20]. These
instances form a collection of 2D Euclidean instances with
52 to 199 vertices, distributed as orthogonal projections of a
tetrahedron. The instances are described in Table 1. For each
instance, we mention the number of vertices (size), the length
of one optimum solution (taken from [20]), the CV and R
values, computed by us.

The last two columns in Table 1 (CV and R) are both highly
correlated with the second column (Size): corr(size, CV) is
−0.858, corr(size, R) is −1.0, and corr(CV, R) is 0.858. The
standard deviation for the values R is 0.16, while the standard
deviation for CV values is 100 times smaller.

In Fig. 1 we have represented Tnm100 together with one of
its optimum solutions found by Concorde.

The second subset of structured instances contains new
instances that we generated as follows. Based on the
NPeano curve from [21] we devised 18 Peano instances
extracted from a semi-regular tessellation with octahedrons
and squares.

Fig. 2 (a) presents peano9.9, with nine octahedrons on
each side. For generating other structured instances, we stud-
ied regular tessellations. We explored the possible polygons:
equilateral triangle, square, or hexagon. We rejected the equi-
lateral triangle as one of our restrictions was to consider
integer coordinates for all the vertices. We also rejected the
square, as a regular mesh has almost all the edges forming one
optimum path of length 1 (similar to the Hamming distance).
We generated four Hex instances from a regular tessellation
with hexagons. The instance hex9, with a maximum of 9
hexagons stacked in a vertical direction, is shown in Fig. 2(b).
We found the optimum solutions for all the new instances
using Concorde. In Fig. 3 we present one optimum solution
to peano9.9 and hex9. The regularity of the optimum solution
to peano9 is remarkable, similar to a path in a 2D mesh. The
optimum solution to hex9 does not have a perfect pattern.

FIGURE 1. (a) Tnm100 instance, vertices as blue dot. (b) One optimum
solution as magenta line.

TABLE 2. Structured instances Peano and Hex.

Table 2 presents the characteristics of our new structured
instances: size, length of one optimum solution, and the com-
puted values for CV and R. The last two columns have again

VOLUME 9, 2021 5319

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

FIGURE 2. (a) peano9.9 instance. (b) hex9 instance.

a decreasing set of values, as the size increases: corr(size,
CV) is −0.636, corr(size, R) is −0.974, and corr(CV, R) is
0.610. The standard deviation for the R index is 0.17, while
the standard deviation for CV is 0.009.

Globally analyzed, these 72 structured instances are char-
acterized by:

• size and R have an almost perfect inverse correlation;
• CV has a very low standard deviation of 0.01 and very
slightly decreases when size increases;

• the standard deviation of R is 0.18, so R is more likely
than CV to influence the results given by both ACO and
LK methods.

The first subset of semi-structured instances contains
19 instances taken from [3]. These instances model the posi-
tions of the main localities from 19 countries; some of these
instances are not solved to the optimum, yet. The other subset
of semi-structured instances consists of 20 instances, each
with size/100 clusters randomly spread in a 106 x 106 area.
These instances were generated using the portcgen instance
generator [75]. These last 20 instances were exactly solved
using Concorde.

FIGURE 3. (a) One optimum solution to peano9.9. (b) One optimum
solution to hex9.

Table 3 presents the results for these instances. The R index
shows that many instances from the first subset are close to
being clustered (R < 0.3) or are semi-clustered (0.3 < R <
0.7).

For example, the settlements in Egypt7146 instance (R
= 0.275) are mainly on the banks of the Nile. The values
CV and R do not correlate with the size: corr(CV, size) is
0.177, corr(size, R) is −0.250, and corr(CV, R) = −0.236.
The instance measures size, CV, and R are therefore mutu-
ally independent for the semi-structured instances. These
instances are treated separately in our following analysis. The
standard deviation for CV is 0.1 and for R is 0.16. Unlike the
structured and random instance sets, CV and R are spread in
intervals with comparable lengths.

The unstructured instances are RandomUniformEuclidean
(RUE) instances. Ten of them are new instances with random
points with integer coordinates uniformly generated in the
1000 × 1000 square. Other 20 instances are generated using
portgen [65], distributed in the 106 × 106 area.

Their characteristics are given in Table 4. All these
instances were solved with Concorde for finding their opti-
mum solutions.

The rand1000 instance and one of its optimum solutions
are presented in Fig. 4.

5320 VOLUME 9, 2021

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

TABLE 3. Semi-structured instances. The marked instances ∗ do not have a known optimum solution.

FIGURE 4. (a) rand1000 instance. (b) One optimum solution to rand1000.

The values for the R index are close to 1, corresponding
to random instances according to classification based on R
values, given in [9]. The values from the columns size,CV and

R have the following correlations on pairs: corr(size, CV) is
−0.641, corr(size, R) is −0.470, and corr(CV, R) = −0.345.
The standard deviation for CV is 0.003, and the standard
deviation for R is 0.02. The values in the CV column show
a remarkable resemblance to the values from Table 1 and
Table 2. The CV values belong to a more compact interval
when compared to the domain of R.

Table 5 concludes the characterization of our sets and
subsets of instances through the average values for CV and
R. We can make the following observations. The average
CV values for all the structured subsets are close to each
other. The average obtained for the CV in our structured
and unstructured sets of instances differs by less than 0.02.
We decided to explore and compare the results on structured
and unstructured instances in Section III.C. We observe that
the average value for the R index on the semi-structured
instances differentiates this class. Therefore, we performed a
separate study on semi-structured instances in Section III.D.

B. EXPERIMENTAL RESULTS
Our experimental results reveal the characteristics of the solu-
tion obtained for the structured, semi-structured, and unstruc-
tured sets of instances when approached with the ACO and
LK implementations used in this study.

All the structured instances were solved to optimality by
ACO. LK solved to optimality only 31 out of the 72 structured
instances. To analyze the outputs, we decided to extract from
the computation logs, for the instances optimally solved both
by ACO and LK, the number of needed iterations. These
two samples are not mutually comparable, but we explore
in Section III.C their individual connections with instance
characteristics (size, CV, and R).

VOLUME 9, 2021 5321

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

TABLE 4. Random TSP instances.

TABLE 5. Characterization of instance sets.

Table 6 presents the instances features (size, CV, andR), the
average iteration (in 10 trials) that found the reported solution
for ACO (aver_iter_ACO), the iteration number when LK
found its solution (iter_LK), and also the gaps obtained with
ACO and LK implementations (gap_ACO, gap_LK). The
execution time is 60 seconds for each ACO trial. If the non-
zero values are less than 0.001, we wrote <0.001.
Table 7 presents the semi-structured instances features

(size, CV, and R), the accuracy of the ACO approach
(gap_min, gap_average, and gap_max), and also the accuracy
obtained by LK implementation (gap_LK). Each ACO trial
execution time is 60s for a size less than 3000, 300s otherwise.

Table 8 presents the size, CV, R, gap_min, gap_average,
and gap_max values from ACO tests and gap_LK from the
Lin-Kernighan method for the random instances. Like in the
structured class, the ACO execution time is 60s for each trial.

Table 9 resumes the results presenting the averages for
the three sets of data. To characterize the stability of the
ACO method (details are given in Section III.C), we reported
also the average of the difference between gap_max and
gap_min). We performed a statistical investigation, using the
Analyse-it add-in package, release 5.40.02. The analysis is
oriented on the main groups of instances (structured, semi-
structured, and random) and two subgroups of structured
instances (Hex and Peano, and Tnm). The statistical inves-
tigation aims to underline the influence of the parameters
(predictors) size, R, and CV on the behavior of the two
algorithms considered in this article and on the quality of the
solution. To achieve this goal we have computed:

• Statistics for size, R, and CV.
• Statistics for the values that measure the quality of the
solution obtained using LK (iter_LK, gap_LK) and ACO
(aver_iter_ACO, gap_ACO)

• Correlation between the parameters iter_LK/ gap_LK/
aver_iter_ACO/ gap_ACO and the predictors size, R and
CV

• Regression models to capture the influence of the
predictors size, R, and CV on the iter_LK/ gap_LK/
aver_iter_ACO/ gap_ACO. The models use a 95% con-
fidence level for the estimates of the predictors size, R,
and CV.

All the regression models and statistics are provided as
supplementary materials to this paper and can be accessed on
the web page [72], at the Section Statistical analysis archive
for the structured/semi-structured/random instances.

In the next subsections, the predictors whose contribution
is statistically significant for the model are specified for each
class/subclass of instances.

C. ANALYSIS ON STRUCTURED AND UNSTRUCTURED
INSTANCE CLASSES
In this subsection, we present the behavior of ACO and
LK implementations on extreme sets of instances: structured
and unstructured, which have several similar basic statistics.
Tables 6 and 8 collect the results for the structured and the
randomly generated instances. We note that we specially
designed these two datasets such that to have as many as
possible common features, but to be extreme from the point of
view of the structural classification introduced by us. There-
fore, the instances were chosen to have: almost the same aver-
age CV (0.494/0.477) and average R (0.947/1.016), compact
CV values in the corresponding set, the same execution time
(60s), the same number of trials (10), and the same number of
artificial ants (25) for ACO. All the paired correlations show
that the predictors: size, CV, and R are independent.

On structured instances, the ACO implementation man-
aged to optimally solve all instances on any trial. There was

5322 VOLUME 9, 2021

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

TABLE 6. Experimental results for the structured instances. ACO solved them to optimality, in all trials.

VOLUME 9, 2021 5323

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

TABLE 6. (Continued.) Experimental results for the structured instances. ACO solved them to optimality, in all trials.

FIGURE 5. Distribution and statistics of iter_LK/size for a) Hex+Peano instances and b) Tnm instances; confidence
interval for the mean (as diamond): 95%.

no need to perform 10 trials, as from the first one the optimum
solution was delivered. This means that for similar structured
instances, the computational resources can be saved by set-
ting just one ACO trial per execution.

The LK implementation solved only 31 instances, pro-
ducing an average gap_LK = 0.02. To explore in-depth the
difference between ACO and LK results, we studied the
columns aver_iter_ACO and iter_LK from Table 6. These
columns store the number of iterations of the corresponding
application which found the solution.

The regression models (see Section III B) display the
influence of CV and size on iter_LK. No relationship can
be established with size, R, and/or CV for gap_LK and
aver_iter_ACO. Although the predictors do not correlate,
they are not enough to model the sample gap_LK. No pre-
dictions can be made for LK accuracy at the general level, for
structured instances.

We are now refining the study on LK accuracy on the
two structured subclasses: Tnm and Hex+Peano. The Tnm

subclass was more difficult, although the average size is 126.
The statistical model shows that the values of size barely
influence average iterations in the case of ACO and not at
all on iter_LK. The gaps returned by LK are not influenced
by any predictor.

For the subclass Hex+Peano, the regression mod-
els reveal that size has a reduced influence on both
aver_iterations_ACO and iter_LK, while R and CV do
not influence at all. For this set of instances, LK per-
formed equally better than ACO, as all gap_LK values
were 0.

To assess the performance of LK on the structured sub-
classes Hex+Peano and Tnm, we used the ratio iter_LK/size
as a measure of the earliness in finding a (good or even exact)
solution. We explored these values as we have constant zero
values for the gap forHex+Peano instances. ForHex+Peano,
LK is very efficient in terms of iter_LK/size, whose values are
spread around the mean = 0.062 with SD = 0.1 (Fig. 5.a).
For Tnm, the gaps are zero or very small (average value

5324 VOLUME 9, 2021

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

TABLE 7. Experimental results for the semi-structured instances.

is 0.02) but the effort in finding the optimum or a very
good approximation, measured with iter_LK/size, is ten times
bigger than in the case of Hex+Peano (Fig. 5.b). We can
conclude that the value of iter_LK/size correctly indicates the
difficult Tnm instances.

We use the predictors’ correlations to explain these dif-
ferences inside the class of structured instances for LK. The
correlations of predictor pairs show that they are highly cor-
related for the Tnm subclass. A strong negative correlation is
between size and R, but CV does not correlate with size or R
for the Hex+Peano instances. In our opinion, the high sta-
tistical correlation between the CV and R samples indicates
that the class of structured instances is difficult for the LK
method. This conjecture is worth being investigated for other

sets of instances manifesting the same strong correlations
between parameters.

On small unstructured instances, ACO implementation
is highly sensitive to stochasticity: Average (gap_max-
gap_min) = 0.26. Therefore multiple trials seem to bring
high-quality benefits, balanced by spending more computing
time.

When referring to size, we can observe that the ACO
implementation optimally solved all the 10 rand instances.

The multiple regression analysis for ACO displays that
both size andCVpositively influence all ACOgaps: gap_min,
gap_average, and gap_max. Higher values for size and/or CV
determine higher gaps. Therefore, pre-computing CV could
help in adjusting the number of trials and/or the stopping

VOLUME 9, 2021 5325

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

TABLE 8. Experimental results for the unstructured instances.

TABLE 9. Average values for structured, semi-structured and unstructured instances.

condition for ACO. The gap_LK sample is not predicted by
any combination of size, R, or CV.
We switch our analysis to methods’ evolution in time.

We use the fitness landscape ideas to observe and to dis-
cuss the sequence of the solutions provided by ACO and
LK implementations. For ACO we chose one trial. Each
method provides a sequence of increasingly better solutions.
Therefore we define an ad-hoc neighborhood formed by the
two neighbors in this sequence, and as the fitness function,
we consider the gap already defined. We normalized the
iterations, as our goal was to represent in the same chart
the fitness landscapes of both solving methods. We present
four structured instances in Fig. 6 and four random instances

in Fig. 7, all with higher size in their sub-classes. We also
counted in Table 10 how many intermediate solutions (steps)
were found by each method.

The Tnm instances represent again an outlier class.
Although both methods have very short sequences of con-
secutive solutions (very few steps in Table 10), ACO rapidly
finds the optimum solution, while LK struggles and in most
of the cases fails to find the optimum.

The landscape for the other six instances displays a com-
mon aspect: ACO starts from a higher gap but has a steeper
descent than LK. Port instances are more difficult for ACO;
LK is very effective at the beginning, so ACO is not able to
overcome the LK excellent start. ACO has also less improved

5326 VOLUME 9, 2021

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

FIGURE 6. Evolution of gap_ACO and gap_LK for a) Tnm193 and Tnm199 instances and b) peano30.30 and peano33.33
instances.

solutions; in this case, showing that LKmaintains its capacity
to find better solutions, even their improvement slows down.

To conclude, the structural characteristics have an impor-
tant impact on the behavior of both implementations. Param-
eters like CV or R do not always offer enough information on
how difficult an instance is for a given solving method. ACO
perfectly solved the structured instances from our experi-
ments but seems to not have the same performances on large
unstructured ones. To classify an instance correctly is there-
fore helpful in choosing the most effective heuristic method.

We also pointed out that the classification of an instance
as structured is not enough for making predictions for LK
accuracy. In the case of Tnm instances, the three instance
parameters: size, CV, and R highly correlate, so they are not
able to capture more than one feature. In our opinion, this is
why the LK accuracy cannot be predicted.

The fitness landscape of these two classes is similar, with
the already discussed exception of the Tnm instances. If these
extreme instances are not considered, the structured and ran-
dom classes are not separated from this point of view.

D. ANALYSIS ON SEMI-STRUCTURED INSTANCES
This subsection is dedicated to discussions on the semi-
structured instances.

The class of semi-structured instances is presented
in Table 7. The set of ACO solutions in 10 trials had a

TABLE 10. Number of steps for structured and unstructured instances.

large standard deviation. Intensive computations are therefore
needed for obtaining good solutions with ACO.

For the class of semi-structured instances, the regression
models show that the parameters size and CV influence
gap_min, gap_average, and gap_max, while R has an impact
on gap_average and gap_max. This means that if a large
class of semi-structured instances must be solved, Machine
Learning techniques could be used for gap prediction. None
of the predictors size, R, and CV does have significance on
gap_LK. Although LK shows good accuracy, the lack of a
reliable and simple equation for predicting the gaps means
that all the instances in a set must be solved.

ACO and LK had contrasting results on the 20 clustered
random instances from the semi-structured subset versus the

VOLUME 9, 2021 5327

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

FIGURE 7. Evolution of gap_ACO and gap_LK for a) Rand800 and Rand1000 instances and b) port2700 and port2900 instances.

FIGURE 8. Evolution of gap_ACO and gap_LK for a) Rand800 and Rand1000 instances and b) port2700 and port2900
instances.

20 unstructured random instances. The clustered instances
were more difficult for ACO than the random subset. LK
manifested the opposite behavior.

Fig. 8 shows the fitness landscapes for four semi-structured
instances. The number of improvements made by ACO and
LK is presented in Table 11.

5328 VOLUME 9, 2021

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

TABLE 11. Number of steps for structured and unstructured instances.

These instances clearly separate from the other two classes
from the ACO-behavior point of view. ACO has a poorer
start and is not able to recover later. Not only the gaps are
improving slowly, but the steps are very few when compared
to LK. LK maintains the same landscape evolution: steep at
the beginning, slower at its final.

IV. DISCUSSIONS AND CONCLUSIONS
This work empirically studies the quality of the results pro-
vided by open implementations of Ant Colony Optimization
(ACO) and Lin-Kernighan (LK) when 2D Euclidean TSP
instances with different structures are approached. Knowing
the impact of specific characteristics of the instance on the
quality of the result could orient the decision on what solver
to choose when several solvers are available. Also, when a set
of similar instances has to be solved, trustworthy predictions
could orient the user in setting application parameters.

The results show that structured instances, with a regular
distribution of vertices or with tendencies towards cluster-
ing, are usually easier for ACO than random instances with
the same size and same CV parameter. Also, for structured
instances, ACO is very stable so fewer trials are needed,
which lowers the computation time. For the semi-structured
group of instances, we show that good predictions can be
made for ACO gaps based on two parameters. The LK imple-
mentation used in our work optimally solved the Hex and
Peano instances.

From the landscape point of view, ACO was sensitive to
the instance structure, while LK had a uniform behavior.

It is important to emphasize that our experiment considered
two representative metaheuristics, one from the problem–
independent heuristics category (ACO) and the other from
the local search heuristics group (LK), without comparing
them against each other or stating their supremacy over other
metaheuristics.

The main goals of the paper were to prove that the structure
of the TSP instance strongly influences the quality of its
solution, to propose and empirically analyze a structure-based
classification of TSP, and to design several TSP instances
with apriori-known characteristics. We did not intend to
compare the considered methods from both the point of view
of computational cost and closeness of the provided solution
to the optimum, but only to indicate to the readers the benefit
they can have using additional information about the structure
of the instances when choosing the solver.

We will extend this study by using several metaheuristics
with known promising results for optimization problems in
general and symmetric TSP in particular. Some of these meta-
heuristics are mentioned in Section II.A: Discrete Monarch

Optimization [46], [50], African Buffalo Optimization [51],
Earthworm optimization [47], Elephant Herding Optimiza-
tion [48], [49], Moth Search [80].

The instances generated for this work have a priori speci-
fied features. These datasets could be used for further inves-
tigations by the research community. Their design could
also be used to extend these collections with higher size
instances or to include other complementary features.

To the best of our knowledge, results concerning human
performance on the Tnm set are not yet reported in the lit-
erature. Tnm instances have many optimal solutions, so we
suppose that they are not difficult for humans. As a further
direction of our study, we intend to search for a method
for generating small-size TSP instances that are efficiently
solved by humans but are difficult for computers.

REFERENCES
[1] M.Dorigo and T. Stützle,Ant ColonyOptimization. Cambridge,MA,USA:

MIT Press, 2004.
[2] S. Lin and B. W. Kernighan, ‘‘An effective heuristic algorithm for the

traveling-salesman problem,’’ Oper. Res., vol. 21, no. 2, pp. 498–516,
Apr. 1973, doi: 10.1287/opre.21.2.498.

[3] National Traveling Salesman Problems. Accessed: Mar. 1, 2020. [Online].
Available: http://www.math.uwaterloo.ca/tsp/world/countries.html

[4] S. Thiébaux, J. Slaney, and P. Kilby, ‘‘Estimating the hardness of optimiza-
tion,’’ in Proc. 14th Eur. Conf. Artif. Intell. (ECAI), 2000, pp. 123–127, doi:
10.5555/3006433.3006460.

[5] W. J. Cook, In Pursuit of the Traveling Salesman: Mathematics at the
Limits of Computation. Princeton, NJ, USA: Princeton Univ. Press, 2012.

[6] S. Arora, ‘‘Polynomial time approximation schemes for Euclidean trav-
eling salesman and other geometric problems,’’ J. ACM, vol. 45, no. 5,
pp. 753–782, Sep. 1998, doi: 10.1145/290179.290180.

[7] P. Cheeseman, B. Kanefsky, and W. M. Taylor, ‘‘Where the really hard
problems are,’’ inProc. 12th Int. Joint Conf. Artif. Intell. IJCAI, San Mateo,
CA, USA: Morgan Kaufmann, vol. 1, Aug. 1991, pp. 331–337, doi:
10.5555/1631171.1631221.

[8] A. Mariano, P. Moscato, andM. G. Norman, ‘‘Using L-systems to generate
arbitrarily large instances of the Euclidean traveling salesman problem
with known optimal tours,’’ in Proc. Anales del 27th Simposio Brasileiro
de Pesquisa Operacional, 1995, pp. 6–8.

[9] M. Dry, K. Preiss, and J. Wagemans, ‘‘Clustering, randomness, and reg-
ularity: Spatial distributions and human performance on the traveling
salesperson problem and minimum spanning tree problem,’’ J. Problem
Solving, vol. 4, no. 1, pp. 1–17, Feb. 2012, doi: 10.7771/1932-6246.1117.

[10] J. N. MacGregor, ‘‘Effects of cluster location on human performance on
the traveling salesperson problem,’’ J. Problem Solving, vol. 5, no. 2,
pp. 33–41, Apr. 2013, doi: 10.7771/1932-6246.1151.

[11] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, ‘‘Algorithm runtime
prediction: Methods & evaluation,’’ Artif. Intell., vol. 26, pp. 79–111,
Jan. 2014.

[12] P. Kerschke, L. Kotthoff, J. Bossek, H. H.Hoos, andH. Trautmann, ‘‘Lever-
aging TSP solver complementarity throughmachine learning,’’ Evol. Com-
put., vol. 26, no. 4, pp. 597–620, Dec. 2018, doi: 10.1162/evco_a_00215.

[13] J. Pihera and N. Musliu, ‘‘Application of machine learning to algorithm
selection for TSP,’’ in Proc. IEEE 26th Int. Conf. Tools with Artif. Intell.,
Nov. 2014, pp. 47–54, doi: 10.1109/ICTAI.2014.18.

[14] K. J. S.-M. van Hemert and X. Y. Lim, ‘‘Understanding TSP difficulty by
learning from evolved instances,’’ in Learning and Intelligent Optimization
(Lecture Notes in Computer Science), vol. 6073, C. Blum and R. Battiti,
Eds. Berlin, Germany: Springer, 2010.

[15] K. Helsgaun, ‘‘General k-opt submoves for the Lin–Kernighan TSP heuris-
tic,’’Math. Program. Comput., vol. 1, nos. 2–3, pp. 119–163, Oct. 2009.

[16] X.-F. Xie and J. Liu, ‘‘Multiagent optimization system for solving the
traveling salesman problem (TSP),’’ IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 39, no. 2, pp. 489–502, Apr. 2009, doi: 10.1109/TSMCB.
2008.2006910.

VOLUME 9, 2021 5329

http://dx.doi.org/10.1287/opre.21.2.498
http://dx.doi.org/10.5555/3006433.3006460
http://dx.doi.org/10.1145/290179.290180
http://dx.doi.org/10.5555/1631171.1631221
http://dx.doi.org/10.7771/1932-6246.1117
http://dx.doi.org/10.7771/1932-6246.1151
http://dx.doi.org/10.1162/evco_a_00215
http://dx.doi.org/10.1109/ICTAI.2014.18
http://dx.doi.org/10.1109/TSMCB.2008.2006910
http://dx.doi.org/10.1109/TSMCB.2008.2006910

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

[17] D. Sanches, D. Whitley, and R. Tinós, ‘‘Building a better heuristic for
the traveling salesman problem,’’ in Proc. Genetic Evol. Comput. Conf.,
Jul. 2017, pp. 329–336, doi: 10.1145/3071178.3071305.

[18] L. Kotthoff, ‘‘Algorithm selection for combinatorial search problems: A
survey,’’ AI Mag., vol. 35, no. 3, pp. 48–60, Sep. 2014.

[19] K. Smith-Miles and J. van Hemert, ‘‘Discovering the suitability of optimi-
sation algorithms by learning from evolved instances,’’ Ann. Math. Artif.
Intell., vol. 61, no. 2, pp. 87–104, Feb. 2011.

[20] S. Hougardy and X. Zhong, ‘‘Hard to solve instances of the Euclidean trav-
eling salesman problem,’’ 2018, arXiv:1808.02859. [Online]. Available:
http://arxiv.org/abs/1808.02859

[21] M. G. Norman and P. Moscato, ‘‘The Euclidean traveling salesman prob-
lem and a space-filling curve,’’ Chaos Soliton Fract, vol. 6, pp. 389–397,
Jan. 1995, doi: 10.1016/0960-0779(95)80046-J.

[22] G. B. Dantzig, Linear Programming and Extensions. Princeton, NJ, USA:
Princeton Univ. Press, 1963.

[23] G. Dantzig, R. Fulkerson, and S. Johnson, ‘‘Solution of a large-scale
traveling-salesman problem,’’ J. Oper. Res. Soc. Amer., vol. 2, no. 4,
pp. 393–410, Nov. 1954.

[24] T. Arthanari and K. Qian, ‘‘Symmetric travelling salesman problem,’’ in
Mathematical Programming and Game Theory (Indian Statistical Institute
Series), S. Neogy, R. Bapat, and D. Dubey, Eds. Singapore: Springer, 2018,
pp. 87–114, doi: 10.1007/978-981-13-3059-9_5.

[25] R. Roberti and P. Toth, ‘‘Models and algorithms for the asymmetric trav-
eling salesman problem: An experimental comparison,’’ EURO J. Transp.
Logistics, vol. 1, nos. 1–2, pp. 113–133, Jun. 2012, doi: 10.1007/s13676-
012-0010-0.

[26] M. Bläser, ‘‘Metric TSP,’’ in Encyclopedia of Algorithms, M. Y. Kao, Ed.
Boston, MA, USA: Springer, 2008.

[27] A. Czumaj, ‘‘Euclidean traveling salesman problem,’’ in Encyclopedia of
Algorithms, M. Y. Kao, Ed. New York, NY, USA: Springer, 2016.

[28] G. Mosheiov, ‘‘The travelling salesman problem with pick-up and deliv-
ery,’’ Eur. J. Oper. Res., vol. 79, no. 2, pp. 299–310, Dec. 1994.

[29] K. Ilavarasi and K. S. Joseph, ‘‘Variants of travelling salesman problem:
A survey,’’ in Proc. Int. Conf. Inf. Commun. Embedded Syst. (ICICES),
Feb. 2014, pp. 1–7, doi: 10.1109/ICICES.2014.7033850.

[30] N. Agatz, P. Bouman, and M. Schmidt, ‘‘Optimization approaches for
the traveling salesman problem with drone,’’ Transp. Sci., vol. 52, no. 4,
pp. 965–981, Aug. 2018, doi: 10.1287/trsc.2017.0791.

[31] G. C. Onwubolu and M. Clerc, ‘‘Optimal path for automated drilling
operations by a new heuristic approach using particle swarm optimiza-
tion,’’ Int. J. Prod. Res., vol. 42, no. 3, pp. 473–491, Feb. 2004, doi:
10.1080/00207540310001614150.

[32] O. Johnson and J. Liu, ‘‘A traveling salesman approach for predicting
protein functions,’’ Source Code Biol. Med., vol. 1, no. 1, p. 3, 2006, doi:
10.1186/1751-0473-1-3.

[33] E. Bonabeau, F. Henaux, S. Guérin, D. Snyer, P. Kuntz, and G. Theraulaz,
‘‘Routing in telecommunications networks with ant-like agents,’’ in Intel-
ligent Agents for Telecommunication Applications (Lecture Notes in Com-
puter Science), vol. 1437, S. Albayrak and F. J. Garijo, Eds. Berlin,
Germany: Springer, 1998, pp. 60–71, doi: 10.1007/BFb0053944.

[34] P. Jaillet, ‘‘Probabilistic travelling salesman problems,’’ Ph.D. dissertation,
Dept. Civil Eng., Cambridge, MA, USA: MIT Press, 1985.

[35] G. C. Crisan and E. Nechita, ‘‘Solving fuzzy TSP with ant algorithms,’’
Int. J. Comput., Commun. Control, vol. 3, pp. 228–231, Jan. 2008.

[36] Z. Wang, J. Guo, M. Zheng, and Y. Wang, ‘‘Uncertain multiobjective trav-
eling salesman problem,’’ Eur. J. Oper. Res., vol. 241, no. 2, pp. 478–489,
Mar. 2015, doi: 10.1016/j.ejor.2014.09.012.

[37] R. M. Karp, ‘‘Reducibility among combinatorial problems,’’ in Complex-
ity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.
New York, NY, USA: Plenum Press, 1972, pp. 85–103.

[38] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The Travel-
ing Salesman Problem Concorde TSP Solver. Accessed: Mar. 1, 2020.
[Online]. Available: http://www.math.uwaterloo.ca/tsp/concorde/

[39] NEOS Interfaces to Concorde. Accessed: Mar. 1, 2020. [Online]. Avail-
able: https://neos-server.org/neos/solvers/co:concorde/TSP.html

[40] H. A. Abdulkarim and I. F. Alshammari, ‘‘Comparison of algorithms for
solving traveling salesman problem,’’ Int. J. Eng. Adv. Tech., vol. 4, no. 6,
pp. 76–79, Aug. 2015.

[41] Y. A. Tan, X. H. Zhang, L. N. Xing, X. L. Zhang, and S. W. Wang,
‘‘An improved multi-agent approach for solving large traveling salesman
problem,’’ in Agent Computing and Multi-Agent Systems (Lecture Notes
in Computer Science), vol. 4088, Z. Z. Shi and R. Sadananda, Eds. Berlin,
Germany: Springer, 2006, pp. 351–362.

[42] M. M. Abid and M. Iqbal, ‘‘Heuristic approaches to solve traveling sales-
man problem,’’ TELKOMNIKA Indonesian J. Elect. Eng., vol. 15, no. 2,
pp. 390–396, 2015, doi: 10.11591/telkomnika.v15i2.8301.

[43] G. C. Crişan, E. Nechita, and V. Palade, ‘‘On the effect of adding nodes
to TSP instances: An empirical analysis,’’ in Advances in Combining
Intelligent Methods (Intelligent Systems Reference Library), vol. 116,
I. Hatzilygeroudis, V. Palade, and J. Prentzas, Eds. Cham, Switzerland:
Springer, 2017, pp. 25–45, doi: 10.1007/978-3-319-46200-4_2.

[44] Y. Marinakis, ‘‘Heuristic and metaheuristic algorithms for the traveling
salesman problem,’’ in Encyclopedia of Optimization, C. A Floudas,
P. M. Pardalos, Eds. Boston, MA, USA: Springer, 2009, pp. 1498–1506,
doi: 10.1007/978-0-387-74759-0_262.

[45] D. Gupta, ‘‘Solving TSP using various Meta-Heuristic algorithms,’’ Int. J.
Recent Contribution From Eng., Sci. IT, vol. 1, no. 2, pp. 22–26, 2013.

[46] G.-G. Wang, S. Deb, and Z. Cui, ‘‘Monarch butterfly optimization,’’
Neural Comput. Appl., vol. 31, no. 7, pp. 1995–2014, Jul. 2019, doi:
10.1007/s00521-015-1923-y.

[47] G. G. Wang, S. Deb, and L. S. Coelho, ‘‘Earthworm optimisation algo-
rithm:A bio-inspiredmetaheuristic algorithm for global optimisation prob-
lems,’’ Int. J. Bio-Inspired Comput., vol. 12, no. 1, pp. 1–22, 2018, doi:
10.1504/IJBIC.2015.10004283.

[48] G.-G. Wang, S. Deb, and L. D. S. Coelho, ‘‘Elephant herding optimiza-
tion,’’ in Proc. 3rd Int. Symp. Comput. Bus. Intell. (ISCBI), Dec. 2015,
pp. 1–5, doi: 10.1109/ISCBI.2015.8.

[49] A. Hossam, A. Bouzidi, and M. E. Riffi, ‘‘Elephants herding optimization
for solving the travelling salesman problem,’’ in Advanced Intelligent
Systems for Sustainable Development (Advances in Intelligent Systems
and Computing), vol. 912,M. Ezziyyani, Ed. Cham, Switzerland: Springer,
2019, pp. 122–130, doi: 10.1007/978-3-030-12065-8_12.

[50] G. G. Wang, G. S. Hao, S. Cheng, and Q. Q. Qin, ‘‘A discrete monarch
butterfly optimization for Chinese TSP problem,’’ in Advances in Swarm
Intelligence (Lecture Notes in Computer Science), vol. 9712, Y. Tan,
Y. Shi, B. Niu, Eds. Cham, Switzerland: Springer, 2016, pp. 165–173, doi:
10.1007/978-3-319-41000-5_16.

[51] J. B. Odili and M. N. Mohmad Kahar, ‘‘Solving the traveling Salesman’s
problem using the african buffalo optimization,’’Comput. Intell. Neurosci.,
vol. 2016, pp. 1–12, Jan. 2016, doi: 10.1155/2016/1510256.

[52] D. Whitley and W. Chen, ‘‘Constant time steepest descent local
search with lookahead for NK-landscapes and MAX-kSAT,’’ in Proc.
14th Int. Conf. Genetic Evol. Comput. Conf. GECCO, Jul. 2012,
pp. 1357–1364.

[53] M. Guntsch and M. Middendorf, ‘‘Applying population based ACO to
dynamic optimization problems,’’ in Proc. Int. Workshop Ant Algorithms,
vol. 2463, Brussels, Belgium, Sep. 2002, pp. 111–122.

[54] A. Maity and S. Das, ‘‘Efficient hybrid local search heuristics for solving
the travelling thief problem,’’ Appl. Soft Comput., vol. 93, Aug. 2020,
Art. no. 106284, doi: 10.1016/j.asoc.2020.106284.

[55] C. Blum, ‘‘Ant colony optimization: Introduction and recent trends,’’
Phys. Life Rev., vol. 2, no. 4, pp. 353–373, 2005, doi: 10.1016/j.plrev.
2005.10.001.

[56] J. Brownlee. (2011). Clever Algorithms: Nature-Inspired Programming
Recipes. Accessed: Mar. 22, 2020. [Online]. Available: http://www.
cleveralgorithms.com/

[57] M. Dorigo and T. Stützle, ‘‘The ant colony optimization metaheuristic:
Algorithms, applications, and advances,’’ in Handbook of Metaheuristics
(International Series in Operations Research & Management Science),
vol. 57, F. Glover, G. A. Kochenberger, and G. A., Eds. Boston, MA, USA:
Springer, 2003, doi: 10.1007/0-306-48056-5_9.

[58] Y. M. Yue and X. Wang, ‘‘An improved ant colony optimization algorithm
for solving TSP,’’ Int. J. Multimedia Ubiquitous Eng., vol. 10, no. 12,
pp. 153–164, Dec. 2015, doi: 10.14257/ijmue.2015.10.12.16.

[59] R. Skinderowicz, ‘‘Ant colony system with a restart procedure for TSP,’’
in Computational Collective Intelligence. ICCCI (Lecture Notes in Com-
puter Science), vol. 9876, N. Nguyen, L. Iliadis, Y. Manolopoulos, and
B. Trawiński, Eds. Cham, Switzerland: Springer, 2016, doi: 10.1007/978-
3-319-45246-3_9.

[60] M. Kurdi, ‘‘Ant colony system with a novel non-DaemonActions pro-
cedure for multiprocessor task scheduling in multistage hybrid flow
shop,’’ Swarm Evol. Comput., vol. 44, pp. 987–1002, Feb. 2019, doi:
10.1016/j.swevo.2018.10.012.

[61] H. Ismkhan, ‘‘Effective heuristics for ant colony optimization to han-
dle large-scale problems,’’ Swarm Evol. Comput., vol. 32, pp. 140–149,
Feb. 2017, doi: 10.1016/j.swevo.2016.06.006.

5330 VOLUME 9, 2021

http://dx.doi.org/10.1145/3071178.3071305
http://dx.doi.org/10.1016/0960-0779(95)80046-J
http://dx.doi.org/10.1007/978-981-13-3059-9_5
http://dx.doi.org/10.1007/s13676-012-0010-0
http://dx.doi.org/10.1007/s13676-012-0010-0
http://dx.doi.org/10.1109/ICICES.2014.7033850
http://dx.doi.org/10.1287/trsc.2017.0791
http://dx.doi.org/10.1080/00207540310001614150
http://dx.doi.org/10.1186/1751-0473-1-3
http://dx.doi.org/10.1007/BFb0053944
http://dx.doi.org/10.1016/j.ejor.2014.09.012
http://dx.doi.org/10.11591/telkomnika.v15i2.8301
http://dx.doi.org/10.1007/978-3-319-46200-4_2
http://dx.doi.org/10.1007/978-0-387-74759-0_262
http://dx.doi.org/10.1007/s00521-015-1923-y
http://dx.doi.org/10.1504/IJBIC.2015.10004283
http://dx.doi.org/10.1109/ISCBI.2015.8
http://dx.doi.org/10.1007/978-3-030-12065-8_12
http://dx.doi.org/10.1007/978-3-319-41000-5_16
http://dx.doi.org/10.1155/2016/1510256
http://dx.doi.org/10.1016/j.asoc.2020.106284
http://dx.doi.org/10.1016/j.plrev.2005.10.001
http://dx.doi.org/10.1016/j.plrev.2005.10.001
http://dx.doi.org/10.1007/0-306-48056-5_9
http://dx.doi.org/10.14257/ijmue.2015.10.12.16
http://dx.doi.org/10.1007/978-3-319-45246-3_9
http://dx.doi.org/10.1007/978-3-319-45246-3_9
http://dx.doi.org/10.1016/j.swevo.2018.10.012
http://dx.doi.org/10.1016/j.swevo.2016.06.006

G. C. Crişan et al.: On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods

[62] M. López-Ibáñez and T. Stützle. ACOTSPQAP: Ant Colony Optimiza-
tion Algorithms for the Travelling Salesman Problem and the Quadratic
Assignment Problem. Accessed: Mar. 1, 2020. [Online]. Available:
http://iridia.ulb.ac.be/aco-tsp-qap/

[63] D. S. Johnson and L. A. McGeoch, ‘‘Local search in combinatorial opti-
mization,’’ in The Traveling Salesman Problem: A Case Study in Local
Optimization. New York, NY, USA: Wiley, 1996.

[64] O. Martin, S. W. Otto, and E. W. Felten, ‘‘Large-step Markov chains for
the traveling salesman problem,’’ J. Complex Syst., vol. 1991, vol. 5, no. 3,
p. 299.

[65] C. H. Papadimitriou, ‘‘The Euclidean traveling salesman problem is NP-
complete,’’ Theor Comput Sci, vol. 4, no. 3, pp. 237–244, 1977, doi:
10.1016/0304-3975(77)90012-3.

[66] O. Mersmann, B. Bischl, J. Bossek, H. Trautmann, M. Wagner, and
F. Neumann, ‘‘Local search and the traveling salesman problem: A feature-
based characterization of problem hardness,’’ in Proc. 6th Int. Conf. Learn.
Intell. Optim., Y. Hamadi and M. Schoenauer, Eds. Berlin, Germany:
Springer, 2012, pp. 115–129, doi: 10.1007/978-3-642-34413-8_9.

[67] O. Mersmann, B. Bischl, H. Trautmann, M. Wagner, J. Bossek, and
F. Neumann, ‘‘A novel feature-based approach to characterize algorithm
performance for the traveling salesperson problem,’’ Ann. Math. Artif.
Intell., vol. 69, no. 2, pp. 151–182, Oct. 2013, doi: 10.1007/s10472-013-
9341-2.

[68] S. Nallaperuma, M. Wagner, and F. Neumann, ‘‘Analyzing the effects of
instance features and algorithm parameters for max–min ant system and
the traveling salesperson problem,’’ Frontiers Robot. AI, vol. 2, p. 18,
Jul. 2015, doi: 10.3389/frobt.2015.00018.

[69] J. Bossek, P. Kerschke, A. Neumann, M. Wagner, F. Neumann, and
H. Trautmann, ‘‘Evolving diverse TSP instances by means of novel
and creative mutation operators,’’ in Proc. 15th ACM/SIGEVO Conf.
Found. Genetic Algorithms - FOGA, 2019, pp. 58–71, doi: 10.1145/
3299904.3340307.

[70] TSPLIB. Accessed: Mar. 1, 2020. [Online]. Available: http://comopt.
ifi.uni-heidelberg.de/software/TSPLIB95/

[71] TSP Test Data. Accessed: Mar. 1, 2020. [Online]. Available:
http://www.math.uwaterloo.ca/ tsp/data/index.html

[72] 2D Euclidean TSP Instances. Accessed: Mar. 28, 2020. [Online].
Available: http://cadredidactice.ub.ro/ceraselacrisan/2d-euclidean-tsp
-instances/

[73] G. C. Crişan, C. M. Pintea, P. C. Pop, and O. Matei, ‘‘Economical con-
nections between several European countries based on TSP data,’’ Log. J.
IGPL, vol. 28, no. 1, pp. 33–44, 2020, doi: 10.1093/jigpal/jzz069.

[74] Romanian and Swiss TSP Instances. Accessed: Mar. 1, 2020. [Online].
Available: http://cadredidactice.ub.ro/ceraselacrisan/cercetare/

[75] DIMACS Implementation Challenge. TSP. Accessed: Apr. 28, 2020.
[Online]. Available: http://dimacs.rutgers.edu/archive/Challenges/TSP/
download.html

[76] L. Sengupta and P. Franti, ‘‘Predicting the difficulty of TSP instances using
MST,’’ in Proc. IEEE 17th Int. Conf. Ind. Informat. (INDIN), Jul. 2019,
pp. 847–852, doi: 10.1109/INDIN41052.2019.8972232.

[77] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations and
Applications. Amsterdam, The Netherlands: Elsevier, 2004.

[78] S. Wright, ‘‘The roles of mutation, inbreeding, crossbreeding and selection
in evolution,’’ Proc. 6th Int Congr. Genet., vol. 1, 1932, pp. 356–366.

[79] G. Ochoa and N. Veerapen, ‘‘Mapping the global structure of TSP fitness
landscapes,’’ J. Heuristics, vol. 24, no. 3, pp. 265–294, Jun. 2018, doi:
10.1007/s10732-017-9334-0.

[80] G.-G. Wang, ‘‘Moth search algorithm: A bio-inspired Metaheuristic algo-
rithm for global optimization problems,’’Memetic Comput., vol. 10, no. 2,
pp. 151–164, Jun. 2018, doi: 10.1007/s12293-016-0212-3.

GLORIA CERASELA CRIŞAN received the
degree in informatics from the University of
Bucharest, Romania, in 1986, and the Ph.D. degree
in informatics from the Alexandru Ioan Cuza Uni-
versity of Iaşi, Romania, in 2008.

Since 2016, she has been an Associate Pro-
fessor with the Department of Mathematics and
Informatics, Faculty of Sciences, Vasile Alecsan-
dri University of Bacău, Romania. Her research
interests include combinatorial optimization prob-

lems, metaheuristics, transportation and logistics problems, and GIS.

ELENA NECHITA received the degree in informat-
ics and the Ph.D. degree in informatics from the
Alexandru Ioan Cuza University of Iaşi, Romania,
in 1987 and 2000, respectively.

Since 2015, she has been a Professor with the
Department of Mathematics and Informatics, Fac-
ulty of Sciences, Vasile Alecsandri University of
Bacău, Romania. Her research interests include
artificial intelligence, probability and statistics,
computers, and education.

DANA SIMIAN received the B.S. degrees
in mechanical engineering and mathematics
in 1994 and 1984, respectively, and the Ph.D.
degree in mathematics from the Babeş-Bolyai
University of Cluj-Napoca, Romania, in 2001.

She was a Visiting Professor with the University
of Cincinnati, Ohio, USA, in 2018, and the Univer-
sity of Applied Sciences, Wurzburg-Schweinfurt,
Germany, from 2017 to 2019. She is currently a
Professor with the Department of Mathematics

and Informatics, Faculty of Sciences, Lucian Blaga University of Sibiu,
Romania. She is also the Director of the Research Center on Informatics
and Information Technology, Faculty of Science. Her research interests
include machine learning, modeling and optimization, algorithms and data
structures, numerical calculus, and computational geometry.

VOLUME 9, 2021 5331

http://dx.doi.org/10.1016/0304-3975(77)90012-3
http://dx.doi.org/10.1007/978-3-642-34413-8_9
http://dx.doi.org/10.1007/s10472-013-9341-2
http://dx.doi.org/10.1007/s10472-013-9341-2
http://dx.doi.org/10.3389/frobt.2015.00018
http://dx.doi.org/10.1145/3299904.3340307
http://dx.doi.org/10.1145/3299904.3340307
http://dx.doi.org/10.1093/jigpal/jzz069
http://dx.doi.org/10.1109/INDIN41052.2019.8972232
http://dx.doi.org/10.1007/s10732-017-9334-0
http://dx.doi.org/10.1007/s12293-016-0212-3

