IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 19, 2020, accepted December 26, 2020, date of publication January 1, 2021, date of current version January 12, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3048743

Efficient Threshold Private Set Intersection

EN ZHANG -, JIAN CHANG™, AND YU LI

College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China

Corresponding author: En Zhang (zhangenzdrj@ 163.com)

This work was supported by the National Natural Science Foundation of China under Grant U1604156, Grant U1804164, and Grant
61901160.

ABSTRACT Threshold private set intersection (TPSI) allows a receiver to obtain the intersection when the
cardinality of the intersection is greater or equal to the threshold, which has a wide range of applications
such as fingerprint matching, online dating and ridesharing. Existing TPSI protocols are inefficient because
almost all of them rely on lots of expensive public-key techniques or require an exponential number of
possible combinations among the shares. In this work, we design an efficient TPSI protocol, which achieves
computational security in semi-honest model. To improve the efficiency of the TPSI protocol, we design
a new TPSI protocol based on garbled Bloom filter (GBF) and threshold secret sharing, which uses a
small amount of public-key operations. Moreover, our protocol combines with the Reed-Solomon decoding
algorithm to reconstruct the secret which is a feasible method to avoid calculating all possible combinations
among the shares. The performance analysis shows that our protocol is more efficient than the previous
TPSI protocols. To the best of our knowledge, the optimal TPSI protocol implemented by Zhao and Chow
(WPES’18) has an online time of 78 seconds to compute the intersection of two datasets of 100 elements
each with threshold # = 50. In contrast, our protocol has a total time of 2.988 seconds.

INDEX TERMS Garbled bloom filter, secure multiparty computation, threshold private set intersection,

threshold secret sharing.

I. INTRODUCTION
Private set intersection (PSI) is one of the important branches
of secure multiparty computation (MPC). An ideal private
set intersection protocol guarantees the security of elements
other than the intersection while each participant gets the
intersection. There are several common PSI application sce-
narios, such as measure advertisement conversion rates,
search potential friendships via social networks, botnet detec-
tion, human genomes testing and proximity testing. Google
introduced a browser Password Checkup in 2019, giving
browser users a tool to check whether their personal log-in
passwords are leaked. The principle of the Password Checkup
tool is based on PSL

The development of the Internet has spawned many new
industries in recent years, such as ridesharing and online
dating. Taking ridesharing as an example, the routes of the
two strangers may not be completely the same under the
normal circumstance (the possibility of complete consistency
is negligible). In order to protect their own privacy, the two
parties do not want to share their own route to the other party.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamad Afendee Mohamed

6560 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

How to share the common route shared by the two parties
is the top priority in this scene. Therefore, Hallgren ef al. [1]
introduced the threshold PSI to solve this problem. This
provides a new way to study PSI. Threshold PSI can also be
used in typical scenarios such as fingerprint matching, online
dating and ridesharing. In general, these data are private, and
this approach provides good privacy protection for the data
owner.

A. RELATED WORK
Yao [2] introduced the idea of secure computation, which
enables parties to securely compute a function that relies on
private datasets. As an important branch of MPC, PSI [3]-[7]
has been widely concerned by scholars. PSI is a vibrant
research field, and lots of PSI protocols are proposed in recent
years. These protocols are classified as follows.
Public-Key-Based PSI: The protocol based on public-key
encryption is mainly to perform relatively complicated
public-key encryption operations on set elements, and then
carry out corresponding calculations on ciphertext, such as
homomorphic encryption. The PSI protocol based on obliv-
ious polynomials combined with homomorphic encryption
was introduced by Freedman et al. [3], and they gave specific

VOLUME 9, 2021

https://orcid.org/0000-0003-4106-6877
https://orcid.org/0000-0002-7508-198X
https://orcid.org/0000-0003-2424-896X
https://orcid.org/0000-0001-5985-3970

E. Zhang et al.: Efficient TPSI

IEEE Access

protocols in the semi-honest and the malicious setting respec-
tively. Subsequently, Freedman et al. [8] used different hash
structures to represent set elements to reduce computational
complexity, compared their performance, and implemented
the semi-honest security protocol in the standard model.
Kolesnikov et al. [9] constructed an efficient PSI protocol that
used oblivious pseudorandom function (OPRF) batch which
is an improvement on [10]. A new and improved method, that
is, 1-out-of-2 oblivious transfer (OT) extension, was used in
this protocol, which is especially efficient when generating
large numbers of OPRF instances. Lv et al. [11] studied
the unbalanced private set intersection cardinality based on
commutative encryption in the semi-honest model.

OT-Based PSI: Dong et al. [12] constructed a novel data
structure called garbled Bloom filter (GBF) and proposed
first PSI protocol based on GBF and OT extension which
handles set elements up to the size of billions and mainly
relies on efficient symmetric encryption operations. However,
there are two problems in this protocol: one is the malicious
sender may send the wrong shares, the other is the two input
datasets are not independent. Rindal and Rosulek [13] further
proposed a new structure called random garbled Bloom filter
and solved the above problems by using the new structure
and cut-and-choose. They gave the two-party PSI protocol
in the malicious setting. Zhang et al. [6] further proposed
and implemented the multi-party PSI protocol, which guar-
antees the malicious security in the case that there are two
non-colluding servers. Their experimental data show that
both time and communication cost depend on the number of
participants. Pinkas et al. [10] described a new PSI protocol
based on OT extension. They compared the performance of
several different protocols on the same platform and their
protocol improves the operational efficiency of previous pro-
tocols. Pinkas et al. [14] found a better balance between the
communication and computational overhead of the two-party
PSI protocol. In general, the protocol has the lower monetary
cost than other protocols.

Circuit-Based PSI: The circuit-based protocols are gen-
eral security computing protocols that allow arbitrary func-
tions to be computed. Although the PSI protocols based on
the circuit have universality, flexibility and scalability, the
design of circuit-based PSI protocols generally requires a
large number of gates and circuit depth. So protocols based
on circuit technology generally have low computation effi-
ciency. But they have improved greatly in efficiency in recent
years.

Huang et al. [15] explored three PSI protocols for
datasets with different characteristics based on garbled cir-
cuit. Pinkas et al. [16] applied a new method, which denotes
as Phasing, for PSI protocols based on circuit. Their result
shows that Phasing can significantly improve the perfor-
mance and their protocol is faster than the protocol proposed
by Huang et al. [15]. In the two-party model, the PSI proto-
col based on symmetric-key primitives proposed by Rindal
and Rosulek [17] is secure against malicious adversary and
is 12 times faster than their previous protocol [13].

VOLUME 9, 2021

Pinkas et al. [18] constructed variants of Cuckoo hashing
and proposed new PSI protocols with almost linear compar-
isons. In addition, their protocol can be extended to multi-
party. To our knowledge, PSI protocols based on Cuckoo
hashing are hard against malicious adversaries. Because the
participant who uses simple hashing may not map his ele-
ments to both tables at the same time in the malicious setting.
To solve the above problem, Pinkas et al. [19] designed a
novel structure probe-and-XOR of strings and proposed the
malicious PSI protocol by using cuckoo hashing.

Cloud-Server-Based PSI: With the development of cloud
technology, the PSI protocol based on cloud server has also
become the research interests of most researchers. The advan-
tage of cloud server is that it has good computing power and
storage capacity, which effectively improves the efficiency of
these protocols, and provides a mature optimization method
for the existing PSI protocols.

Kerschbaum proposed two PSI protocols for outsourcing
computation. The first one [20] realized anti-collusion out-
sourcing PSI protocol by using one-way functions, and the
second one [21] combining Boneh Goh Nissim homomorphic
encryption [22] and Sander Young Yung technology [23] had
a great impact on performance. Kamara et al. [24] designed
the PSI protocols in three different models, and used dummy
sets to prevent the malicious server from sending wrong
results. At the same time, they were still able to achieve good
efficiency under the condition that the data volume of all
parties was 100 million. Aydin et al. [25] implemented the
static semi-honest adversary’s multi-party PSI protocol and
assumed that the server is not colluding with the participants.
The protocol uses polynomials in point-value form to rep-
resent the set elements, which is different from the general
method of coefficient vector representation. Ali et al. [26]
first proposed the attribution-based outsourcing PSI scheme.
The solution provides fine-grained access control and the data
owners do not have to be online after the data is outsourced.

Threshold PSI: In addition to the standard PSI function-
ality, many works achieve TPSI functionality which enables
parties to get the intersection if the cardinality of the inter-
section is greater or equal to the threshold . Suppose that
t = 4, if the cardinality of intersection |X (Y| < 4,
then the function outputs L, as shown in Fig 1(a). If the
number of intersection |X () Y| > 4, the function outputs the
intersection X (] Y, as shown in Fig 1(b).

The simplest way to achieve the threshold PSI is to first
compute the cardinality of the intersection, then compare it
with the threshold and decide whether to output the inter-
section, such as [1], [3], [18], [27], [28]. Freedman et al.
[3] described a variant of private matching for set cardinality
that the client could learn whether |X (Y| > ¢. Similarly,
Pinkas et al. [18] also proposed a simple method to determine
whether the cardinality of the intersection is greater than the
threshold, which is based on the size of the intersection. Zhao
and Chow [29] proposed a method called secret transfer with
access structure (STAS). The receiver can obtain the secret
(the message) when a certain condition is met, which is the

6561

IEEE Access

E. Zhang et al.: Efficient TPSI

|_X____XFW___Y_'
| .
e o
°
: o: e U9 ..:.
|

FIGURE 1. Threshold PSI with a threshold ¢t = 4.

general case of threshold PSI. In the threshold PSI scenarios,
the parties can obtain the intersection when the cardinality
of the intersection is greater or equal to the threshold .
Zhao constructed threshold PSI for special scenarios, and
implemented two threshold PSI protocols by using STAS.
Hallgren et al. [1] constructed a threshold-key encapsulation
mechanism which implements a threshold PSI protocol and
applied the threshold PSI to privacy-preserving ridesharing.
Their protocol only works well on small datasets since it
needs to compute C}, possible combinations to reconstruct the
secret. The cost of time will be very high when the datasets are
large. Zhao and Chow [27] not only studied the threshold PSI
with |X (Y| > 1, but also the threshold PST with |X (Y| <
t, where X and Y are private sets of sender and receiver
respectively. Moreover, Zhao et al. also outsourced heavy
computations in the protocols to a cloud server to achieve
better efficiency. To date there are only two TPSI protocols
[1], [27] implemented. Ghosh and Nilges [28] proposed a
new tool called oblivious linear function evaluation, and
constructed a threshold PSI protocol by using the algebraic
method. Ghosh and Simkin [30] studied the communication
cost of threshold PSI, and proposed the first protocol with the
communication complexity that relies on threshold ¢. Subse-
quently, Badrinarayanan et al. [31] designed two multi-party
TPSI functionalities in which the communication complexity
increases with the size of set difference. The first functional-
ity allows parties to learn the intersection if the sets and the
intersection differ by at most ¢. The second one allows parties
to learn the intersection if the union and the intersection differ
by at most ¢, which is more efficient than the first protocol.

B. CONTRIBUTIONS

In this work, we propose an efficient TPSI protocol. To the
best of our knowledge, to date only Hallgren et al. [1] and
Zhao and Chow [27] implemented their TPSI protocols.
We analyzed the reason why TPSI is difficult to achieve.
A series of works [1], [27], [28], [30], [31] propose the TPSI
functionality using lots of expensive public-key techniques.
In addition, some of them require an exponential number
of possible combinations among the shares. Specifically,
Hallgren et al. [1] designed a threshold-key encapsulation
mechanism needs to compute C! possible combinations to

6562

T T TxAay T T T T
X Y |
° ° . |

° oo, .
e o) L |
) ® |
(b). | XNY]| =4, output XNY. J

reconstruct the secret to implement TPSI protocol. Further-
more, the existing TPSI protocols are only suitable for small
datasets. However, our protocol can support larger datasets.
Our contributions are as follows:

o We implement a novel TPSI protocol based on GBF
and threshold secret sharing. Our protocol requires a
small amount of base OTs and avoids heavily public-key
operations.

Moreover, our protocol combines Reed-Solomon decod-
ing algorithm to reconstruct the secret. It does not
require calculating all possible combinations among the
shares.

Our protocol supports larger datasets than the existing
TPSI protocols. In the existing TPSI protocols, the max-
imum data size tested is 4092 in [1] which has a total
time of 5629 seconds. In contrast, our overall running
time is 30.4 seconds. Further, we set the maximum data
size is 16384 and the overall time is 519 seconds.

The experiment shows that our protocol is more efficient.
Specifically, we set n 100 and ¢+ = 50, where n is the
number of set element and ¢ is the threshold and the time cost
is 2.988 s. Our protocol is much faster than [27] which has
a total time of 3.6 minutes. In [1], their threshold ¢ is set to
80%n and the running time is 5629 seconds when 7 is set to
4092. In contrast, our overall running time is 30.4 seconds.
See section 5 for more details.

C. ROADMAP

In this paper, the structure is as follows. Chapter II mainly
describes some basic knowledge that our protocols involved.
Chapter III describes our new threshold PSI protocol. In
Chapter IV, we analyse the parameters and the security of
the protocol. We test our TPSI protocol and compare the
performance of our protocol with the existing protocols in
Chapter V. Finally, in Chapter VI, we make a summary for
the paper.

Il. PRELIMINARIES

A. NOTATION

In this paper, we use A and o to represent computational and
statistical security parameter, respectively. We write [n] to
denote {1, ...,n} and [m] to denote {1, ..., m}. There are

VOLUME 9, 2021

E. Zhang et al.: Efficient TPSI

IEEE Access

Ideal functionality for PSI Fpgr:
Parameter: There are two parties sender S and receiver
R, who have the private datasets X and Y, respectively.
These datasets have n elements and are represented as
|X| = |Y| = n. Let ; and y; represent the i-th element
in the set X and Y respectively, where i € [n]. A is the
security parameter and denotes the length of elements x;
(or ;).
o Input: Wait for input X from the sender S and input
Y from the receiver R.
« Computation: The ideal functionality Fpg; com-
putes X Y.
o QOutput: Finally, the ideal functionality Fpg; sends
the result to the receiver R.

FIGURE 2. Ideal functionality for PSI.

two participants sender S and receiver R, who have their own
private datasets X and Y, respectively. The elements in X and
Y are expressed as x; € {0, 1}* and y; € {0, 1}* where i € [n].
The hash function is denoted by A(x) : {0, 1}* — [m]. We
write s € I to denote the random secret where [is a finite
field. Let s;, Ind; € {0, 1}* denote the i-th share of s and the
corresponding index which satisfies f (Ind;) = s; in Shamir’
scheme.

B. PSI AND THRESHOLD PSI

PSI allows parties to learn the intersection from their datasets
securely, which protects their private elements. We give the
ideal function of the two-party PSI with one-side output in
Fig 2.

Threshold PSI is a variant of traditional PSI, which guar-
antees that the receiver can obtain the intersection when
the cardinality of the intersection is greater or equal to the
threshold ¢. We give the ideal function of two-party threshold
PSIin Fig 3.

C. THRESHOLD SECRET SHARING AND REED-SOLOMON
CODE

Secret sharing is a basic cryptographic primitive that splits a
secret s € FF into n shares sq, ..., s, and distributes them to
n parties. The parties take n shares to reconstruct the secret
s. Shamir [32] and Blakley [33] proposed threshold secret
sharing schemes based on Lagrange interpolation theorem
and Gaussian elimination, respectively. They allow ¢ or more
correct shares to reconstruct the secret instead of n shares,
where 7 is the threshold and smaller than n. Our protocol calls
the sharing phase of Shamir’ sharing scheme and denotes it
by Frss. We give the ideal functionality of Shamir’s scheme
in Fig 4. See [32] for the specific scheme.

Reed-Solomon codes are a kind of error-correcting codes
proposed by Reed and Solomon [34]. Later, a series of
Reed-Solomon code algorithms [35]-[37] are proposed. The
Reed-Solomon decoding algorithms provide extensions and
generalizations of Shamir’s scheme. In order to reconstruct

VOLUME 9, 2021

Ideal functionality for Threshold PSI Frpgr:
Parameter: There are two parties sender S and receiver
R, who have the private datasets X and Y, respectively.
These datasets have n elements and are represented as
|X| = |Y| = n.Let x; and y; represent the i-th element in
the set X and Y respectively, where i € [n]. A denotes the
length of elements x; (or y;) and ¢ is the threshold which
is public.
o Input: Wait for input X from the sender S and input
Y from the receiver . Then they input the threshold
t.
« Computation: The ideal functionality Frpg; com-
putes | X (Y| and X Y.
o Output: Finally, the ideal functionality Frpg; sends
the result to the receiver while | X Y] > ¢ If
|X Y| < t, the receiver can not learn anything.

FIGURE 3. Ideal functionality for Threshold PSI.

Ideal functionality for Shamir’s sharing scheme Frgs:
Parameter: Give integers n, t (n < t) and the finite filed
F. Fix n distinct points indy, ..., ind,, from F.

Sharing: For input s € T, choose a random polynomial
f(x) of degree t which satisfies f(0) = s and output the
set S = {f(indy) = si, ..., f(ind,,) = sn}.
Reconstruction: For the input set R C S of size t + 1,
use Lagrangian interpolation to compute the polynomial
f'(z) which satisfies f’(ind;) = s,, where s, € R and
output f/(0).

FIGURE 4. The functionality of Frgs.

the secret, Reed-Solomon decoding algorithm ignores a few
incorrect shares and outputs the polynomial. Our protocol
combines with the Reed-Solomon decoding algorithm [37]
to reconstruct the secret s, which uses fast Fourier transforms
and does not reveal the error position or magnitudes.

D. OBLIVIOUS TRANSFER

Oblivious transfer [38], [39] is an important cryptographic
primitive. There are a sender holding data mg, m; € {0, 1}*
and a receiver holding a choice bit b € {0, 1}. The receiver
can safely get m; from the sender according to the choice bit
b by performing the OT functionality. Meanwhile, the sender
does not know whether the receiver receives mq or mj. The
construction of OT needs a heavy cost in practical applica-
tion, because the implementation of OT requires expensive
public-key operations. Oblivious transfer extension [40], [41]
provides a more efficient way to apply in practical appli-
cations which uses a small amount of base OTs and avoids
heavily public-key operations.

E. (GARBLED) BLOOM FILTER AND PSI WITH GBF
Bloom filter [42] is an efficient structure that can store and
query items by using k hash functions easily. In general, the

6563

IEEE Access

E. Zhang et al.: Efficient TPSI

Parameter: Let BF denote the Bloom filter generated
by the participant C. The participant C has the private
set X = {x1,...,2,} where | X| = n. We write m to
denote the length of the Bloom filter. The party randomly
selects hy,. ..,y : {0,1}* — [m] as the hash functions
of Bloom filter .

o Setup: The BF has m bins, and each bin is set to
0, which is denoted by BF[i] = 0 where i € [m].

o Insert: For i € [n], each element z; in the set X,
there are k hash functions to compute the indexes
hi(x;), ..., hg(z;). And the indexes are set to 1.

e Query: There is an element y and we want to to

query if it is in the BF¢.
For i € [k], compute the indexes hi(y), ..., hi(y)
and check the value BF[i{] = 1 or not. If all the
values are 1, then it is determined that y is in the
BFe. That is, y € X. Otherwise, it is determined
thaty ¢ X.

FIGURE 5. The data structure of Bloom Filter.

capacity of Bloom filter is expressed as m, and k hash func-
tions are expressed as hy, hy. .., hi. Supposed that we have an
item x and we want to store it in this data structure, then the
item x will be mapped by k hash functions one by one into
k bins. Let h;(x) denote the location where x is indexed by
the i-th hash function in Bloom filter. But Bloom filter has a
property called false positive. In other words, the item y is not
stored in the Bloom filter, but the values in the k bins are all 1,
and the index positions of these bins are 1 (y), . . ., hx(y). The
probability of false positive is determined by the parameters
k and m. Generally speaking, we hope that the probability of
false positive p is negligible. If # is the number of elements,
m and k satisfy m > nlog, e - log, 1/p and k = (m/n) - In2
respectively in the optimal case. The formal description of
Bloom filter is given in Fig 5.

Garbled Bloom filter (GBF) is an improved data struc-
ture of Bloom filter proposed by Dong et al. [12] to better
represent set elements. The structure takes advantage of the
feature of secret sharing, and stores the elements into share
values in the GBF data structure with negligible false positive
when querying an element. The formal description of GBF is
given in Fig 6. Let’s review the protocol of DCW [12] and the
formal description is given in Fig 7.

F. SECURITY MODEL
We consider the security of the protocol in the static
semi-honest adversaries setting. There is an adversary who
controls one of the parties and fully follows the protocol
specification in the semi-honest model. But the adversary
tries to get more additional information from the protocol.
Please refer to [43], [44] for a more detailed and formal
description.

In the threshold PSI protocol, there are two parties: a sender
S with input X and a receiver R with input Y. They execute

6564

Parameter: Let GBFs denote the garbled Bloom filter
generated by the participant .S. The participant S has the
private set X = {x1,...,x,} where | X| = n. We write
m to denote the length of the Bloom filter. The party
randomly selects hy,...,h; : {0,1}* — [m] as the
garbled Bloom filter hash functions.

o Setup: The GBFg has m bins, and each bin is set
to null, which is denoted by GBF'[i] = null where
i € [m].

o Insert: For ¢ € [n], each element x; in the set X,
there are k£ hash functions to compute the indexes
hi(x;), ..., hi(x;). The element z; is separated into
k shares x7 with A bits which satisfies ! ®- - -®a¥ =
;. The share z is stored into GBFs[h;(z;)] where
Jj € [k]. The remaining bins that do not store strings
are put into random strings r; where ¢ € [m]. For
convenience, we use m; to represent strings stored in
GBFgs where i € [m].

¢ Query: There is an element y and we want to query

if it is in the GBF.
For i € [k]|, compute the indexes h1(y), ..., hi(y)
and check myp, () @ -+ - ® My, () = y or not. If the
XOR result of k strings is y, then it is determined that
y is in the GBFg. That is, y € X. Otherwise, it is
determined that y ¢ X.

FIGURE 6. The data structure of Garbled Bloom Filter.

the two-party protocol which computes the function f and
outputs (X, Y).

We define the functionality f : {0, 1}* x {0,1}* —
{0, 1}*, where f = X (Y and f is a deterministic function-
ality (X and Y are the input sets of the sender and receiver
respectively). Define m as a two-party protocol that com-
putes the functionality f. The view of the sender and the
receiver are denoted by views (X, Y, 1) and viewg(X, Y, 1)
respectively, where A is the computational security param-
eter. The output of the sender is L and the output of the
receiver is outputy (X, Y,) which is null or X (Y. That
is, if X (Y| > t, outputp(X, Y, 1) = X[Y. Otherwise,
outputz (X, Y, 1) = null.

Definition 1: Let f be a deterministic functionality.
The protocol m computes the functionality [against
semi-honest adversary securely if there exist probabilistic
polynomial-time (PPT) algorithms Sims and Simg satisfy:

Simg(1*, X, 1)
Simg(1*, Y, outputi (X, Y, 1))
where X, Y € {0, 1}* and |X| = |Y|.

viewI(X,Y, %) (1)
viewd (X, Y, 1) (2)

c
C

IIl. THE THRESHOLD PRIVATE SET INTERSECTION
PROTOCOL

In the section, a detailed description of the TPSI protocol
is given. Our protocol is secure against passive adversary in
semi-honest setting and the new TPSI protocol is shown in

VOLUME 9, 2021

m

. Zhang et al.: Efficient TPSI

IEEE Access

Parameter: Let GBFs denote the garbled Bloom filter
generated by the sender S and BF denote the Bloom
filter generated by the receiver R. The participants S
and R have the private sets X = {x1,...,2,} and
Y = {y1,...,Yn}. We write m to denote the length
of the (garbled) Bloom filter. Parties randomly select
hi,...,hx : {0,1}* — [m] as the (garbled) Bloom filter
hash functions.

o Setup: The sender S inserts his elements in the
set X into the garbled Bloom filter GBFg, and
the receiver R inserts her elements in the set Y
into the Bloom filter BFi. The bits in BFr are
represented as b;. The sender S randomly selects
m random strings r; as parameters of the OT stage
where i € [m)].

¢ OT extension: The sender S holds 2m strings r;
and m;, and the receiver R holds m bits b; in BF¢.
During the execution of OT extension, if b; = 0, R
gets the string r;, and if b; = 1, R gets the string
m;. After executing the OT protocol, R will get the
GBFxny.

e Query and Output: The receiver R queries her
elements in the set Y whether they are in the
GBFxny. For j € k, R computes the index-
es h1(yi),...,hi(y;) and checks mhl(yi)/ @B
mhk(yl)' = y; or not. If the XOR result of k strings
is y;, then it is determined that y; is in the GBFs.
That is, y; € X. And the element y; is put into the
set Z = X NY. Otherwise, it is determined that y;
is not in the GBFs. That is, y; ¢ Z. In the end, the
receiver I? outputs the intersection Z.

FIGURE 7. The PSI Protocol of DCW.

Fig 8. The main idea of our protocol is that determine the
relationship between |X N Y| and the threshold ¢ through
the secret sharing scheme. The protocol satisfies that enough
correct shares to reconstruct the secret s. This means there
are enough elements in the intersection and the receiver could
compute the polynomial of the secret sharing scheme. Only
when the above conditions are met, can the receiver obtain
the intersection.

For the sender, a simple approach is to assign a share of the
secret s to each element. If the receiver can get enough correct
shares, she could output the intersection. But there is a serious
problem: If the cardinality of the intersection does not reach
the threshold, the receiver can get additional information from
the correct shares. That means the elements corresponding to
the correct shares are in the intersection.

To solve the above problem, we design a new GBF that
can establish the relationship between set elements and the
secret shares and use it as threshold detection for the threshold
PSI. In addition, the index corresponding to each share is also
stored in the GBF, and the receiver can check whether the
share she obtained is correct. The construction of the new

VOLUME 9, 2021

GBEF is similar to GBF, and the setting of parameters is the
same as GBFE. If |X N Y| > t, the receiver can get enough
correct shares, and then reconstruct the secret s. Otherwise,
the protocol is terminated and outputs L, and the receiver
cannot get any information from the execution of the protocol.

We suppose that the size of dataset is n. The sender ran-
domly selects secret s from the finite field [F and calls Shamir’
scheme to generate n shares. It satisfies ¢ or more correct
shares to recover s. Based on GBF and Shamir’ scheme,
we give Algorithm 1 to generate the new GBF of a set X.
Similar to Dong’s GBF, the security of the new GBF struc-
ture depends on the parameter k. Namely, the false positive
probability of the new GBF is at most 27*. Different from
Dong’s GBF, the new GBF has two changes:

« Instead of storing x;, we store x; € s; in GBF, where x;
is the i-th element and s; is the i-th share.

« Each random string mp,(y;) in the bin will be connected
to another random string /j,(x;), and satisty I, () @ - - @
Iy, (x;) = ind;, where ind; is the index of the share s; of
the secret s, that is, f (ind;) = s;. For security, /¥en) has
the same length as my(y;).

In addition, our protocol combines with the Reed-Solomon
decoding algorithm to reconstruct the secret which is a fea-
sible method to avoid calculating all possible combinations
among the shares, and we need to ensure that at any value
of threshold 7, the receiver has the possibility of getting the
intersection. In order to we design both parties to add the same
d dummy elements. See section IV-A for specific analysis.

IV. PROTOCOL ANALYSIS

A. PARAMETERS

In order to use Reed-Solomon code to achieve arbitrary
threshold PSI, we design both parties to add the same d
dummy elements. The number of dummy elements is related
to the threshold ¢ and the cardinality of the set of parties n.
The specific calculation process is given below.

We assume that the size of dataset of parties is n and the
threshold is . This means the number of intersection elements
is greater or equal to ¢, the receiver can obtain the intersection.
According to the requirements of our protocol, the parameters
need to satisfy the following constraints:

« For TPSI protocol, the receiver gets the intersection X N
Yif XNY| >t

o For Reed-Solomon code, the secret s is reconstructed in
the TPSI protocol if [X N Y| >t + (n—1)/2.

If we apply the Reed-Solomon code to secret reconstruc-
tion, it requires that the number of wrong shares should be
less or equal to (n —t)/2, that is, the number of correct shares
should be greater or equal to # 4 ((n + d) — ¢)/2. In order to
ensure that the Reed-Solomon code can reconstruct the secret
in the requirements of the TPSI parameters, we add n — ¢
dummy elements to the sets of both parties.

ILet d denote the number of dummy elements, and compute the equation
t+d=t+((n+d)—1t)/2togetd =n—1t.

6565

IEEE Access

E. Zhang et al.: Efficient TPSI

Parameter: Let GBFg denote the garbled Bloom filter generated by the sender S and BFr denote the Bloom filter
generated by the receiver R. The participants S and R have the private sets X = {z1,...,z,} and Y = {y1,...,yn}-
We write m to denote the length of the (garbled) Bloom filter. Parties randomly select hq, ..., hg : {0,1}* — [m] as the
(garbled) Bloom filter hash functions. Let ¢ denote the threshold and H : {0, 1}* — {0, 1}* denote the cryptographic hash
function.

Setup:

1. The two parties produce seeds € {0,1}* and seedr € {0,1}* respectively, and send them to each other. They then
compute seeds €D seedr and generate n — t dummy elements individually. These dummy elements will be considered as
common elements of both parties.

2. The sender S calls the functionality Frsg of threshold secret sharing to generate the secret s and 2n — t shares
S1,° ", Sap—t With f(ind;) = s;, where ¢ € [2n — t] and ind; is the index of the i-th share. Then, the sender S sends H (s)
to the receiver R. The dummy elements are represented as @, 41, - ,ZTap—¢ and X' = {z1, - ,Zp, Tpi1, , Ton—t -
The sender S inserts z; € X' into the new garbled Bloom filter GBFg, where i € [2n — t]. The string in the j-th bin
is represented as m;, where j € [m]. S randomly selects m random strings r; as parameters of the OT extension stage.
Similarly, the receiver Rsets Y' = {y1, - ,Yn,Yn+1," - ,Y2n—¢ and inserts y; € Y into the Bloom filter BFr, where
i € [2n — t]. The bits in BF'p are represented as b;, where j € [m)].

OT extension:

The sender S holds 2m strings r; and m;, and the receiver R holds m bits b; in B Fg. During the execution of OT extension,
if b; = 0, R gets the string r;; otherwise, R gets the string m;. After executing the OT extension protocol, R gets the
GBFX/QY/ .

Computation:

R connects A-bit 0 to her elements in Y and these elements are represented as y}. For ¢ € [n], R computes s}||ind] =
yh ® m%l(yi) OB mﬁlk(yi). The former A-bit is considered to be the share s; computed by S, and the latter \-bit is
considered to be the index ind; corresponding to the share. Then, R carries out the Reed-Solomon decoding algorithm for
the former A-bit strings. If correct shares (which are consist with the shares of S”) are enough, R gets the polynomial f(z)’

and checks H(f(0)") L H(s). Otherwise, outputs L.
Query and Output:

For i € [n], the receiver R checks whether the string s} is a valid share. If s} = f/(ind}), then it is determined that y; is
in the GBFxny. That is, y; is the element in the intersection. Then y; is putted into the set Z = X N Y. Otherwise, it is

determined that y; is not in the GBFxny. That s, y; ¢ Z. In the end, the receiver R outputs the intersection Z.

FIGURE 8. The TPSI Protocol based on DCW.

These dummy elements are chosen by pseudo-random gen-
erator with the seed selected by the parties. The length of
dummy elements is the same as the private elements, which
is 128. Therefore, the probability of the collision between
dummy elements and private elements is (n — 1)/2!%3.

B. SECURITY PROOF

In the section, we first give the security analysis of the
protocol. We conduct the security analysis in two different
cases, namely the sender or the receiver is corrupted. Since
the protocol is not symmetrical, the proof of the two cases
will be different.

Theorem 1: The TPSI protocol is secure in semi-honest
setting when the threshold secret sharing scheme is seman-
tically secure.

Proof: We prove the above theorem by analyzing
the corrupt sender and corrupt receiver respectively. In two

6566

different cases, we simulate the input and output of the cor-
rupt party separately.

Case 1: The sender S is corrupted. In the case, there is a
simulator Simg to generate the computationally indistinguish-
able view from the following view:

views (X, Y, 1) = {X, seeds, s, s;, ind;, X', m;, ri, L}

which is the view in the real execution, where seeds is the
random seed, s is the secret in Shamir’ scheme, s; is the i-
th share of s, ind; is the index of s;, X’ includes x; € X and
dummy elements, m; and r; are random strings.

Simg performs the following to simulate the view. It first
creates an empty view and adds its simulated items to the view
according to the order of execution of the protocol. In the
phasing of setup, it adds the uniformly selected seeds, s to
the view. Then, it generates seedp, X and Y. The Simg gets
the dummy elements, X' and Y'. As before, these values are

VOLUME 9, 2021

E. Zhang et al.: Efficient TPSI

IEEE Access

Algorithm 1 BuildNewGBF (X, n,m,k,H, 1, S, I)
Input: Aset X, n,m,k, H={hy, ..., h}, twosets S, [
Output: A (n,m, k, H, A, S, I)-garbled Bloom filter

GBFyx
GBFx = new m-item array of bit strings;
fori=1tomdo
| GBFx[i] = NULL;
for . =1tondo

foreach x; € X, sp € S,ind; € I do

emptyBin= —1, lastShare = x; @ s¢||indy;

fori=1t0kdo

J = hi(xe);
if GBFx[j] == NULL then
if emptyBin == —1 then
| emptyBin=j;
else

GBFx[j] < {0, 1}?;
lastShare=lastShare®GBFx[/];

else
L lastShare=lastShare®GBFx[j];

| G73F x [emptyBin] = lastShare;

fori =1t mdo
if GBFx[i] == NULL then

| GBFx[i] < {0,)%

appended to the view. In the phasing of OT extension, Simg
randomly chooses m; and 7; and appends them to the view.
Finally, Simg adds _L to the view and outputs the view.

The input is fixed and the intermediate parameters are ran-
domly selected in both views. We conclude that the simulated
view and the real view are computationally indistinguishable.

Case 2: The receiver R is corrupted. In this case, there is a
simulator Simp to generate a computationally indistinguish-
able view from the following view:

viewg (X, Y, \)={Y, seedg, Y', b;, si|lind;, f(x)', F(X N Y)}

which is the view in the real execution, where seedp is the
random seed, Y’ includes y; € Y and dummy elements, b;
is the choose bit, s7||ind; is the message received from the
sender, f (x)’ is the polynomial computed by the receiver and
F(X NY) is the output.

Simpg performs the following to simulate the view. It first
generates the input set ¥’ and creates an empty view and adds
the items it simulates to the view according to the order of
execution of the protocol. In the phasing of setup, it adds the
uniformly selected seedy to the view. In the phasing of OT
extension, Simg chooses b; to obtain the messages from the
sender S and appends it to the view. In the end, Simg computes
F(X N'Y) and outputs the view.

Since the interaction between the two parties is only in the
setup stage and the OT stage, the security proof of the protocol

VOLUME 9, 2021

is also in these two stages. It is easy to see that the simulated
view and the real view are computationally indistinguishable.
After the above analysis, it’s proved that our protocol is
secure in the semi-honest setting, and our proof is completed.
J

V. PERFORMANCE AND COMPARISON

We implemented the TPSI protocol in C++, and the experi-
ment was run on two Ubuntu 18.04 virtual machines with an
Intel(R) Xeon(R) E5-2630 v4 @2.2GHz CPU, 64GB RAM.
Let the computational security parameter A = 128, the
statistical security parameter ¢ = 40 and the number of hash
functions k = 128.

We firstly analyze the communication complexity of our
protocol. In the setup phase, the sender sends seeds ¢
{0, 1}* and H(s) € {0, 1}* to the receiver and receiver sends
seedg € {0, 1}* to the sender. The communication cost of
the parties is based on the length of the Bloom filter. For
producing m OTs of 256-bit string, the concrete cost of OT
extension stage is m - 256 bits plus an additive overhead of
a small amount of extended OTs. There is no communica-
tion between the two parties in the last two stages. Then
we discuss the computational complexity of our protocol.
Parties generate their garbled Bloom filter or Bloom filter
which needs (2n — f)k hash computations. In addition to
the hash computations, S also requires a part of the XOR
computations, so the time to generate GBF seems to be longer
than the time to generate BF. In the OT extension stage,
parties require 2m + 336 hash computations. R reconstructs
the secret s using the Reed-Solomon decoding algorithm and
the computational complexity of O(nlogn). Finally, R checks
her shares which requires n polynomial computations. The
result of our analysis is shown in Table 1.

TABLE 1. The communication and computational complexity of our
protocol.

\ \ Setup | OT Extension [Computation | Output |
Party S R S ‘ R R R
Comm. 2 A O(Am) 0 0
Comp. | O(nk) | O(nk) O(m) O(nlogn) O(n)

The set size of parties is n and the threshold is . We set ¢ is
30%n, 50%n, 80%n and 95%n respectively and test the cost
of time and communication when the set size is fixed. The
cost of time and communication of our protocol are shown in
Table 2 and Table 3. Fig 9 and Fig 10 show the total running
time and communication of our protocol running on datasets
ranging from 512 to 16384 elements with different threshold.

We can see that the time cost increases with the increase of
the threshold with the same set size from the Fig 9. Obviously,
the communication is inversely proportional to the threshold
in Fig 10. The same data size causes different communica-
tions because the threshold changes also change the number
of dummy elements. We give the number of dummy elements
added in Table 4.

6567

IEEE Access

E. Zhang et al.: Efficient TPSI

TABLE 2. The time cost of our protocol (On seconds).

[SetSize | 30% | 50% | 80% | 95% |
512 056 | 054 | 065 | 0.64
1024 | 189 | 204 | 232 | 2.H4
2048 | 681 | 822 | 862 89
4096 | 2671 | 29.1 | 3334 | 34.53
8192 | 105.52 | 113.24 | 123.08 | 13681
16384 | 403.04 | 444.06 | 519.26 | 542.93

TABLE 3. Communication cost of our protocol (In MB).

[SetSize | 30% | 50% | 80% | 95% |
512] 1023 | 904 | 723 | 633
1024 | 2047 | 1807 | 1446 | 12.64
2048 | 4092 | 36.11 | 28.89 | 2527
4096 | 81.82 | 7221 | 5776 | 3055
8192 | 163.63 | 14439 | 115.51 | 101.08
16384 | 327.27 | 288.77 | 231.02 | 202.13

TABLE 4. The number of dummy elements added.

[SetSize | 30% | 50% | 80% | 95%

512 358 256 102 26
1024 717 512 205 51
2048 1434 1024 | 410 102

4096 2867 | 2048 | 819 205
8192 5734 | 4096 | 1638 | 410
16384 11469 | 8192 | 3277 | 819

600

—>—30%

—#—50%
[[——80%

500

—&—95%

4001

Time/s
w
o
o
;

2001

100+

0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Set Size

FIGURE 9. The time cost of our protocol.

In order to get the time cost of each stage, we tested the
time cost of several stages when the threshold is 80%n and
showed our results in Fig 11. As we can see in the figure, the
more time cost phases are the query intersection stage and the
reconstruction stage, followed by the stage of construction of
GBF. In addition, we also give the time cost of the offline and
online stages. As we can see from Fig 12, the time cost of the
online stage is the major factor.

The asymptotic costs comparison of [1], [27], [28], [30],
[31] and our protocol is shown in Table 5 for the set size
n, security parameter A, the number of hash functions k,
the threshold ¢ and the length of Bloom filter m. [31] is
multi-party threshold PSI, and N is the number of parties.

In the existing TPSI protocol, only [1] and [27] were
implemented, so we compared our protocol with [1] and [27].

6568

512 1024 2048 4096 8192 16384
SetSize

FIGURE 10. The communication of our protocol.

TABLE 5. Asymptotic costs comparison.

[Protocol | Comm. [Comp. |
[1] O(n) 0o(n?)
[27] O(nAlog(k + 1)) | w(logh)O(n)
[28] O(nX) O(nlog®n)
[30] O(t) O((n—1H"
[31] O(Nt) O((n —t)%)
Ours O(Am) O(nlogn)

TABLE 6. Compared time cost with [1] and [15] (On seconds).

[Protocol | 32 [64 [128 [256 [512 [1024 [2048 | 4092]
1 [0027]007 [036]208]1357 [9678 [728 [5627
(151 [248|291 [392 [559 | 866 | 15 | 3026 | 62.15
Ours | 0.04 [004 [008 [021 [065 | 232 [862 | 3043

We give a comparison with [1], [15] in Fig 13. It is easy to
see that the total time of our protocol is less than [15]. The
maximum set size is 4092 and their tests were conducted on
a single machine with an Intel i7-4790 @3.6GHz CPU, 16GB
RAM. As can be seen from the Fig 13, our protocol is more
efficient. We give a comparison between the protocol of [1],
[15] and ours in Table 6. The protocol [1] is not efficient since
it requires to compute C}, possible combinations to recon-
struct the secret. By contrast, our protocol avoids calculating
all possible combinations among the shares and saves the cost
of time.

In [27], their protocol is also based on Bloom filter. In order
to ensure the privacy of the cardinality, Zhao et al. spent
much time in the steps of encrypting Bloom filter, encrypting
polynomials and evaluating polynomials. Our protocol uses
threshold secret sharing to determine whether to output inter-
section, which avoids the above expensive operations. Zhao
and Chow [27] tested the overhead of set size n = 100,
threshold + = 50, and the length of Bloom filter m =
4500. Their experiment was run on a Windows machine
with 2 Intel(R) Core(TM) 15-4590 @3.3GHz CPUs and 8GB
RAM and their total time cost is 85.278s for P; and 139.755s
for P;. In contrast, we tested our experiment on a Windows
machine with an Intel(R) Core(TM) i7-8700 @3.2GHz CPU
and 8GB RAM and our total time cost is 2.988s. Obviously,

VOLUME 9, 2021

E. Zhang et al.: Efficient TPSI

IEEE Access

—6— Generate GBF
—+#— Generate BF
—=— OT Extension
102 f —=—Query GBF

—+—Query Intersectiop//

Reconstruction

Time/s

o
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Set Size

FIGURE 11. The time cost of each stage.

103 \ \ \ \ \ \ \ \

—#—Online Time
—+— Offline Time

102F 1
10 1
@
[
£
=
109 1
107E 1
1077 L L L L L L L L
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Set Size

FIGURE 12. Online time and offline time of our protocol.

10t \ \ \ \ \ \ \ \

—4&—HO0S17|
—#— FastG(
—&—Ours

2
10
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Set Size

FIGURE 13. Compare with [1] and [15].

our protocol is more efficient and suitable for bigger
data.

VI. CONCLUSION

Threshold PSI has a wide range of applications, such as
fingerprint matching, online dating and privacy ridesharing.
In this work, we design an efficient TPSI protocol with

VOLUME 9, 2021

semi-honest security. To improve the efficiency of the TPSI
protocol, we design a novel TPSI protocol based on GBF
and threshold secret sharing, which uses a small amount of
public-key operations. In addition, our protocol combines
with Reed-Solomon decoding algorithm to reconstruct the
secret, which avoids calculating all possible combinations
among the shares. Finally, the performance analysis shows
that our protocol is more efficient than the previous TPSI
protocols.

REFERENCES
[1] P. Hallgren, C. Orlandi, and A. Sabelfeld, ‘PrivatePool: Privacy-

[2]
[3]

[4

=

[5]

[6

—

[7

[8]

[9

—

[10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

preserving ridesharing,” in Proc. IEEE 30th Comput. Secur. Found. Symp.
(CSF). Santa Barbara, CA, USA: IEEE Computer Society, Aug. 2017,
pp. 276-291.

A. C.-C. Yao, “Protocols for secure computations (extended abstract),” in
Proc. 23rd Annual Symp. Found. Comput. Sci., Nov. 1982, pp. 160-164.
M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching and
set intersection,” in Advances in Cryptology—EUROCRYPT, vol. 3027.
Berlin, Germany: Springer, 2004.

E.Zhang, F. Li, B. Niu, and Y. Wang, ““Server-aided private set intersection
based on reputation,” Inf. Sci., vol. 387, pp. 180194, May 2017.

R. Shi, “Efficient quantum protocol for private set intersection cardinal-
ity,” IEEE Access, vol. 6, pp. 73102-73109, 2018.

E.Zhang, F.-H. Liu, Q. Lai, G. Jin, and Y. Li, “Efficient multi-party private
set intersection against malicious adversaries,” in Proc. ACM SIGSAC
Conf. Cloud Comput. Secur. Workshop (CCSW), 2019, pp. 93-104.

O. Ruan, Z. Wang, J. Mi, and M. Zhang, ‘‘New approach to set representa-
tion and practical private set-intersection protocols,” IEEE Access, vol. 7,
pp. 64897-64906, 2019.

M. J. Freedman, C. Hazay, K. Nissim, and B. Pinkas, “Efficient set
intersection with simulation-based security,” J. Cryptol., vol. 29, no. 1,
pp. 115-155, Jan. 2016.

V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Efficient
batched oblivious PRF with applications to private set intersection,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2016,
pp. 818-829.

B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection
based on OT extension,” in Proc. 23rd USENIX Secur. Symp. 2014,
pp.- 797-812.

S. Lv, J. Ye, S. Yin, X. Cheng, C. Feng, X. Liu, R. Li, Z. Li, Z. Liu,
and L. Zhou, “Unbalanced private set intersection cardinality protocol
with low communication cost,” Future Gener. Comput. Syst., vol. 102,
pp. 1054-1061, Jan. 2020.

C. Dong, L. Chen, and Z. Wen, “When private set intersection meets big
data: An efficient and scalable protocol,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur. (CCS), 2013, pp. 789-800.

P. Rindal and M. Rosulek, “Improved private set intersection against
malicious adversaries,” Proc. Annu. Int. Conf. Theory Appl. Cryptograph.
Techn., 2017, pp. 235-259.

B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Spot-light: Lightweight
private set intersection from sparse OT extension,” in Advances in
Cryptology—CRYPTO. Cham, Switzerland: Springer, 2019, pp. 401-431.
Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled
circuits better than custom protocols?”” in Proc. 19th Annu. Netw. Distrib.
Syst. Secur. Symp. (NDSS), 2012, pp. 1-15.

B. Pinkas, T. Schneider, G. Segev, and M. Zohner, ‘“Phasing: Private set
intersection using permutation-based hashing,” in Proc. 24th USENIX
Secur. Symp., 2015, pp. 515-530.

P. Rindal and M. Rosulek, “Malicious-secure private set intersection via
dual execution,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2017, pp. 1229-1242.

B. Pinkas, T. Schneider, C. Weinert, and U. Wieder, ‘“Efficient circuit-
based PSI via cuckoo hashing,” in Proc. Annu. Int. Conf. Theory Appl.
Cryptograph. Techn., 2018, pp. 125-157.

B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “PSI from PaXoS:
Fast, malicious private set intersection,” in Advances in Cryptology—
EUROCRYPT 2020 (Lecture Notes in Computer Science), vol. 12106,
A. Canteaut and Y. Ishai, Eds. Cham, Switzerland: Springer, 2020,
pp. 739-767.

6569

IEEE Access

E. Zhang et al.: Efficient TPSI

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

6570

F. Kerschbaum, “Collusion-resistant outsourcing of private set intersec-
tion,” in Proc. 27th Annu. ACM Symp. Appl. Comput. (SAC), 2012,
pp. 1451-1456.

F. Kerschbaum, ‘““Outsourced private set intersection using homomorphic
encryption,” in Proc. 7th ACM Symp. Inf., Comput. Commun. Secur.
(ASIACCS), 2012, pp. 85-86.

D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on
ciphertexts,” in Proc. Theory Cryptogr. Conf., 2005, pp. 325-341.

T. Sander, A. Young, and M. Yung, “Non-interactive cryptocomputing for
NC1,” in Proc. 40th Annu. Symp. Found. Comput. Sci., 1999, pp. 554-567.
S. Kamara, P. Mohassel, M. Raykova, and S. S. Sadeghian, “Scaling pri-
vate set intersection to billion-element sets,” in Proc. Int. Conf. Financial
Cryptogr. Data Secur., 2014, pp. 195-215.

A. Aydin, T. Sotirios, and D. Changyu, “O-PSI: Delegated private set
intersection on outsourced datasets,” in ICT Systems Security and Privacy
Protection. Cham, Switzerland: Springer, 2015, pp. 3-17.

M. Ali, J. Mohajeri, M.-R. Sadeghi, and X. Liu, “Attribute-based fine-
grained access control for outscored private set intersection computation,”
Inf. Sci., vol. 536, pp. 222-243, Oct. 2020.

Y. Zhao and S. S. M. Chow, “Can you find the one for me?”” in Proc.
Workshop Privacy Electron. Soc., D. Lie, M. Mannan, and A. Johnson,
Eds. Toronto, ON, Canada: ACM, 2018, pp. 54-65.

S. Ghosh and T. Nilges, “An algebraic approach to maliciously secure pri-
vate set intersection,” in Proc. Annu. Int. Conf. Theory Appl. Cryptograph.
Techn. Cham, Switzerland: Springer, 2019, pp. 154-185.

Y. Zhao and S. S. M. Chow, ‘““Are you the one to share? Secret transfer with
access structure,” PoPETs, vol. 2017, no. 1, pp. 149-169, 2017.

S. Ghosh and M. Simkin, “The communication complexity of thresh-
old private set intersection,” in Advances in Cryptology—CRYPTO 2019,
vol. 11693. Cham, Switzerland: Springer, 2019, pp. 3-29.

S. Badrinarayanan, P. Miao, and P. Rindal, “Multi-party threshold private
set intersection with sublinear communication,” IACR Cryptol. ePrint
Arch., vol. 2020, p. 600, May 2020. [Online]. Available: https://eprint.
iacr.org/2020/600

A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612-613, Nov. 1979.

G. R. Blakley, “Safeguarding cryptographic keys,” in Proc. AFIPS Nat.
Comput. Conf., vol. 48, 1979, pp. 313-317.

I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300-304, Jun. 1960.

B. Elwyn and W. Lloyd, “Error correction for algebraic block
codes,” WO Patent DE3479688, Oct. 1989. [Online]. Available:
https://www.freepatentsonline.com/DE3479688.html

S. B. Wicker and V. K. Bhargava, “Reed-Solomon codes in frequency-
hop communications,” in Reed-Solomon Codes and Their Applica-
tions. Piscataway, NJ, USA: IEEE Press, 1994, pp. 150-174, doi:
10.1109/9780470546345.ch8.

S. Gao, ““A new algorithm for decoding Reed—Solomon codes,” in Commu-
nications, Information and Network Security (The Springer International
Series in Engineering and Computer Science: Communications and Infor-
mation Theory), vol. 712, V. K. Bhargava, H. V. Poor, V. Tarokh, and
S. Yoon, Eds. Boston, MA, USA: Springer, 2003, pp. 55-68.

J. Kilian, “Founding cryptography on oblivious transfer,” in Proc. 20th
Annu. ACM Symp. Theory Comput., 1988, pp. 20-31.

O. Goldreich and R. Vainish, “How to solve any protocol problem-an effi-
ciency improvement,” in Proc. Conf. Theory Appl. Cryptograph. Techn.,
1987, pp. 73-86.

Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious trans-
fers efficiently,” in Proc. Annu. Int. Cryptol. Conf., 2003, pp. 145-161.

[41] M. Keller, E. Orsini, and P. Scholl, “Actively secure OT extension with

optimal overhead,” in Proc. Annu. Cryptol. Conf., 2015, pp. 724-741.

[42] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Commun. ACM, vol. 13, no. 7, pp. 422-426, Jul. 1970.

[43] O. Goldreich, The Foundations of Cryptography: Basic Applications,

vol. 2. Cambridge, U.K.: Cambridge Univ. Press, 2004. [Online].
Available: http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.html,
doi: 10.1017/CB0O9780511721656.

[44] Y. Lindell, “How to simulate it—A tutorial on the simulation proof

technique,” in Tutorials on the Foundations of Cryptography. Cham,
Switzerland: Springer, 2017, pp. 277-346.

EN ZHANG received the Ph.D. degree from
the Beijing University of Technology, in 2013.
From 2014 to 2016, he worked as a Postdoctoral
Researcher with the Institute of Information Engi-
neering, Chinese Academy of Sciences. He is cur-
rently an Associate Professor with Henan Normal
University. His research interests include cryptog-
raphy and information security.

JIAN CHANG was born in Hebei, Henan, China,
in 1996. She received the bachelor’s degree
in computer and information engineering from
Anyang Normal University, in 2018. She is cur-
rently pursuing the master’s degree in computer
and information engineering with Henan Normal
University. Her research interests include cryptog-
raphy and information security.

YU LI was born in Anyang, Henan, China, in 1998.
She received the bachelor’s degree in computer
and information engineering from Henan Normal
University, in 2020. Her research interests include
cryptography and information security.

VOLUME 9, 2021

http://dx.doi.org/10.1109/9780470546345.ch8
http://dx.doi.org/10.1017/CBO9780511721656

