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ABSTRACT In Boolean Network Tomography (BNT), node identifiability is a crucial property that reflects
the possibility of unambiguously classifying the state of the nodes of a network as ’working’ or ’failed’
through end-to-end measurement paths. Designing a monitoring scheme satisfying network identifiability
is an NP problem. In this article, we provide theoretical bounds on the minimum number of necessary
measurement paths to guarantee identifiability of a given number of nodes. The bounds take into considera-
tion two different classes of routing schemes (arbitrary and consistent routing) as well as quality of service
(QoS) requirements. We formally prove the tightness of such bounds for the arbitrary routing scheme, and
provide an algorithmic approach to the design of network topologies and path deployment that meet the
discussed limits. Due to the computational complexity of the optimal solution, We evaluate the tightness of
our lower bounds by comparing their values with an upper bound, obtained by a state-of-the-art heuristic for
node identifiability. For our experiments we run extensive simulations on both synthetic and real network
topologies, for which we show that the two bounds are close to each other, despite the fact that the provided
lower bounds are topology agnostic.

INDEX TERMS Boolean network tomography, identifiability, network topology, optimal bounds.

I. INTRODUCTION
With the massive growth of the Internet, localizing node
failures has become a crucial task. Single organizations
have direct access only to limited portions of the internal
nodes of the network, and they hardly collaborate in sharing
internal performance observations because of commercial
conflicts. Boolean Network Tomography (BNT) provides
tools for assessing the state of a network through end-to-
end monitoring paths, as they do not rely on administrative
access privileges, [1]. Boolean Network Tomography over-
comes the limitations faced by traditional network monitor-
ing approaches based on pervasively deployed monitoring
agents (e.g., SNMP) or pervasively supported network pro-
tocols (e.g., traceroute) caused by the complexity and the
heterogeneity of modern computer communication networks.
As a matter of facts, bugs and configuration errors in various
customer software and network functions often induce ‘‘silent
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failures’’ that are only detectable from end-to-end connection
states, [2].

Each monitoring path can be modelled as the sequence of
nodes that it traverses. When a packet correctly reaches its
final destination, we say that its path is in aworking state, and
so are its traversed nodes. On the other hand, when packet
losses occur along a path, we say that the path failed. The
latter situation arises when at least one of the nodes of the
path is failed. Observations of the outcome of monitoring
paths (working/failed) induce a system of Boolean equations
where the unknowns are the Boolean states of the nodes
in the network. The challenge related to this approach is
that such Boolean systems are commonly under-determined,
hence allowing multiple solutions, i.e., multiple failing sce-
narios that lead to the same observations on the path probe
outcome, [3]. When the state of a failed node can be uniquely
determined from the Boolean system induced by the out-
come of monitoring paths, the node is said to be identifiable.
Therefore, identifiability is a desirable property that allows
unambiguous nodes’ state classification.
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In this work, we provide topology-agnostic lower-bounds
to the minimum number of measurement paths which are
necessary to guarantee identifiability to a desired number
of nodes. Such bounds represent the dual solution to the
optimization problem studied in [4], where we introduced
upper-bounds to the maximum number of identifiable nodes
given a number of monitoring paths. In contrast with existing
literature, we propose theoretical lower-bounds that cannot
be violated, independently of the specific characteristics of
the topology. The bounds formulations are only based on the
number of nodes to identify, on high level routing consistency
properties (arbitrary and consistent routing), and on QoS
requirements, expressed in terms of maximum allowed path
length. Motivated by the need to complement the analysis of
[4], our bounds are a useful tool to measure the capability of
a monitored topology to efficiently identify the status of its
components. Implementing a monitoring system comes with
the cost of installing monitors on the nodes of a network and
of traffic caused by path probing; with this work, we aim at
providing fundamental guidelines and minimal requirements
for achieving the desired level of network identifiability (e.g.,
number of identifiable nodes). In addition, we formalize
the Incremental Crossing Arrangement (ICA) procedure to
generate monitoring schemes and underlying topologies that
meet the bounds tightly, giving insights on which topology
is the most suitable for failure localization. With ICA we
formalize a network engineering approach which is at the
basis of the theoretical analysis started in [4] and completed
in this article.

We hereby list the major contribution of this work.

• We study theoretical bounds on the minimum number
of paths to deploy in a network for identifying a desired
number of nodes. The bounds do not depend on spe-
cific network topologies (i.e., they are topology agnostic
bounds).

• We provide the Incremental Crossing Arrangement
(ICA) algorithm, which allows topology design meeting
the proposed bounds.

• We evaluate the tightness of our bounds on both syn-
thetic and real network topologies. For this purpose we
compare the bounds with the results of a state-of-the-art
greedy algorithm, hereby referred to as Greedy for Iden-
tifiability (GI), for maximizing network identifiability
by means of client-to-server probing paths [5].

II. RELATED WORK
Boolean Network Tomography studies non linear relation-
ships existing between the paths and their components, as in
the case of congestion or failure localization. The early works
on this topic focused on best-effort inference. For example,
Duffield [6], [7] and Kompella et al. [2] aimed at finding
the minimum set of failures that can explain the observed
measurements, and Nguyen and Thiran [3] aimed at finding
the most likely failure set that explains the observations by a
probabilistic analysis of a set of experiments. More recently

TABLE 1. Notation table.

and with a similar goal, the authors of [8] build a Markov
Decision Process in light of passive traffic data, and solve the
tomography problem with a Q-learning technique.
Lately, Ma et al. [9] give characterizations of maximum

identifiability of node failure under different end-to-endmon-
itoring systems, and extend this work in [10], where they
outline topology-specific properties on the number of nodes
whose states can be identified under a given number of
failures. In contrast, as specified in [4], we provide general,
topology-agnostic bounds. An optimal monitor placement
for ensuring node k-identifiability under different routing
schemes is described in [11]. This optimization problem was
introduced by Bejerano et al. in [12], where they prove its
NP-hardness. The work by Cheraghchi et al. [13] studied
graph-constrained group testing with the goal of minimiz-
ing the number of monitoring paths needed to identify the
state (defective or normal) of all network nodes, under the
assumption that the maximum number of defective nodes is
given. Differently from this work, we do not investigate on
the identification of failed nodes in specific failure scenarios,
but rather we focus on the identifiability property.

With this article, we complete the analysis of the funda-
mental bounds on node identifiability in Boolean Network
Tomography introduced in [4].

III. PROBLEM FORMULATION
We represent a network as a undirect graph G = (V ,E),
where V is the set of the nodes of G and E is the set of
its edges. Each node v is either in working or failed state.
In Table 1 we sum up the notation that will be used throughout
this article. The state of the nodes is assessed indirectly by
a set of monitoring paths, P := {p1, . . . , pm}, each being
represented as the ordered sequence of nodes it traverses.
Node failures cause paths disruption: when a path traverses
a failed node, its communication is interrupted. On the other
hand, paths traversing only working nodes are working. Each
node v may be labeled with a binary encoding of length m,
b(v) ∈ {0, 1}m \ 0m, where b(v)|i = 1 if v is traversed by path
pi, b(v)|i = 0 otherwise.We call crossing number of a node v,
χ (v), the number of paths that traverse v, i.e., the number of 1s
in its binary encoding (χ(v) =

∑m
i=1 b(v)|i). For each path pi

we define a path matrix as a binary matrix M (pi), in which
each row is the binary encoding of a node on the path, and
rows are sorted according to the sequence pi. Notice that by
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definition M (pi)|∗,i has only ones, i.e., M (pi)|r,i = 1, ∀r .
We call the incident set of v the set of paths traversing v and
denote it with Pv ⊆ P.

We call failure set of a network, F , the set of all failed
nodes. Here, we assume that nodes fail one at a time, and
therefore that |F | = 1. In such a context, we focus on the
property of 1-identifiability. With reference to [14], we give
the following definition:
Definition 1: A node vi is 1-identifiable with respect to

P = {p1, . . . , pm} if b(vi) 6= 0m and if for all vj 6= vi,
b(vi) 6= b(vj), i.e., its binary encoding is not null and not
identical to that of any other node.

Node identifiability allows non ambiguous node state
assessment by means of end-to-end measurement paths.
We highlight that in order to be identifiable, a node must
be monitored at least by one path. For this reason, a node
whose binary encoding is null cannot be identifiable. In this
article, we give bounds on the minimum number of paths that
are needed for letting n ≤ |V | nodes be 1-identifiable under
arbitrary and consistent routing schemes.

IV. ARBITRARY ROUTING
In this section we study the minimum number of monitoring
paths that can be employed to identify n nodes in a network
under deterministic, single-path arbitrary routing. We say
that paths follow an arbitrary routing scheme if they do not
traverse a node more than once, but they can cross each other
non-restrictively.

In Section III, we explained that nodes can be represented
with binary encodings depending on what paths traverse
them. In addition, we noticed that, in order for nodes in
a network to be identifiable, they must have all different
encodings. Since the number of different binary encodings
of length m, excluding the string 0m, is 2m − 1, the following
holds:
Proposition 1: The minimum number of monitoring paths

to place in order to identify n nodes under arbitrary routing
is mARmin = dlog2(n+ 1)e.
The bound represented by mARmin does not take into consid-

eration the length of the paths involved. The length of a path
pi is the number of nodes it traverses, di (di = |{v ∈ V :
b(v)|i = 1}|). When constraints to the paths length are given,
for instance by defining an upper bound to the maximum
length, di ≤ dmax, or to the average path length, 1

m

∑
i di ≤ d̄ ,

the bound of Proposition 1 may change. In order to discuss
the bound on the minimal number of paths under path length
constraints, we observe the following facts:
Observation 1: The number of distinct binary strings in
{0, 1}m with k 1s and m − k 0s (with 0 < k ≤ m) is

(m
k

)
.

Out of them, there are
(m−1
k−1

)
strings where the i−th digit is

1. In our context, this means that a path can traverse at most(m−1
k−1

)
nodes having crossing number k in order to guarantee

identifiability, that is when all encodings are distinct.
Observation 2: The maximum length di of a path pi is

di =
m−1∑
i=0

(m−1
i

)
= 2m−1. In fact, the maximum number of

FIGURE 1. Arbitrary routing example.

identifiable nodes using m path under arbitrary routing is
n = 2m − 1 (see Proposition 1). The statement follows from
Observation 1.

These observations are illustrated in Figure 1. In this sim-
ple example we consider n = 7 nodes. Assuming arbitrary
routing, m = log2(8) = 3 monitoring paths are enough to
identify all nodes. Each path p1, p2, p3 traverses

(m−1
k−1

)
=( 2

k−1

)
nodes v with crossing number χ (v) = k ∈ {1, . . . ,m},

and the length of each path is 2m−1 = 4.
In Theorem 2 we provide a lower bound to the number of

paths to place in order to identify n nodes in a network, in the
case a path length constraint is given.
Theorem 2: The minimum number of paths mAR,dmaxmin of

maximum path length dmax to identify n nodes under arbitrary
routing is the solution of the following problem:

minm s.t.
⌊ lmaxk̃ · m

k̃

⌋
+

k̃−1∑
i=1

(
m
i

)
≥ n, (1a)

where

k̃ = max

j :
j∑

i=1

i ·
(
m
i

)
≤ m · D

+ 1, (1b)

D = min
{
dmax, 2m−1

}
, (1c)

and

lmaxk̃ = D−
k̃−2∑
i=0

(
m− 1
i

)
. (1d)

Proof: In order to minimize the number of paths,
we want to have as many distinct encodings as possible with
the minimum number of 1s. This fact translates into a strategy
that consists in incrementally increasing the crossing number
of the monitored nodes until the fixed average path length
dmax allows it or until there is no way that paths traverse
more nodes without violating identifiability, equation (1c)
(see Observation 2).
The quantity k̃ in Equation (1b) says that paths can be

placed in such a way that the nodes they traverse are all dis-
tinct nodes with crossing number o < χ(v) < k̃ . The quantity
m·D is a loose upper-bound to themaximum number of nodes
traversed bym paths, where nodes with crossing number j are
counted j times, as j paths traverse them. Depending on the
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value lmaxk̃ in Equation (1d), some more paths with crossing
number k̃ may be traversed. Notice that lmaxk̃ represents the
number of nodes of crossing number k̃ that each path p can
traverse considering that it traversed all distinct nodes with
crossing number < k̃ (see Observation 1). Extended to all

m paths,
⌊
lmaxk̃
·m

k̃

⌋
in Equation (1a) is the number of distinct

nodeswith crossing number k̃ that can be traversed bym paths

of length lmaxk̃ +
k̃−2∑
i=0

(m−1
i

)
.

Constraints on paths length are usually imposed by
QoS requirements and influence substantially the minimum
amount of paths needed to identify a certain number of nodes.
In a network where shortest path routing schemes are applied,
the value of dmax is the diameter of the network. Differently,
multi-service networks serve for more than a single service,
to which a number of clients access. Each service is char-
acterised by a different service level agreement (SLA) that
regulates the routing scheme to adopt as well as the reserved
portion of the network. QoS requirements may also vary for
each service. In this scenario, paths lengths may be different
from one another depending on what service a path belongs
to. Information about paths lengths for different services in
multi-service networks justifies the introduction of the notion
of average path length of a network, d̄ . Furthermore, average
path length can be easily computed when the network topol-
ogy and the routing scheme implemented on it are known.
Corollary 1: The bound of Theorem 2 holds also when we

consider the average path length, d̄ , or an upper-bound to
it, instead of dmax. The statement of Theorem 2 only changes
in Equation (1c), where the value of d̄ is to be substituted to
dmax. We call such bound m

AR,d̄
min .

The bound of Theorem 2 suggests that the number of nodes
that m monitoring paths can identify grows with the path
length, (Equation (1b)). Nevertheless, we can show that the
growth stops for dmax > 2m−1.
Corollary 2: The number of nodes that m paths can iden-

tify grows with dmax as long as dmax ≤ 2m−1.
Proof: In Observation 1 we point out that, given a set

of m paths, each of them can traverse at most
(m−1
k−1

)
nodes

with crossing number χ (v) = k . The maximum value for
χ (v) is m, and therefore the maximum path length for a path

is
m−1∑
i=0

(m−1
i

)
= 2m−1. This fact motivates the expression in

Equation (1b).
We highlight that knowledge of path length does not nec-

essarily imply explicit knowledge of the paths - in terms of
what nodes they traverse.

A. DESIGN VIA INCREMENTAL CROSSING ARRANGEMENT
(ICA)
The proof of Theorem 2 suggests a technique to build a
network topology G = (V ,E) and related monitoring paths
P with maximum identifiability, where |P| = m. We call
this technique Incremental Crossing Arrangement (ICA).

We shall describe this strategy in detail when the average path
length d̄ is given, as the case with dmax is more general.
ICA, the idea. The technique works by generating n

node encodings in increasing order of crossing number with
respect to the m monitoring paths in use, where m is the
optimal solution of the problem in Theorem 2. The set of
encodings defines a design for the monitoring paths deploy-
ment, that must traverse nodes according to the generated
encodings: path pi traverses any node v for which b(v)|i = 1,
∀i ∈ {1, . . . ,m}. The network topology is then constructed by
considering a node for each of the generated Boolean encod-
ings, and adding links between any pair of nodes appearing
sequentially in any path.
ICA in details. Algorithm 1 formalizes the incremental

crossing arrangement design, used to determine the binary
encodings of the identifiable nodes.

As we consider m paths, the node encodings will be
sequences of m bits in B , {0, 1}m. We also denote with
B|i ⊂ B the set of m-digits binary encodings having a 1 in
the i-th position, i.e., B|i = {b ∈ B s.t. b|i = 1}. The nodes
corresponding to encodings ofB|i will be monitored (at least)
by path pi. Moreover, we denote with B(k) ⊂ B the set of all
binary encodings having exactly k digits equal to 1, therefore
B(k) , {b ∈ B s.t.

∑m
i=1 b|i = k}. The nodes corresponding

to encodings in B(k) have crossing number equal to k .
Finally, given a generic set of binary encodings B ⊆ B,

we denote with `i(B) the number of encodings of B having a
one in the i-th position: `i(B) , |B ∩ B|i|. The value of `i(B)
represents the length of a path pi traversing all the nodes in
B ∩ B|i, exactly once.
Without loss of generality, we consider paths of balanced

length, i.e. we set the length di of path pi to a value di ∈
{bd̄c, bd̄c + 1} (lines 2 - 4).

The incremental crossing arrangement approach incremen-
tally generates the solution set BV by including all the encod-
ings of B(i), i = 1, . . . , k̃ − 1 corresponding to nodes with
crossing number lower than or equal to k̃−1. It then considers
some encodings with k̃ digits equal to one. For this purpose it
generates a family F of subsets in B(k̃), i.e., F ⊆ 2B(k̃) (line
7) whose elements B are such that `k (B ∪ BV ) ≤ dk . The
algorithm then looks for a maximal cardinality set B∗ in the
familyF and adds it to the solutionBV , s.t. BV = ∪k̃k=1B(k)∪
B∗. Notice that themaximality of the cardinality ofB∗ implies
that no encoding with k̃ digits equal to one can be added to the
set BV without violating the path length constraint `k (BV ) ≤
dk for some path k = 1, . . . ,m, or without removing at least
one encoding already in BV .
The procedure described so far is sufficient to produce a

network topology where all nodes are identifiable and where
the number of paths m is the solution of the problem in
Theorem 2 given the average path length, d̄ . In the produced
topology, there can be values of k ∈ {1, . . . ,m} for which
`k (BV ) < dk and, more precisely, given the balanced path
length, `k (BV ) = dk − 1, corresponding to paths longer
than strictly necessary to identify n nodes, i.e., overlength
paths. Overlength paths cannot traverse nodes with the same
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encoding without compromising the achievement of maxi-
mum identifiability. Therefore, in order for the average path
distance to meet the value d̄ , we proceed as follows, with a
procedure that we call Path Completion. First, we observe
that under ICA, the bound on the minimum number of mon-
itoring paths can sometimes be met tightly even when the
average path length is slightly lower than the given d̄ . This
condition is verified when the ratio inside the floor oper-
ator of the bound expression of Theorem 2 is not integer.
Nevertheless, the same bound can still be met tightly with
the exact average length provided as input, by operating as
follows: let S ⊂ {1, . . . ,m} be the set of overlength path
indexes, namely S , {k, s.t. `k (BV ) = dk − 1}. It holds
|S| =

[
m · D−

∑k̃−1
i=1 i ·

(m
i

)
mod (k̃)

]
, hence the number

of overlength paths is lower than or equal to k̃ − 1.
We choose an encoding b′ ∈ BV ∩ B(k̃ − |S|) such that

b′|k = 0,∀k ∈ S, and such that
(∨

k∈S ek ∨ b
′
)
/∈ BV , where

ek is an m-dimensional identity vector with all zeroes but a
one in the k-th position.1 Thenwe remove b′ from the solution
set BV and replace it with b′′ ,

∨
k∈S ek∨b

′, i.e., with a new
encoding b′′ such that b′′|k = 1,∀k ∈ S, and b′′|k = b′|k
otherwise.

Algorithm 1: Incremental Crossing Arrangement

Input: n and d̄ .
Output: A set of encodings BV which can be mapped

onto a topology graph G = (V ,E) where all
|V | = n nodes are identifiable by using m paths
with average length d̄ .

1: Calculate m according to Theorem 2 and Corollary 1
2: Calculate m1 , m · (d̄ − bd̄c) ;
3: For i = 1, . . . ,m1 do set di = bd̄c + 1
4: For i = m1 + 1, . . . ,m do set di = bd̄c
5: BV = ∅
6: For i = 1, . . . , k̃ − 1 do BV = BV ∪ B(i)
7: Calculate the family F defined as

F , {B : B ⊆ B(k̃) ∧ `k (B ∪ BV ) ∈
[dk − 1, dk ], ∀k = 1, . . . ,m}

8: Choose B∗ = argmaxB∈F |B|
9: BV = BV ∪ B∗

10: if ∃k ∈ {1, . . . ,m} s.t. `k (BV ) = dk − 1 then
Perform path completion and update BV

11: Return BV

ICA: Example A (where path completion is not necessary).
Figure 2 shows an example of a topology generated by means
of incremental crossing arrangement. We are given n = 11
nodes and d̄ = 4.75. The minumum number of paths satisfy-
ing eqs.(1a) to (1d) is m = 4. We set di = 5,∀i = 1, 2, 3 and
d4 = 4 (lines 2 - 4). According to ICA, we first generate all
the encodings of B(1) and in B(2) and set BV = {1000, 0100,

1We can always find an encoding b′ with the described properties because
BV contains all the encodings of B(k̃ − |S|) and not all the encodings b of
the set B(k̃) for which b|i = 1,∀i ∈ S.

FIGURE 2. ICA execution on Example A. Solid lines represent graph
edges.

0010, 0001, 1100, 1010, 1001, 0110, 0101, 0011} (line 6).
Then we start generating some encodings in B(3) = B(k̃)
until no other encoding can be added without violating the
path length constraint (lines 7 - 9), obtaining BV = {1000,
0100, 0010, 0001, 1100, 1010, 1001, 0110, 0101, 0011,
1110}, where each encoding corresponds to a node of the
graphG. Then we define the correspondingmonitoring paths,
by letting path pi traverse all the nodes whose encoding has
a 1 in the i-th position, in arbitrary order, ∀i ∈ {1, . . . ,m}.
Finally, we design the underlying topology by connecting
each pair of nodes appearing in a sequence in any of the paths,
as shown in Figure 2.
ICA: Example B (with path completion). Figure 3 shows

another example of a topology generated by means of incre-
mental crossing arrangement. We are given n = 11 and
d̄ = 5. The minimum number of paths satisfying eqs. (1a)
to (1d) is again m = 4. To meet the requirement on average
length, we set di = 5∀i = 1, . . . , 4 (lines 2 - 4). According to
ICA (line 6), we first generate all the encodings of B(1) and
B(2) and set BV = {1000, 0100, 0010, 0001, 1100, 1010,
1001, 0101, 0011}. Then we choose one of the possible B∗

((lines 7 - 9)), for instanceB∗ = 1110, obtainingBV = {1000,
0100, 0010, 0001, 1100, 1010, 1001, 0101, 0011, 1110}
Finally, we observe that `4(BV ) = 4 < d4. We then

perform the path completion procedure (line 10) and choose
one of the encodings b′ in BV ∩B(k̃ − |S|) = B(2) for which
b′|4 = 0 and b′ ∨ e4 /∈ BV . One encoding that satisfies this
condition is b′ = 1100. We replace b′ with b′′ = 1101 and
obtain the set of encodings {1000, 0100, 0010, 0001, 1101,
1010, 1001, 0101, 0110, 0011, 1110}, each corresponding
to a node of the graph G. Then we define the corresponding
monitoring paths, by letting path pi traverse all the nodes
whose encoding has a 1 in the i-th position, in arbitrary order,
∀i ∈ {1, . . . ,m}. Finally, we design the underlying topology
by connecting each pair of nodes appearing in a sequence in
any of the paths, obtaining the topology of Figure 3.
It is worth observing the following.
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FIGURE 3. ICA execution on Example B. Solid lines represent graph
edges.

Observation 3: ICA produces a network topology and
related monitoring paths such that all nodes have a crossing
number lower than or equal to k̃.

When knowledge of d̄ is not available, and instead we limit
the paths length to be at most dmax, Algorithm 1 can be sim-
plified allowing the following changes: the number of pathsm
is computed as in Theorem 2 (line 1). To all nodes, we initially
assign di = dmax (lines 2-4). The algorithm continues as it is
until the condition that some paths satisfy `k (BV ) = dmax−1
is met (line 10). When dmax is used, path completion is not
required, and for such paths we simply set dk = `k (BV ). The
returned set of encodings BV can be mapped onto a topology
graph where all n nodes are identifiable by usingm paths with
maximum path length dmax.

1) TIGHTNESS OF THE BOUND UNDER ARBITRARY ROUTING
In this section we show that the bound given by Theorem 2
can be achieved tightly for a specific family of topologies
constructed via ICA.
Proposition 2 (Tightness of Theorem 2): For any n ∈ Z+

(positive integer) and d̄ > 0, there exists a set P of m
monitoring paths with average length d̄ , such that m is the
solution of the problem in Equations (1a) to (1d).

Proof: We recall that the ICA technique builds a topol-
ogy by creating nodes with unique encodings, in increasing
order of crossing number, up to k̃ .

To prove the proposition, we need to show that the mini-
mum number of monitoring paths required to identify n nodes
is provided in Theorem 2. ICA initially generates all the
encodings of B(i), for i = 1, . . . , k̃ − 1. As a consequence,
it follows from Observation 1 that each path will traverse
at least d(k̃ − 1) ,

∑k̃−2
i=0

(m−1
i

)
identifiable nodes. In

fact, the encodings of the nodes of I(pi) (identifiable nodes
traversed by path pi), must have a ‘‘1’’ in the i-th position.
Therefore the number of distinct encodings corresponding
to nodes of I(pi) is at least equal to the number of binary
sequences of (m− 1) elements, with up to (k̃ − 2) ones.

Under incremental crossing arrangement, each path also
traverses other nodes with crossing number equal to k̃ . Each
of these nodes will appear in exactly k̃ paths. The number of

such nodes is therefore given by
⌊∑m

k=1(dk−d(k̃))
k̃

⌋
.

In conclusion, with this construction, ICA generates the
following number of node encodings:

•

(m
i

)
encodings corresponding to nodes with crossing

number equal to i, for i = 1, . . . , k̃ − 1, and

•

⌊∑m
k=1(dk−d(k̃−1))

k̃

⌋
encodings corresponding to nodes

with crossing number equal to k̃ .

The number of generated encodings does not change if
ICA applies the path completion procedure, which consists
in a replacement of an encoding b′ ∈ ∪k̃−1i=1 B(i) with an
encoding b′′ ∈ B(k̃). In both cases, ICA constructs the set BV
in a way that each encoding corresponds to a unique node,
and the nodes are traversed by paths of average length d̄ ,
guaranteeing identifiability of all the nodes corresponding to
the generated encodings.

In order to show that the number of paths provided by
Theorem 2 is enough to identify at least n nodes in the net-

work, we need to prove that
⌊∑m

k=1(dk−d(k̃−1))
k̃

⌋
=

⌊
lmaxk̃
·m

k̃

⌋
.

This holds because
∑m

k=1(dk − d(k̃ − 1)) =
∑m

k=1 dk − m ·
d(k̃ − 1), that is equal to lmaxk̃ · m in Equation (1d), being
d̄ = 1

m

∑m
k=1 dk .

Notice that Proposition 2 requires d̄ ≤ 2m−1 as having
longer paths would require at least a path to traverse different
nodes with duplicate encodings, losing identifiability with
respect to the bound value.

While Proposition 2 gives a characterization of sufficient
conditions for building a network topology achieving the
bound, we note that there exist topologies that do not meet
the conditions, but still achieve the bound.
Observation 4: The statement of Proposition 2 holds also

when dmax is given instead of d̄ . In fact this simply translates
into the more general scenario where initially di = dmax
is assigned to all paths and where path completion is not
performed. Indeed, path completion does not serve for iden-
tifiability increase, but only to meet the input condition on the
average path length.

V. CONSISTENT ROUTING
As we have seen in Theorem 2, given a number of nodes to
identify, the number of required paths can be logarithmic in
the number of nodes. Nevertheless the bound of Theorem 2
is achieved only when the routing scheme allows paths to
traverse arbitrary sequences of nodes.

If routing needs to meet additional requirements, the theo-
retical bound given by Theorem 2 can be increased.
We now consider the impact of the routing scheme on

the identifiability of nodes via Boolean tomography. In the
sequel, we assume that paths satisfy the following property
of routing consistency.
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FIGURE 4. Consistent routing example.

Definition 3: A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any), p
and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many
practical routing protocols, including but not limited to short-
est path routing (where ties are broken with a unique deter-
ministic rule). Note that routing consistency implies that
paths are cycle-free. In the following, we recall from [4]
necessary for the proof of Theorem 15, where we provide
the bound on the minimum number of paths under consistent
routing.
Lemma 1: Under the assumption of consistent routing,

if any two different rows of the matrix M (pi) are equal, then
the corresponding nodes are not 1-identifiable.
Definition 4: A column M (p)|∗,k (k = 1, . . . ,m) of a path

matrix M (p) has consecutive ones if all the ‘‘1’’s appear in
consecutive rows, i.e., for any two rows i and j (i < j),
if M (p)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.
Lemma 2: Under the assumption of consistent routing, all

the columns in all the path matrices have consecutive ones.
Lemma 3: Given m = |P| > 1 consistent routing paths,

each path pi having length di, the maximum number of dif-
ferent encodings in the rows of M (pi) is upper-bounded by
min{di; 2 · (m− 1)}.
Formal proofs to Lemma 1 to 3 are given in [4]. In order

to ease their comprehension, we show them in the simple
example of Figure 4, where all nodes are 1-identifiable under
consistent routing. Routing consistency is verified as the i-th
column of all path matricesM (pi) is 1.
Theorem 5: The minimum number of paths mCR,dmaxmin of

maximum path length dmax to identify n nodes under con-
sistent routing is the solution of the problem of Theorem 2,
where Equation (1c) reads:

D = min {dmax, 2 · (m− 1)} . (2)

Proof: The proof is analogous to the one of The-
orem 2. The only difference in this case is that D =

min {dmax, 2 · (m− 1)}, because of Lemma 3.
The same considerations on the knowledge of the average

path lengths for Theorem 2 hold for Theorem 5:

FIGURE 5. 3× 3 grid network.

Corollary 3: When d̄ is known, the optimal solution
mAR,dmaxmin of the problem in Theorem 2, is a lower bound
to the minimum number of paths to identify n nodes, if we
substitute dmax with d̄ in Equation (2). We call mCR,d̄min the
bound computed with d̄ .
Corollary 4: The bound provided in Theorem 5 may be

achieved by allowing the maximum value for the crossing
number of a node to be 3.

Proof: We need to prove that the maximum value of k̃ is
3 under the assumption of consistent routing. Let us assume
that d̄ ≥ 2 · (m − 1), and therefore that D = 2 · (m − 1).

Recall that k̃ = max

{
j :

j∑
i=1

i ·
(m
i

)
≤ m · D

}
+ 1. For j = 2

and ∀m ≥ 2, it holds that

2∑
i=1

i ·
(
m
i

)
= m+ 2

m(m− 1)
2

= m2 < 2m · (m− 1),

whereas for j = 3:

3∑
i=1

i ·
(
m
i

)
= m2

+ 3
(m− 2)(m− 1)m

6

=
m3
− m2

2
+ m > 2m · (m− 1) ∀m.

Since
N∑
i=1

i ·
(m
i

)
is a growing function of N , k̃ is at most 3.

A. CASE OF STUDY: GRID NETWORKS
The bound provided in Theorem 5 is tight on square grid
networks with n2 nodes, using 2n − 1 paths of maximum
length dmax = n. By contradiction, assume dmax = n and
mCR,dmaxmin = 2n−2. It is easy to see that k̃ = 2 ∀n ∈ N, n > 2.
Therefore lmaxk̃ = n−1 and the number of nodes that may be
identifiedwithm = 2n−2 paths is (n−1)2+2n−2 = n2−1 <
n2. An example of such topology and of paths placement is
in Figure 5.

VI. EXPERIMENTAL RESULTS
We evaluate the tightness of the bounds proposed in the
previous sections in comparison to with the results obtained
by a state-of-the-art heuristic ( [5]). For this purpose we run
experiments on synthetic as well as real network topologies,
implemented in Matlab. First, in Figures 6 and 7 we show the
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FIGURE 6. Bound of Theorem 2 mAR,dmax
min , varying paths lengths.

FIGURE 7. Bound of Theorem 5 mCR,dmax
min , varying paths lengths.

trend of the bounds on the minimum number of paths for the
identification of n nodes, for the two cases of arbitrary and
consistent routing, respectively (i.e., bounds of Theorems 2
and 5), under varying n, and path length dmax. Observe that
the dependence on the path length of the values of mAR,dmaxmin
and mCR,dmaxmin is stronger for smaller values of dmax. This
is an expected behaviour, as in Equation (1d), it holds that
D = 2m−1 for all values of dmax ≥ 2m−1. As a result, for all
such values of dmax, the minimum number of paths needed
to identify n nodes is the same. This phenomenon is more
evident in the case of consistent routing (Figure 7) because
D = min{dmax, 2 · (m− 1)} (see Equation (2)), and therefore
D = 2 · (m− 1) for all dmax ≥ 2 · (m− 1).

A. TOPOLOGIES
We hereafter list the topologies (synthetic and real) used in
our evaluation:

1) Random Geometric (RG) graphs. RG graphs are
synthetic topologies [15] built as follows: n nodes are
placed in a unit square and a link is added between any
pair of nodes whose distance is lower than or equal
to a threshold parameter ρ > 0. In our experiments,
we generate random coordinates (xi, yi) for each node
vi andwe vary the value of ρ. Thismodel well simulates
ad-hoc wireless networks.

2) Jellyfish topology. Introduced in [16], Jellyfish are
emerging data centre topologies which offer high
throughput and capacity, high scalability and failure
resiliency. The internal nodes of the Jellyfish (nodes

with degree strictly greater than one) are network
switches, whereas leaf nodes are servers.

3) US Signal. This is the real topology of a fiber optical
network in the USA. This topology was made available
in the Topology Zoo archive [17], and is composed
of 63 nodes and 133 edges.

4) Uninett. This is an existing Internet topology located
in Norway. It has 69 nodes and 98 edges. It was also
taken from the Topology Zoo archive [17].

B. BENCHMARK HEURISTIC
In order to evaluate the tightness of our bound, we use a
state-of-the-art greedy for identifiability (GI) proposed in
[5], as a benchmark for comparisons, and we adapt it to
our scenario. GI was originally proposed as an algorithm to
place servers for addressing Quality of Service (QoS) and
failure identifiability requirements in a joint manner. Given
multiple services, and related client sets, the algorithm finds
the most suitable server location, among those satisfying QoS
requirements, to optimize failure identifiability. The selected
server locations are such that the client-to-server paths form
several intersecting trees, one for each service, where servers
are located at the roots and clients are located at the leaves.
GI uses a greedy approach that iteratively selects a num-
ber of server positions, one for each service, such that the
identifiability obtained by the adopted client-to-server paths,
is maximized at each iterative step. The authors prove that
the number of paths placed by this heuristic is a constant
approximation of the optimal solution.

In our experiments we modify the GI approach to obtain
an upper bound to the number of paths that are necessary
to uniquely identify the state of a given number of nodes
n. In particular, in order to ensure maximum flexibility to
the choice of the set of monitoring paths we consider only
one client for each server, and a number of paths that is
equal to the number of deployed servers. Moreover, we relax
the quality of service requirements to obtain all the server
locations which are at a distance lower than or equal to dmax
from the client. The algorithm ends as soon as the selected
paths are sufficient to identify the desired number of nodes n.
In our implementation of GI communication between any

two endpoints is obtained through a shortest path routing
algorithm. The adoption of a deterministic tie breaking rule
ensures that the obtained routing scheme is deterministic.
In order to prevent the use of degenerate paths (i.e., paths
traversing only one node), servers are never located on the
same node as the related client.

In order to boost identifiability of the greedy approach,
we consider a preliminary phase where a set of paths is
deployed according to a greedy for node coverage approach.
This coverage phase is also common to [18], and is motivated
by the observation that greedy for identifiability approaches
select short paths in the early iterations, to obtain maximum
identifiability, which prevents further identification in the
later steps of the algorithm, due to insufficient node coverage,
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FIGURE 8. Number of paths to identify variable numbers of nodes on different topologies. dmax = 4.

an issue that is easily solved by letting the algorithm use
longer paths in the early execution steps.

C. TESTS
The bounds of Theorems 2 and 5 are compared with the
results obtained by GI, which provides an upper bound to
the minimum number of paths that are necessary to uniquely
identify the state of a given number of nodes n. We carry out
two different sets of experiments. In the first set, the maxi-
mum path length is fixed, dmax = 4, whereas the number of
nodes to be identified is variable. Figure 8 shows the curves of
the number of paths necessary to identify an increasing num-
ber of nodes for GI with respect to the bounds. The bounds
are also evaluated with the average path length resulting from
the path choices of GI. Each figure represents the experiment
on a different topology. For random topologies (random geo-
metric graphs and jellyfish topologies), we generate graphs
of 100 nodes. GI is then run on all such topologies with
an increasing number of nodes to identify (from 10 to 80).
For the fiber and the internet topologies instead, the number
of nodes to identify goes from 10 to 60, being 63 and 69,
respectively, the total number of nodes of the networks.

A similar setting was also implemented in the second set
of experiments, depicted in Figure 9. For these experiments,
curves represent how the number of paths necessary to iden-
tify a fixed number of nodes n changes depending on different
values of dmax. For random topologies, n = 80, whereas
for US Signal and Uninett, n = 60. Also in this case,
we generated random topologies having 100 nodes.

Tests on random topologies have been executed by gen-
erating 20 different graphs of each type. Shades and bars
in the curves of random topologies represent the standard
deviation of the mean number of paths used by GI and of the

bounds with variable average path length, d̄ (Figures 8a-8d
and Figures 9a-9d). In contrast, shades and bars in the curves
related to real topologies (US Signal and Uninett, Figures 8e
and 8f and Figures 9e and 9f) represent the standard deviation
of the mean number of paths used by a randomized version
of GI where routing consistency is still satisfied.

We tested on random geometric graphs with different val-
ues of ρ (0.1, 0.2, 0.3) in order to analyse the goodness of
our bounds on graphs with different properties. When gen-
erating random geometric graphs, there is no guarantee that
the resulting graph is connected, unless ρ =

√
2 (in this case,

the RG graph is a clique, being
√
2 the maximum distance

between two nodes in an unit square). Experimentally speak-
ing, we encountered non-connected graphs only for ρ = 0.1.
When this event occurs, we link together the least number
of nodes belonging to different connected components that
are the closest (by means of the Euclidean distance), until
the graph is connected. Variations of ρ have a great impact
on the structure of the resulting graph. The characteristics
of the set of 20 random geometric graphs generated with
100 nodes, with respect to different values of ρ are summed
up in Table 2. Figure 10 shows an example of how different
values of ρ change the structure of a random geometric graph
with 100 nodes.

Notice that, when ρ increases, so does the average node
degree, whereas the network diameter decreases correspond-
ingly. When the maximum path length is fixed to 4 (Fig-
ures 8a-8c), different values of ρ do not imply sensible dif-
ferences in the performance of GI, whose trend corresponds
to the one of our bounds. This confirms the fact that our
bounds do not depend on topology structures that can be
extremely different. On the other hand, when the maximum
path length is variable (Figures 9a-9c), we can observe the
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FIGURE 9. Number of paths to identify n nodes with variable values of dmax on different topologies.

TABLE 2. Average properties of 20 random geometric graphs
of 100 nodes for different values of ρ. Here ∂min/max/avg are the mean
minimum, maximum and average degrees of the nodes. δ is the average
diameter of the graph.

following facts: first of all, in order to test for dmax = 7,
it is necessary to set the condition that the graph diameter δ
is greater or equal to 7. In our experiments, this condition is
always met for ρ = 0.1 and 0.2, whereas the same does not
hold for ρ = 0.3 (see Table 2, column ρ = 0.3, where δ < 7).
In Table 2, the column ρ = 0.3∗ corresponds to random
geometric graphs with ρ = 0.3 that satisfy the condition
δ ≥ 7. We generated graphs satisfying this condition for
the experiments in Figure 9c. Figures 9a-9c show that our
bounds are closer to the curves representing the performance
of GI when ρ = 0.2. As a matter of fact, when ρ = 0.3,
the average distance between nodes (in number of hops) is
smaller, and the graph diameter is never greater than 7, our
maximum path length. As a consequence, nodes are highly
connected on average. For this reason, despite the greater path
length availability, only a very few paths reach the maximum
path length. On the other hand, after the coverage phase, more
shorter paths are needed in order to guarantee that n = 80
nodes are identifiable, implying that the average path length
decreases, as we can observe by the growing trend of the
curves mAR,d̄min and mCR,d̄min . On the other hand, for ρ = 0.1,
a few nodes have a high centrality, whereas most of the nodes
have degree 2, meaning that the majority of the network

FIGURE 10. Random geometric graphs with 100 nodes having the same
geometric coordinates, built with different values of ρ.

nodes are distributed in chains. As node identifiability holds
when nodes have unique encodings, e.g., different sets of
paths crossing them, chains are structures that are hard to
identify by means of monitoring paths, and large path length
do norepresent an advantage for this specific structure. When
ρ = 0.2, the resulting graphs are not star-shaped, but at the
same time long paths are available, showing their stronger
identification power.

On jellyfish topologies (Figures 8d and 9d), our bounds are
very close to the results obtained by GI, with negligible dif-
ferences between the curves. One of the properties of jellyfish
topologies is that servers can reach one another with shorter
paths with respect to other topologies for data centres (e.g., fat
trees), [16], for this reason the curves of our bounds are tighter
for smaller values of dmax in Figure 9d. Despite this, in both
configurations (Figures 8d and 9d) the curves representing
the results of GI scale analogously with our bounds.

The results shown in this section highlight that our bounds
are very close to the number of monitoring paths that a greedy
algorithm would use in order to guarantee nodes identifiabil-
ity. We stressed our experiments to evaluate our bounds on
synthetic networks with very different structures and connec-
tivity properties. Experiments show that the bounds presented
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in this work represent a very trustful estimation of the num-
ber of paths for node identifiability on Jellyfish topologies,
as well as on real internet and fiber optical networks. In addi-
tion, we can also observe that knowledge of d̄ can be used to
provide tighter bounds, specially when there are few paths of
length dmax in the network.

VII. CONCLUSION
In this article we provide theoretical lower bounds on the
minimum number of monitoring end-to-end paths necessary
to achieve the desired level of identifiability in a network in
terms of identifiable nodes. We study how the routing scheme
affects the bound values by giving two different formulations,
for arbitrary and consistent routing, respectively. We also
study how requirements on the maximum and average path
length affect the bound formulation, highlighting the depen-
dence of the minimal number of required paths on QoS
constraints.We proposed a polynomial-time algorithm, called
ICA, that takes into consideration such constraints to design
a network that meets the bounds for the case of arbitrary
routing. We carried out an extensive set of experiments on
synthetic and real topologies to evaluate the tightness of the
proposed lower-bounds. The synthetic topologies that we
used are commonly employed for modelling ad-hoc wireless
networks and data centers, whereas the real networks are
an internet and a optical fiber network located in Norway
and in the USA. We used a state-of-the-art algorithm for
network identifiability maximization via path deployment to
obtain feasible solutions as upper bounds of the optimum and
evaluate the tightness of the proposed lower bound. We show
that the provided bounds provide a high approximation in all
the performed experiments.
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