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ABSTRACT This paper introduces a new approach of the mean Euler-Poincaré characteristic for non-
Gaussian random fields (NGRF), which is based on the decomposition by a basic function named mother-
wave. The method is proved for long-term recorded, noisy physiological signals. A pretreatment allows the
signal to become smooth as the original one is fitted through a Random Algebraic Polynomials (RAP)-based
scheme. After that, the polynomized signals are merged by thresholding the RAP function at different levels
u. In this way, it is formed a real-valued non-Gaussian physiological random field (NGPRF). Thereby,
we deal with their geometric properties centered on their excursion sets Au(8, T ) and a topological invariant,
such as the Euler Poincaré Characteristic (EPC) ϕ(Au(8, T )). The highlight of this work is an explicit model,
referred to as the decomposedmean Euler-Poincaré characteristic (DMEPC). The proposedmethod produces
a reduced model with a viable interpretation for different heart conditions investigated for data issued from
Holter EKG recordings.

INDEX TERMS DMEPC, Euler characteristic, random field.

I. INTRODUCTION
Random Fields (RF) give a statistical description of complex
random patterns of change and relationships from physi-
cal data sets [1]–[3]. Consider a random variable 8(X, •)
as a function of X = [X1, . . . ,Xn]T with {Xk}nk=1 as the
set of random continuous coordinates, then, a collection
of 8(X, •) is named random field [4]. The geometry and
regularity properties of RF have been largely discussed in
the literature. These features have to do with continuity and
differentiability notions [5] and still with the geometry gen-
erated by RF through their excursion sets over a level u [4].
Gaussian Random Fields (GRF) is a class of RF for which
the finite-dimensional distributions are multivariable nor-
mal distributions that can be fully specified by expectations
and covariances. GRFs lead to a large class of applications
suited for use in mathematics, sciences, and engineering
[6]. A noticeable issue has been accessing information from
biomedical images. In this case, Gaussian Markov Ran-
dom Fields (GMRF) provide a spatial-contextual knowledge
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that has often resulted in spatial statistics applications.
The research by [7] used Markov irregular fields (MRF)
to address biomedical image analysis by image segmenta-
tion, object labeling, and 3D vision. Later, [8] developed
a Bayesian framework that introduces an adjustable param-
eter on a Generalized Adaptive Gaussian Markov random
field (GAGMRF) model to adjust the image quality for X-ray
Luminescence tomographies. Researches that engage in RF
concern also medical analyses. As an example, we refer to the
work in [9], where statistical methods assisted morphometric
analyses of specific subregions of the brain. Here, using
GRF differentiated the shape of the amygdala and the hip-
pocampus of normal subjects face to patients with attention-
deficit/hyperactivity disorder (ADHD). Another type of RF
usage points to disease mapping. In this regard, we cite the
work of [10] that propose a Bayesian analysis of a GMRF
to determine the spatial variability of lip cancer cases in
Scotland for a period of five years.

From the given literature review, we deduce that the theory
of GRF supports quite well medical diagnosis practice by
images. However, for some diseases, the diagnosis is made
more by reading signals recorded over time. For example,
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an electrocardiogram (EKG) is a standard description of the
heart’s electrical signals. The interpretation of the EKG data
helps to distinguish heart disorders. The visual inspection of
an EKG can be bulky and can lead to misinterpretation. As a
result, computer-assisted algorithms have emerged to handle
EKG data with the aim of improving the detection of heart
conditions.

Opposite to the computer-aided diagnosis by biological
images, which add RF advancements, to our knowledge, there
is not automated diagnosis by physiological signals based
on the theory of RF. Instead, signal processing is made by
transforming the temporal data to the frequency domain.
In this transformation, statistical features are obtained. Then,
the gained knowledge is the input of a classifier. The classifi-
cation rules serve to distinguish distinct cardiac conditions.
It is worthy of keeping in mind that the full treatment is
applied beat by beat, hence with a high computational burden.

Otherwise, this work aims to provide a method to handle
extensive noisy physiological data. The central idea is to
extract a geometrical structure to build a non-Gaussian Ran-
dom Field (NGRF). The paper’s highlight is the formulation
of an explicit mathematical model of the built NGRF. To fix
the mathematical basis, we use the main elements of the GRF
theory. A complete methodology to exploit this approach is
not within the scope of this paper. However, we explore the
effectiveness of our approach by decomposing Holter mon-
itor signals. The Holter test monitors an ambulatory patient
during long periods (24 to 48 h). The NGRF built from the
Holter tests separates the P and T pics of the EKG of the
entire test. The outcome is a reduced description of the heart’s
electrical signals. The assumption is that some patterns can be
identified that can help in giving medical prevention insights.
In this way, the foundations are laid for further development.

[1], alongwith extensions ofWorsley [11]–[13], combined
the geometry of topology with probability and statistics. The
resulting theory has become a standard framework to analyz-
ing RF. Central concepts of this theory are the excursion set
Au(8, T ) with T a topological space, and the Euler-Poincaré
characteristic (EPC) ϕ(Au(8, T )). The excursion set is sim-
ply the set of points where the RF exceeds a fixed threshold
value u ∈ R, whereas the EPC lets us know about the
topology of this set. The EPC is a topological invariant that
counts the number of connected components in the excursion
set minus the number of holes [14]. Among other purposes,
a descriptor based on EPC was presented in [14] to classify
images and 3D mesh surfaces.

Summing up, [1] estimated the geometric structure of the
excursion sets for real-valued Gaussian RF by differential
topology (DT) and integral geometry (IG). This approach
delivers the theory and conditions for a smooth GRF with
a smooth boundary ∂T . With this scheme, the average data
subtracted from numerous trials are standardized by the mean
Euler-Poincaré characteristic (MEPC), which is denoted by
E{ϕ(Au(8, T ))}. Adler (1981) defined the DT (differential
topology) characteristic of the excursion set so that it meets
the EPC when the excursion set does not touch the boundary.

Then, a limit correction providing the MEPC itself in R2 and
R3 was found by Worsley [15]. A significant outcome of
the RF theory has been an explicit formula of the expected
MEPC for smooth RF. In order to get this kind of RF, in our
approach, the physiological data fit random algebraic poly-
nomials (RAP). The suggested polynomization procedure is
comparable to digital filtering techniques.

RAP are relevant to engineering, physics or economics
goals. A notable work written by Bharucha and Sambandham
[16] examined and described the properties of randomorthog-
onal and trigonometric polynomials. A deal for using RAP is
to identify the number of real zeros. In this regard, Kac [17]
gave the formula to get the expected number of real zeros of
a RAP. Among the studies that implement the Kac’s formula
we found, for example, [18], [19], and [20]. Likewise, some
methods are encountered that find the real zeros of RAP,
e.g. a quadratically convergent iterative procedure to find all
zeros simultaneously is given [21], [22], with a basis on the
Gerschgorin’s theorems [23].

The theory of Adler and Taylor has been extended to
Gaussian-related RF (namely, χ2,F , and t fields) [15]. Later,
[4] further study the excursion sets of non-Gaussian random
fields (NGRF) holding high levels. High peaks in an RF are
due to noise, high frequencies, states, or other behaviors.
Besides, the high levels in RF lead to complicated geometry
and render NGRF features. In [1], pages 387-433, it was
presented a special description of NGRF of the form f (t) =
F(y(t)) = F(y1(t), . . . , yk (t)) where the yj(t) are a collection
of independent, identically distributed (i.i.d.) GRF. Because
limited cases can be defined in this way, and it is difficult to
get a function F to encode the behavior of NGRF, we intro-
duce an approach focused on the MEPC. We propose a new
characteristic through a decomposition that we refer to as the
decomposed mean Euler-Poincaré characteristic (DMEPC).

We are interested in the geometric properties of real-
valued Non-Gaussian RF with a focus on their excursion sets
Au(8, T ). An outcome of this work is an explicit model of
a decomposed expected Euler characteristic E{ϕ(Au(8, T ))}
of the excursion set of an NGRF. The implementation of
our approach relies on data from electrocardiograph (EKG)
signals whereby an NGRF is built.

From a medical point of view, a recognized method to
diagnose cardiovascular diseases is to analyze EKG sig-
nals. We chose to work with Holter EKG data from the
SHAREE database [24]. The objective is to model the Holter
EKG behavior. Our methodology is as follows. First, we fit
the Holter data with RAP to get a smoothed signal. Then,
we transform the polynomized cycles into an RF. These
signals are collapsed to build a smoothNGRFwith high peaks
by thresholding the RAP function at different levels u. Lastly,
we propose a decomposed MEPC linked to the built NGRF.
It is a quite reduced version of the original Holter EKG signal,
intended to be read easier. Some patterns are acknowledged
for certain heart conditions.

The manuscript is organized as follows: In Section II,
we introduce the mathematical aspects and model for the
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DMPEC method. In Section III, experimental results are
discussed to classify MI from Holter EKG signals. Finally,
we provide a conclusion in Section IV. Proofs of Theorems
and Lemmas are provided in Appendices.

II. MATHEMATICAL FRAMEWORK
A. POLYNOMIZATION
Polynomization is a modeling based on RAP denoted
ψ(•,X1) of a EKG cycle c (c = 1 . . .N ) where, for a fixed
threshold, each of them can be decomposed over two intervals
I1(c) =

[
1 XR(c)

]
and I2(c) =

[
XR(c) XE (c)

]
with XR(c)

index-time of the R wave. Let {ak (c, ω)}
D(c)
k=1 be a sequence of

i.i.d. random variables and ψB(E, ω,X1(c)) be a basic RAP
of order D(c) defined by

ψB(E, ω,X1(c)) =
∑D(c)

k=0
ak (c, ω)X1(c)k , (1)

with E =
(
�,6,P

)
a complete probability space where

� denotes the sample space, 6 a σ -algebra on � and P a
probability measure on 6. For each interval Im(c) (m = 1, 2)
define a RAP as ψm

D (E, ω,X1(c)) = ψB(E, ω,X1(c))1Im(c)
where 1X is the unit function over X . The polynomization
over one cycle c can then be written as

ψD(E, ω,X1(c)) =
∑D1(c)

k=0
aI1k (c, ω)(X

I1
1 (c))k

+

∑D2(c)

k=0
aI2k (c, ω)(X

I2
1 (c))k . (2)

B. MODELING NON-GAUSSIAN RANDOM FIELD
Let 8(X, ω) be a NGRF at X with X = [X1(c) X2]T where
X1(c) ∈ I1(c) ∪ I2(c). Let E =

(
�,6,P

)
be a complete

probability space and T a topological space, where� denotes
the sample space, 6 a σ -algebra on � and P a probability
measure on 6. Then a measurable mapping 8 : �→ RT is
called a real-valued random field. Here X ∈ T ⊂ R2 and 8
is called an 2-dimensional NGRF over N cycles defined as

8(X1,X2, ω) = 8(X, ω)

=

N∑
c=1

ψD(E, ω,X1(c))δ(c− X2), (3)

where δ is the Dirac’s distribution. Eq.(3) means that each
EKG signal for a fixed threshold is decomposed into basic
RAP ψD(E, ω,X1(c)) to form a NGRF according to the coor-
dinate X2.

C. NON-GAUSSIAN RANDOM FIELD
The most important concept in the random field theory is
named excursion set. Let8(X, ω) be a NGRF, X ∈ T ⊂ R2,
defined inside a set T . The excursion set is a geometrical
object defined as

Au (8, T ) = {X ∈ T ,8(X, ω) ≥ u}. (4)

ThusAu of8(X, ω) above a threshold u is the set of points in
T ⊂ R2 where 8(X, ω) exceeds u. Remember that stratified
manifolds T in R2 are basically sets that can be partitioned

into the disjoint union of manifolds as T = ∪dimTj=0 ∂jT where
each stratum ∂jT is itself a disjoint union of a number of j-
dimensional manifolds. Here non-Gaussian properties of 8
involve to consider a class of generalization of random fields
of the form

8(X, ω) = F (φ∗(X, ω))

= F
(
φ1∗(X, ω), . . . , φ

m
∗ (X, ω)

)
, (5)

are defined, where φj∗(X, ω) are a collection of i.i.d. Gaus-
sian randomfields (GRF), all defined over a topological space
T and F : Rm

→ R is a smooth function to be picewise C2,
along with appropriate side conditions. The excursion set of
a real-valued non-Gaussian 8 = F ◦ φ∗ above a level u is
equivalent to the excursion set for a vector-valued Gaussian
φ∗ in F−1[u,∞) and given by

Au (8, T ) = Au (F ◦ φ∗, T )
= {X ∈ T , (F ◦ φ∗)(X, ω) ≥ u}. (6)

In our framework let 6s = (s1, . . . sSM ) be the set of
signatures with sk the associated signed unit weight (SUW)
for each sub GRF φsk (X, ω) and SM =

∑M
k=1(−1)

ksk . Let us
define the NGRF given by Eq.(3) as

8(X, ω, SM ) =
(
s1φs1 (X, ω), . . . , sSMφ

sSM (X, ω)
)
, (7)

where smφsm (X, ω) (m = 1 . . . SM ) is a collection of i.i.d.
signedGRFwithX ∈ R2, ω ∈ � and s2n = +1, s2n+1 = −1.

D. MEAN EULER-POINCARÉ CHARACTERISTIC
Now denote the EPC of a set Au (8, T ) by ϕ(Au (8, T )).
For numerous trials, consider that E {ϕ(Au (8, T ))} is com-
putable. Therefore the random fields theory impose some
regularity conditions on 8(X, ω) to ensure both, that its
realisations are smooth and the boundary ∂T is smooth.
Then T is a regular C2 domain in a compact t subset of R2

bounded by a regular 1-dimensional manifold ∂T of classe
C2. Consider 8(X, ω), X = [X1,X2] ∈ R2 a stationary

non isotropic random field and 8̇j(X, ω) =
∂8(X, ω)
∂Xj

,

8̈jk (X, ω) =
∂28(X, ω)
∂Xj∂Xk

, j, k = 1, 2. The moduli of con-

tinuity of 8̇j(X, ω) and 8̈jk (X, ω) inside T are given by
ωj(h) = sup

‖X−Y‖<h,ω
|8̇j(X, ω) − 8̇j(Y , ω)| and ωjk (h) =

sup
‖X−Y‖<h,ω

|8̈jk (X, ω) − 8̈jk (Y , ω)|, respectively. To ensure

that realisations of8(X, ω) are sufficiently smooth, consider
the following conditions

• C1: P
(
max
j,k

{
ωj(h), ωjk (h)

}
> ε

)
= o(hN ) as h ↓ 0,

• C2: Hessian matrix 8̈ of 8̈jk has finite variance condi-
tional on

(
8, 8̇

)
with 8̇ grandient of 8̇j,

• C3: the density of
(
8, 8̇

)
is bounded above, uniformly

for all X ∈ T .
At a point X ∈ ∂T , let 8̇⊥ be the gradient of 8 in the
direction of the inside normal to ∂T , let 8̇T be the gra-
dient 1-vector in the tangent plane to ∂T , let 8̈T be the
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1× 1-Hessian matrix in the tangent plane to ∂T and let r be
the 1× 1 inside curvature matrix of ∂T . Let sign be the sign
function. Consider the notation of Knuth [25] where a logical
expression in parentheses takes the value one if true and zero
otherwise. Under conditions C1-C3, then the EPC is

ϕ(Au (8, T )) =
∑

X∈T
(8 ≥ u)

(
8̇ = 0

)
sign

[
det(−8̈)

]
+

∑
X∈∂T

(8 ≥ u)
(
8̇T = 0

) (
8̇⊥< 0

)
× sign

[
det(−8̈T − 8̇⊥r)

]
, (8)

with probability one. In R2 integral geometry defines
ϕ(Au (8, T )) as (the number of connected components)-(the
number of holes) in Au (8, T ). Moreover remember that the
expectation of ϕ(Au (8, T )) for multiple realisations is

E {ϕ(Au (8, T ))}

=

∫
T
E
{
(8 ≥ u) det(−8̈) | 8̇ = 0

}
θ (0)dX

+

∫
∂T

E
{
(8≥u) (8̇⊥<0) det (−8̈T−8̇⊥r) | 8̇T =0

}
× θT (0)dX, (9)

where θ (.) is the density of 8̇ and θT (.) is the density of
8̇T . Worsley in [26] showed that under the slightly more
general condition where the boundary of T is composed of
a finite number of piecewise smooth components, then the
expectation of the excursion sets of a random field with zero
mean and unit variance is

E {ϕ(Au (8, T ))} =
∑N

j=0
ρj(u)Lj(T ) (10)

where ρj(u) = (2π)−(j+1)/2Hj−1(u) exp(−u2/2) is the inten-
sity of the EPC per unit volume, Hj the jth Hermite polyno-
mial and Lj(T ) the Lipschitz-Killing curvatures.

E. VOLUME OF TUBES
Volume of tubes approach for a class of Gaussian processes
is linked to a finite Karhunen-Loéve expansion. These are
processes defined on a manifold T that can be expressed as

φ(X, ω) = 〈α(X), ξ (ω)〉Rl =
∑l

j=1
αj(X)ξj(ω) (11)

for some smooth mapping α : T −→ S(Rl) where ξj
are independent standard Gaussians and S(Rl) the sphere
in Rl , l ≥ 1. Consider a metric space (T , τ ) as S(Rl)
with a geodesic metric τ (x, y) = cos−1 (〈x, y〉). Then a
tube of radius ρ around a closed set A is Tube(A, ρ) ={
x ∈ S(Rl) : sup

y∈A
〈x, y〉 ≥ cos(ρ)

}
. In the case where X is a

random vector uniformly distributed on S(Rl) with distribu-
tion ηl then

P

{
sup
y∈A
〈X , y〉 ≥ cos(ρ)

}
= ηl (Tube(A, ρ)) .

Consider HN the N -dimensional Hausdorff measure associ-
ated with the geodesic metric τ . Remember the Weyl’s tube

formula on S(Rl). Assume T is aC2, locally convex,Whitney
stratified submanifold of Sλ(Rl), the sphere of radius λ. For
ρ < ρc

(
T , Sλ(Rl)

)
Hl−1 (Tube(T , ρ))

=

N∑
j=0


b

j
2
c∑

n=0

(−4π)−nλl−1+jj!Gj−2n,l−1+2n−j(
ρ

λ
)

n!(j− 2n)!

Lj(T ),

(12)

where Ga,b(ρ) =
πb/2

b0(b/2+ 1)

∫ ρ
0 cosa(r)sinb−1(r)dr , bnc

is the integer less than n and Lj(T ) the Lipschitz-Killing
curvatures (LKC) given for a measurable subsets U by

Lj(T ) =
(−2π)−(N−j)/2

((N − j)/2)!

∫
U
TrT (R(N−j)/2)Volg

if N − j is even and 0 otherwise. Tr is the trace, R is the
Riemannian curvature tensor and Volg is the Riemannian
volume form on the metric tensor g. Remark that LKC is the
EPC for j = 0, the perimeter of ∂T for j = 1 and the area of
T for j = 2.

F. DECOMPOSED MEAN EULER-POINCARÉ
CHARACTERISTIC
Now we present our approach related to a new modeling of
MEPC based decomposition. In our context of sub signed
GRF φsk (X, ω) to form the NGRF 8(X, ω, SM ) the volume
of tubes is required to prove our following Lemma.
Lemma 1: Let T be a C2 manifold in RN (N ≥ 1),

locally convex, Whitney stratified submanifold of S1(Rl).
Let skαsk (X), k = 1, . . . , SM be deterministic coefficients
for sk ∈ 6s and ξ (ω) be independent standard Gaus-
sians. Let skφsk (X, ω) be mappings and sub GRF such that
from a finite Karhunen-Loéve expansion skφsk (X, ω) =
〈skαsk (X), ξ (ω)〉Rl . Then

P

{
sup
X,ω

(
skφsk (X, ω)

)
≥ sku

}
≈ E

{
ϕ
(
Asku

(
skφsk , T

))}
= skE

{
ϕ
(
Au

(
φsk , T

))}
=
0 (l/2)
2π l/2

∑N

j=0
E
{
G̃j,l

(
cos−1 (u/|ξ |)

)
1|ξ |≥u

}
×Lj(skαsk ), (13)

where G̃j,l (ρ) =
∑bj/2c

n=0
(−4π)−nj!
n!(j− 2n)!

Gj−2n,l−1+2n−j(ρ).

See proof in Appendix.
Let (T , g) be an 2-dimension Riemannian manifold where

g is the Riemannian metric tensor. For each X ∈ T , there
is an inner product gX : TXT × TXT → R such that
(ξX , σX ) 7→ gX (ξX , σX ) where TXT is the tangent space
of T at X . Let 〈ξX , σX 〉 the inner product gX (ξX , σX ). For

a coordinate system with basis
{
∂

∂Xi
|X

}
i=1,2

we have for
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FIGURE 1. Proposed method to model EKG holter.

i, j = 1, 2

gij (X) := gX

(
∂

∂Xi
|X ,

∂

∂Xj
|X

)
= 〈

∂

∂Xi
|X ,

∂

∂Xj
|X 〉

(14)

which are called the components of g at X under this coor-
dinate system. Let G(X) =

(
gij (X)

)
for i, j = 1, 2 be a

symmetric and positive definite matrix from the definition of

g. For a real-valued function φ on T , let φi =
∂

∂Xi
φ and

φij =
∂2

∂Xi∂Xj
φ. Define the length of the differentiable curve

γ : [a, b] → T by L(γ ) =
∫ 1
0

√
〈γ ′(t)γ (t)〉dt . Then the

distance on T by the Riemannian metric g is dT (X,Y ) =
inf

γ∈D1([0,1];T )X,Y
L(γ ). Riemannian metric g is closely related

to the covariance functionC(X,Y ) = E
{
φpφq

}
. In particular

for X0 ∈ T , it follows that

gX0 = ξX0σX0C(X,Y )|X=Y=X0 . (15)

Lemma 2: Let φ∗ = {φ∗(X, ω),X ∈ T , ω ∈ �} be a GRF
satisfying C(X,Y ) = 1−cd2T (X,Y )(1+o(1)), c > 0, where
(T , g) is an 2-dimension Riemannian manifold. Let D ⊂ T
be an 2-dimension compact submanifold on T . Then,

P{ sup
X∈D,ω

φ∗(X, ω) ≥ u} =
∑m

j=1
P{ sup

X∈Dj,ω
φ
j
∗(X, ω) ≥ u},

(16)

where D = ∪
m
j=1Dj, φ

j
∗(X, ω) ∈ Dj and φ∗(X, ω) =

(φ1∗(X, ω), . . . , φ
m
∗ (X, ω)).

See proof in Appendix.
Now we present the main Theorem of our method related

to the decomposition of EPC.
Theorem 3: Let sjφj(X, ω) be a collection of i.i.d.

signed sub GRF. Let D = ∪
m
j=1Dj be a composi-

tion such that φj(X, ω) ∈ Dj. Let 8(X, ω, SM ) =(
s1φs1 (X, ω), . . . , sSMφ

sSM (X, ω)
)
be a NGRF where 6s =

(s1, . . . sSM ) with sj the SUW of each φsj (X, ω) and SM =∑M
j=1(−1)

jsj. Then

P{ sup
X∈D,ω

8(X, ω, SM ) ≥ u}

=

∑SM

k=1
sk
[
Ak exp(−(Xuk )

2/2)+ Bk9(Xuk )
]
, (17)

with Xuk = (u − µk )/σk , µk , σk ,Ak ,Bk ∈ R, 9 the tail
probability function, and the mother-wave defined as

W (Xuk ) = Ak exp(−(Xuk )
2/2)+ Bk9(Xuk ). (18)

See proof in Appendix. Eq.(17) means that all signed
decomposed NGRF has a decomposed mean Euler-Poincaré
Characteristic. This formula allows to treat complex cases
of signal containing outliers such that R waves as shown in
experimental data.

III. METHODOLOGY
The MEPC can not be modeled by the classical approach
of [1]. Instead, we introduce a decomposedMEPC (DMEPC)
based on a mother-wave dependent on the excursion set
level u, the mean, and the standard deviation of the MEPC.
The new DMEPC leads to a simple model, opposite to the
more complicated choice of F for NGRFs by the method
in [1]. Fig. 1 summarizes the methodology.

A. DATA
EKG is a standard medical test to diagnose cardiovascular
conditions. It is well-known that it is indeed feasible to
recognize specific cardiac events by analyzing abnormal-
ities in primary waves (PQRST) of a cardiac cycle [27].
We propose to study the behavior pattern of control patients
with some cardiac events by assessing the MEPC from the
NGRF formed with a RAP model of the P-waves from
Holter EKG records. For this study, the EKG data were
gathered from the Smart Health for Assessing the Risk of
Events (SHAREE) database of PhysioNet [24]. We deal with
EKG signals from wearable health monitoring devices. The
data spans 139 hypertensive patients. Their EKG signals were
digitized at 128 Hz and registered for 24 hours, which means
around 94000 cardiac cycles. All patients were followed
for 12 months after monitoring to record any cardiac event.
In sum, 11 patients sufferedmyocardial infarctions, 3 of them,
stroke, and 3 syncope episodes. Our study held 28 subjects:
those with events and 11 control patients among the hyperten-
sive subjects without events. The EKG data handling was set
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FIGURE 2. Histogram to select the best order of the polynomials P1
(P-waves) and P2 (T-waves) for each cardiac cycle.

just to keep P waves. This choice’s motivation comes from
the fact that P-waves reveal atrial depolarization and have
irregular behavior faced with heart events.

B. PRE-PROCESSING OF SIGNALS
Polynomization has been dealt with as follows. A polynomial
function was used to match the EKG signal after splitting
the cycles into two parts (j = 1, 2). To achieve this goal,
we begin by detecting in the EKG, the location of the R-peaks
Rk , k = 1, . . . ,Nc, where Nc is the number of cycles with
the algorithm of Pan-Tompkin [28]. Thereupon, we split the
cycles by setting a threshold (the middle point mk between
R-points), while keeping in all segments the principal waves,
namely, P, R, and T. Every cycle Nc is polynomized covering
two intervals P1(c) = [mk ,Rk+1] and P2(c) = [Rk+1,mk+1]
in the form of Eq.(1). In the end, one gets polynomials of
proper order Dj(c).

To determine the order of the polynomials that gives
the best estimation of the measured data, we assessed the
Normalized Root Mean Square Error (NRMSE) Eq.(19), as
shown at the bottom of the page, where P̄j is the mean of Pj
and the vector of the estimated coefficients âk is computed
by the inverse of the Vandermonde matrix [29]. Based on
the NRMSE, we looked for the maximum FIT (Eq.(19)) of
40,000 cardiac cycles from 22 patients for both polynomi-
als of every cycle. A frequency histogram plots the rela-
tionship between the fit of the polynomials and the orders
between 20 and 25 (D(c) = 20, . . . , 25). The result for P1(c)
and P2(c) are in Fig. 2. In both cases, the order withheld is 22.
From now on, the order of the polynomials is set atD1(c) =

22 and D2(c) = 22. In this way, the polynomials I1(c) and

I2(c) are obtained in terms of the coefficients Pj. Algorithm 1
dictates the entire procedure. As a result, it returns the struc-
ture arrays P1 and P2.

Algorithm 1 Algorithm for Calculating Random Algebraic
Polynomials
Input: Holter EKG
Output: Polynomials P1(c) and P2(c)

Initialization;
1: Detect the peaks position Rk , k = 1, . . . ,Nc using the

Pan-Tompkin algorithm [28];
2: Detect themiddle pointsmk =

Rk+1−Rk
2 , k = 1, . . . ,Nc−

1;
3: Determine the order of polynomials using the FIT

(eq. 19);
4: Calculate the polynomials I1(c), c ∈ [mk ,Rk+1] and
I2(c), c ∈ [Rk+1,mk+1] using the Vandermonde matrix;

5: Evaluate polynomials and add results at structure array
P1(c) and P2(c);

C. RANDOM FIELDS AND EXCURSION SET
Random fields are formed by merging all the polynomials
of the cardiac cycles. We proposed to manage the RAP from
P1(c) sections, i.e. preserving just the P-waves. Excursion set
is a main concept in the random field theory, it is defined by
Eq.(4), and the level u is well-chosen between the interval
[−1, 1]. Fig. 3 shows the excursion set for control patients
and Fig. 4, the excursion set for patients who suffered an
MI, both with u = 0.1, where the P-wave and R-peak are
separated. For the sake of clarity, they are plotted with a
reduced number of data. The Random fields built in this way
must be homogeneous. Thus, the empty spaces are filled with
zeros. Shortening, Algorithm 2 opens with the measure the
size of all the vectors. Next, the maximum value is settled.
Lastly, if the polynomial length is smaller than the maximum
length, the spaces are filled with zeros.

D. MEAN EULER-POINCARÉ CHARACTERISTIC AND
DECOMPOSED MEAN EULER-POINCARÉ CHARACTERISTIC
The EPC ϕ(Au(8, T )) of each excursion set was obtained
by converting the set into a binary image using the following
logic: A value higher than the level u is codified as being 1,
and 0 otherwise. The Gray’s algorithm [30] performed on the
binary image gives the EPC. The EPC is a scalar that stands
for the number of elements connected minus the number of
holes in those elements [14]. In the next step, the EPC is got
for all control and MI patients. To standardize for those many
tests, theMEPC is derived, displayed for control patients, and
comparedwith the cases fromMI, syncope, and stroke events.

FIT = max

100
1−

∥∥∥Pj(c)−∑Dj(c)
k=0 âk (c, ω̄)Xj(c)

k
∥∥∥∥∥Pj(c)− P̄j(c)∥∥


j=1,2.

(19)
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FIGURE 3. Excursion set of the Non-Gaussian Random Field at u = 0.1 for
a control patient’s P-waves.

FIGURE 4. Excursion set of the Non-Gaussian Random Field at u = 0.1 for
a MI patient’s P-waves.

Finally, We used the DMEPC model from Eq. (17) based on
the mother-wave defined in Eq. (18) to get the models; the
parameters were estimated using the PSO algorithm [31], and
the results are in Tables 1 to 4.

IV. RESULTS AND DISCUSSION
To standardize the different cardiopathy events, we calculated
the average of the MEPC for each group: 11 control patients,
11 MI patients, 3 syncope cases and 3 stroke cases. The
result is in Fig. 9. make it evident that the EKG treated
signals cannot be described by the classical GRF model in
[1, p. 294], Eqs. (7, 11, 14. So, we use our DMEPC method
to describe these NGRF. The results are given in Fig. 8 and
Tables 1 to 4. We show the parameters obtained based on the
PSO algorithm. The FIT (Eq. (19)) is the chosen indicator to
settle the best match between the estimated and the measured
MEPC. The DMEPC models meet 65% to 81%.

Algorithm 2 Algorithm to Build the non-Gaussian Random
Field
Input: Polynomials P1(c) and P2(c)
Output: Non-Gaussian Random Field 8(X , ω̄, SM )

Initialization;
1: for k = 1 Nc do
2: A(k) = length(Pl(c)k ), l = 1, 2
3: end for
4: M = max{A}|M ∈ R
5: if (Ak < M ) then
6: 81([k, 1 : M ], ω̄, SM ) = [zeros,P1(c)k ] and

82([k, 1 : M ], ω̄, SM ) = [P2(c)k , zeros]
7: else
8: 81([k, 1 : M ], ω̄, SM ) = P1(c)k and 82([k, 1 :

M ], ω̄, SM ) = P2(c)k
9: end if
10: Calculate the level u of excursion sets: u = [u1 : (un −

u1)/Nu : un], where u1 = min{8(X , ω̄, SM )}, un =
max{8(X , ω̄, SM )},and Nu=number of levels;

Algorithm 3 Algorithm to Get the Values of Mean Euler-
Poincaré Characteristic From Excursion Set
Input: Non-Gaussian Random Field 8(X , ω̄, SM ),u (level)
Output: Euler-Poincaré Characteristic ϕ(Au)

Initialization;
1: for k = 1 to Nc do
2: for j = 1 to M do
3: if (8([k, j], ω̄, SM ) >= µ) then
4: Au(k, j) = 1
5: else
6: Au(k, j) = 0
7: end if
8: end for
9: end for
10: ϕ(Au) = 1

4 [n{Q1} − n{Q3} + 2n{QD}]

TABLE 1. Parameters for the MI models.

Fig. 5 shows the comparison between the average of the
MEPC control patients and MI patients. The MEPC of the
MI patients differs from the control MEPC curve in its ampli-
tude. The Euler characteristic distribution for MI patients
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TABLE 2. Parameters for the syncope models.

TABLE 3. Parameters for the stroke models.

TABLE 4. Parameters for the mean DMEPC models.

changes compared with that of the control group, concentrat-
ing more on negative values. A more pronounced reduction
is observed, with a more prominent MEPC minimum and a
slightly smaller maximum. A certain regularity in shape is
to be noticed for all MI patients. The DMEPC model gives
different traces for MI patients, compared with the control
patients. We decomposed the MI MEPC using Eq. (18) with
SM = 2, except for the fifth MI patient; for this case, we used
SM = 3. Table 1 shows the parameter for each SM . These
values are achieved with algorithm 4. The particles ρ are for
the parameters A,B, µ, and σ of Eq. (18). In this equation,
the cost function CJ is the maximum fit that the estimate
of the parameters attains. Accordingly, the values recorded
are the maximum reached under the given restrictions by the
outlined method.

Figs. 6 and 7 show the average model of control patients
versus syncope and stroke DMEPCmodels, respectively. The
deviation from the average DMEPC of control patients is
evident for both heart conditions. They differ in amplitude,
though more noticeable is a shift to the right. The displace-
ment of the curves is more or less consistent, making it possi-
ble to recognize a quite definite pattern. Larger-scale research
will further confirm this result and fit the patterns more
precisely. The identified patterns are a promising outcome
that lets us assert that the DMEPCmodel of Holter signals can
become an auxiliary diagnosis tool for health professionals.
Besides, it is worthy to note that a complete EKG of a single
subject includes 94000 cycles. TheDMEPCmodel condenses

FIGURE 5. A comparison beetween the DMEPC of control patients vs. the
DMEPC model for each MI patient.

FIGURE 6. A comparison beetween the DMEPC of control patients vs. the
DMEPC model of syncope patients.

FIGURE 7. A comparison beetween the DMEPC of control patients vs. the
DMEPC model of stroke patient.

this data into a simple curve. It stores essential knowledge of
the complete Holter record but can be interpreted more easily.

Table 2 and Table 3 give the parameters estimate for
the syncope and stoke DMEPC models. To estimate them,
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Algorithm 4Algorithm for Get the Parameters of the Decom-
posed Mean Euler-Poincaré Characteristic Model Using PSO

Input: Mean Euler-Poincaré Characteristic E{ϕ(Au)}
Output: Ak ,Bk ,Ck , σk , µk parameters

Initialization:
1: Initialize velocity w, c1 and c2 constants, and define the

cost function CJ
2: Select the number of particles Np and create random par-

ticles ρ(4,Np) using the constraints for each parameter
and random velocities V (4,Np)

3: Calculate the fitness of each particle (Fp)
4: If Fp > pBest in the iteration so the set of values of Fp is

the new pBest
5: Choose the particle with the best CJ = 100

(
‖y−ŷ‖
‖y−ȳ‖

)
of

all the particle as the gBest
6: Calculate particle velocity using

V = ωV + c1(pBest − ρ)+ c2(gBest − ρ), (20)

where c1, c2 ∈ R, V = velocity of the particle and ρ =
particle

7: Update particle position with

ρ = ρ + V (21)

8: Update particle using the next constraints:
• −100000 <= Ak <= 100000
• −100000 <= Bk <= 100000
• −1 <= µ <= 1
• 0 <= σ <= 1

9: When the number of maximum iterations or maximumfit
is accomplished, the approximate solution is the particle
with best fitness and STOP; contrarily add iteration and
turn to 3.

FIGURE 8. A representation of the MEPC based on DMEPC for the four
cases (control MI, syncope, and stroke).

we used Algorithm 4 with proper restraints. We distin-
guished some irregular patterns for each event (Syncope 2
and Stroke 1), where SM = 3 instead of 2. These describe an

FIGURE 9. The MEPC for each kind of cases (Control, MI, Syncope, and
Stroke).

EPC distribution change, asmore connected components than
holes are observed at different levels u for syncope and stroke
incidents. Conversely, for MI episodes (MI 5), holes become
more than connected components at different levels u. These
features can be seen in the figures as oscillations arise over
negative incursion levels for MI DMEPC. Then over positive
incursion levels for syncope and stroke DMEPC.

V. CONCLUSION
This paper highlights a new method of the mean Euler-
Poincaré characteristic based on a decomposition of an
NGRF to elementary GRF related to amother-wave. The the-
ory, along with the mathematical structure, has been outlined.
Then these were applied to model myocardial infarction,
stroke and syncope from Holter EKG records. The results
prove the flexibility of the proposed method for explaining
the behavior of the MEPC from NGRF. Future researches
should concern issues on the classification of myocardial
infarction based on long-term data, with the aim of giving
insights into a medical diagnosis.

APPENDIX
A. PROOF OF LEMMA 2.1
Define two sets such that

E s2n+1u (T ) =
{
X ∈ T , ω ∈ � : inf

X,ω
φs2n+1(X, ω) ≤ u

}
(22)

E s2nu (T ) =

{
X ∈ T , ω ∈ � : sup

X,ω
φs2n (X, ω) ≥ u

}
(23)

Using a Karhunen-Loéve expanding of φsk (X, ω)

P

{
sup
X,ω

(skφsk (X, ω)) ≥ sku

}

=

∫
∞

u
P

{
sup
X,ω

〈
skαsk (X), ξ (ω)

〉
21188 VOLUME 9, 2021



M. Ramos-Martinez et al.: DMEPC Model for a Non-Gaussian Physiological Random Field

≥ sku|, |ξ (ω)| = r
}
P|ξ (ω)|(dr)

=

∫
∞

u
P

{
sup
X,ω

〈
skαsk (X), ξ (ω)/r

〉
≥ (sku/r)|, |ξ (ω)| = r

}
P|ξ (ω)|(dr)

=

∫
∞

u
ηl(Tube(skαsk (T ), cos−1(sku/r)))P|ξ (ω)|(dr)

(24)

Remember that ηl (Tube (A, ρ)) sN = Hl−1 (Tube (A, ρ))
with sN = 2π l/2/0(l/2), we then get

P

{
sup
X,ω

(skφ
sk (X, ω)) ≥ sku

}

=
0(l/2)

2π l/2

∫
∞

u
Hl−1

(
Tube

(
skα

sk (T ), cos−1
(

sku
| ξ (ω) |

)))
P|ξ (ω)|(dr)

=
0(l/2)

2π l/2
E
{
Hl−1

(
Tube

(
skα

sk (T ), cos−1
( sku
r

)))
1ξ (ω)≥sku

}
with

Hl−1

(
Tube

(
skαsk (T ), cos−1

(
u
ξ (ω)

)))
≈

∑N

j=0
G̃j,l

(
cos−1

(
u
|ξω|

))
Lj(skαsk (T )),

and Lj(sk f (T )) = (sk )N−1Lj(f (T )), from [15]

P

{
sup
X,ω

(skφsk (X, ω)) ≥ sku

}

= sk
0(l/2)
2π l/2

N∑
j=0

E
{
G̃j,l

(
cos−1

(
u
|ξ (ω)|

))
1ξ (ω)≥u

}
×Lj(αsk (T )) (25)

Finally

P

{
sup
X,ω

(skφsk (X, ω)) ≥ sku

}
≈ skE

{
ϕ
(
Au

(
φsk , T

))}
which proves the Lemma.

B. PROOF OF LEMMA 2.2
Let p, q ∈ U ⊂ T , where X is fixed and (U , T ) is a chart of
T . Then

d2T (p, q) =
∑2

i,j=1
gi,j(p)(Xi(q)− Xi(p))(Xj(q)− Xj(p))

(26)

Let γ : [0, 1] → T be a curve on T such that γ (0) = p
and γ ([0, 1]) ⊂ U . For δ > 0, let L(γ ([0, 1])) be the
length of the segment between γ (0) and γ (δ). Thus γ ′(t) =∑2

i=1
dXi(γ (t))

dt
∂

∂Xi
and

L(γ [0, 1])

=

∫ delta

0

√
gγ (t)(γ ′(t), γ ′(t))dt

=

∫ δ

0

(∑2

i,j=1
gij(γ (t))

dXi(γ (t))
dt

dXj(γ (t))
dt

)1
2 dt

=
(
gi,j(p)(Xi(q)− Xi(p))(Xj(q)− Xj(p))

)1
2

= ‖ G

1
2 (p) · (ϕ(q)− ϕ(p)) ‖ (27)

Thenwe conclude that dT (X,Y ) =‖ G

1
2 (X)·(ϕ(Y )−ϕ(X)) ‖

for X,Y ∈ U ⊂ T . Let (Ui, ϕi) be an atlas of T where ϕ :
U 7→ ϕ(U ) ⊂ R2 is a homeomorphism. Since D is compact,
it has a finite covering (Ui, ϕi)i∈I0 where I0 ⊂ I is a finite
index set. For i ∈ I0, define φ̃ : ϕi(Ui) ⊂ R2

→ R2 by
φ̃ = φ ◦ ϕ−1i . From about result, the covariance function of
φ̃ can then written as

C̃(ϕi(X), ϕi(Y ))

= 1− c ‖ (G

1
2 ◦ ϕ−1i )(ϕi(X)(ϕi(X)− ϕi(Y )) ‖2 (1+ o(1))

= 1− ‖ c

1
2 (G

1
2 ◦ ϕ−1i )(ϕi(X)(ϕi(X)−ϕi(Y )) ‖2 (1+o(1))

(28)

Making a decomposition D = ∪mj=1Dj where D ⊂ T then

P

{
sup

X∈Dj,ω
φ(X, ω) ≥ u

}

= P

 sup
X̃∈ϕi(Dj),ω

φ̃(X, ω) ≥ u


=

∫
ϕi(Dj)
|det

c12 (G1
2 ◦ ϕ−1i )(X̃)

 |dX̃


×H2,2u29(u)(1+ o(1))

=

∫
ϕi(Dj)
|det

(
(G ◦ ϕ−1i )(X̃)

)
|

1
2 dX̃


× cH2,2u29(u)(1+ o(1))

= Vol(Dj)cH2,2u29(u)(1+ o(1)), (29)

where H2,2 is the Pickands’ constant in R2 defined by

H2,2 = lim
K→∞

1
K 2

∫
∞

0
euP

{
sup

Y∈[0,K ]2,ω
Z (Y , ω) ≥ u

}
du

On the other hand, from D = ∪mj=1Dj and φ
j(X, ω) ∈ Dj

using a NGRF set given by φ(X, ω) =
(φ1(X, ω), . . . , φm(X, ω))

P

{
sup

X∈D,ω
φ(X, ω) ≥ u

}
≤

m∑
j=1

P

{
sup

X∈Dj,ω
φj(X, ω) ≥ u

}
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By the Bonferroni inequality

P

{
sup

X∈D,ω
φ(X, ω) ≥ u

}
≥

m∑
j=1

P

{
sup

X∈Dj,ω
φj(X, ω) ≥ u

}

−

∑
j6=j′

P

{
sup

X∈Dj,ω
φj(X, ω) ≥ u, sup

Y∈Dj′ ,ω
φj
′

(Y , ω) ≥ u

}
.

(30)
If Dj and Dj′ are not adjacent, i.e. dT > 0, then from the

Borell-TIS inequality

lim
u→∞

P

{
sup

X∈Dj,ω
φj(X, ω) ≥ u, sup

Y∈Dj′ ,ω
φj
′

(Y , ω) ≥ u

}
u29(u)

≤ lim
u→∞

P

{
sup

X∈Dj,Y∈Dj′ ,ω

[
φj(X, ω)+ φj

′

(Y , ω)
2

]
≥ u

}
u29(u)

= 0.

If Dj and Dj′ are adjacent, there exists a chart (Ui, ϕi)
containing both Dj and Dj′ . Therefore

P

{
sup

X∈Dj,ω
φj(X, ω) ≥ u, sup

Y∈Dj′ ,ω
φj
′

(Y , ω) ≥ u

}

= P

{
sup

X∈Dj,ω
φj(X, ω) ≥ u

}
+ P

{
sup

Y∈Dj′ ,ω
φj
′

(Y , ω) ≥ u

}

−P

{
sup

X∈Dj∪Dj′ ,ω
φ(X, ω) ≥ u

}
.

By applying Eq.(29) to the last three terms in the previous
equation, the joint excursion probability is o(u29(u)). Thus
the last term in Eq.(30) is o(u29(u)). Finally

m∑
j=1

P

{
sup

X∈Dj,ω
φj(X, ω) ≥ u

}

≤ P

{
sup

X∈D,ω
φ(X, ω) ≥ u

}

≤

m∑
j=1

P

{
sup

X∈Dj,ω
φj(X, ω) ≥ u

}
, (31)

which proves Lemma.

C. PROOF OF THEOREM 2.1
From Lemma 1, setting m = SM and 8(X, ω) =
(s1φs1 (X, ω), . . . , smφsm (X, ω)), we get

P

{
sup

X∈D,ω
8(X, ω)≥u

}
=

∑SM

j=1
P

{
sup

X∈Dj,ω
(sjφj(X, ω))≥u

}
.

(32)
From Lemma 1, it follows that

P

{
sup

X∈D,ω
8(X, ω) ≥ u

}
=

∑SM

j=1
sjE

{
ϕ
(
Au

(
φsj , T

))}
.

(33)

Using Chapter 14 in [1] for N = 2 and for centered sub GRF

with Xuj =
u− µj
σj

, it follows that

E
{
ϕ
(
Au

(
φsj , T

))}
= Aj exp(−(Xuj )

2/2)+ Bj9(Xuj ),

(34)

which proves Theorem.
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