
Received December 22, 2020, accepted December 29, 2020, date of publication December 31, 2020,
date of current version February 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3048486

Real-Time Repair of Business Processes Based on
Alternative Operations in Case of Uncertainty
LIWEN ZHANG , XIANWEN FANG, CHIFENG SHAO, AND LILI WANG
College of Mathematics and Big Data, Anhui University of Science and Technology, Huainan 232001, China

Corresponding author: Xianwen Fang (1758678508@qq.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61402011, Grant 61572035, and Grant
61272153; in part by the Natural Science Foundation of Educational Government of Anhui Province of China under Grant KJ2016A208; in
part by the Anhui Provincial Natural Science Foundation under Grant 1508085MF11; in part by the Academic and Technology Leader
Foundation of Anhui Province, Anhui Province University Discipline (Professional), Top-notch Talent Academic Project under Grant
gxbjZD11; in part by the Big Data Industry Base Project in Anhui Province; and in part by the Open Project Program of the Key
Laboratory of Embedded System and Service Computing of Ministry of Education under Grant ESSCKF2018-04.

ABSTRACT Owing to the continual evolution of business processes, differences often occur between
observable behavior in the event log and the actual operation of the given process model.Whether an iterative
and observable deviation occurs between the event log and the process model is in general uncertain. Existing
repair techniques add only observable deviations in a fixed manner, which makes it difficult to consider
the fitness and the precision of the results simultaneously. To solve this limitation, this study proposes
a method of repair that can improve precision as much as possible without affecting the fitness of the
results as well as the number of repair-related activities. Patterns of behavior that cannot be replayed are
determined by refined reachable activity structures and conformance checks of behavioral relationships.
They are optimized by constructing repair or configuration operations. The two operations can be switched
based on the identification of iterative observable deviation in the given pattern of behavior during repair.
To assess this, datasets from simulated and empirically acquired business processes were used. The proposed
method improved the precision of six datasets by 12% on average. Deviations were repeatedly generated by
the cycle, because of which the average precision improved by 21% on three datasets with loops.

INDEX TERMS Refined reachable activity structure, optimal alignment, configured replay graph, repair
operation, configuration operation.

I. INTRODUCTION
A. RESEARCH BACKGROUND
Process mining involves using knowledge extracted from
event logs to formulate a process model, and improving its
performance by using a variety of technologies and tools [1].
A business process can be analyzed through process min-
ing from three perspectives: process discovery, conformance
check, and process enhancement [2]. Process discovery and
the conformance check are the most important parts of pro-
cess mining [3], [4]. Model repair is a recently developed
type of process mining between process discovery and the
conformance check that considers behaviors that cannot be
replayed on the process model, and forms a repaired process
model that is as similar as possible to the original model [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Emanuele Crisostomi .

Model repair is executed according to the differences detected
by the conformance check [6]. The conformance check can be
applied to a variety of settings, including compliance audit-
ing, model maintenance, and automated process discovery.
The scenario in which the event log cannot be replayed on the
process model can be identified by a compliance audit, i.e.,
as non-replayable behavior [7]. Model maintenance can be
used to diagnose not only non-replayable behaviors but also
behaviors unique to the given model [8]. Automatic process
discovery is the adjustment of the process model according
to the output of the conformance check. The initial model is
automatically adjusted by removing behaviors unique to the
model or adding behaviors unique to the event log. To reduce
the elements of deviation between the event log and the
process model to as few as possible, the A∗ search method can
be used to construct the optimal alignment [9]. The deviations
with the same label and location are regarded as one repair

23672 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7227-5335
https://orcid.org/0000-0002-7973-6357

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

activity. It is worth noting that in order to calculate the fitness
and precision accurately, occurrence of each deviation needs
to be calculated as an independent cost (this includes the
iterative occurrence of deviation) [10].

The criteria used to assessmodel repair include fitness, pre-
cision, simplicity, and generalization, which are independent
and affect each other. Fitness refers to the degree of replay
of the event log in the process model, and precision is the
accuracy of the replay. Simplicity determines the structural
complexity of the repaired model while generalization repre-
sents the similarity between the repaired model and the initial
model [11]. The fitness and precision are most important for
assessing the performance of model repair. The event log
should not only be completely replayed to the process model
by repair but the accuracy of replay should be improved as
much as possible (i.e., if an activity occurs independently
or iteratively in the event log, the corresponding activity in
the process model should also occur in a consistent manner).
Model repair deals with deviation between the event log and
process model during replay, which includes two types [12]:
i) the observable deviation only occurred in the event log.
The repair performance of this deviation involves fitness and
precision. ii) The skip deviation produced by the process
model only affects fitness [13]. The existing repair methods
mainly include the following two in terms of precision: i) each
observable deviation is inserted on the process model using
self-loop, which repairs all iterative observable deviations
accurately [14], [15]. This technology can easily lead to
under-fitting when there are few iterative deviations in the
event log, i.e., precision is too low [16]. Precision is improved
to a certain extent by building into a concurrent substructure
the observable deviations in the event log that follow directly1

[17]. ii) The conflict substructure constructed by the invisible
transition and the observable deviation is added to the process
model. The precision after repair is one when the iterative
activity is not contained in the initial process model [13].
However, this comes at the cost of fitness when iterative
deviation is produced by the self-loop in the event log. Fig.1
(a) and (b) describe the two repairs of the process model
w.r.t the event logL = ABBBCDE , respectively. B, B1, B2

and D are only observed in the event log. B1 and B2 are
produced by the iteration of B. All deviations are replayed,
whereas B and D are not accurately replayed in Fig.1 (a).
The fitness after repair is one, but precision is significantly
affected in this case. As shown in Fig.1 (b), L needs to be
preprocessed as L ′ = ABCDE for measure of precision. The
iterative activity produced by self-loop is not contained in
initial process model in Fig.1 (b), so the precision after repair
is one.B1 andB2 cannot be replayed, so the fitness after repair
is less than one in Fig.1 (b).

1The directly following observable deviations are adjacent deviations in
the event log, which can be repaired at the same place of model.

The substructure is used here according to a single-in and single-out
network structure, which is included in the process model.

FIGURE 1. Two repairs of process model w.r.t L.

FIGURE 2. The improved repair of process model w.r.t L.

B. SOLUTION AND CONTRIBUTIONS
With the aim of solving the above problems, the new repair
method is proposed in this paper. The appropriate operation
is chosen to repair the following two behavioral patterns that
cannot be replayed [18]. 1) The behavioral pattern contain-
ing iterative observable deviation. Although the non-iterative
observable deviation in this behavior pattern cannot be accu-
rately repaired, all observable deviations can be repaired
using the self-loop inserts. 2) The behavioral pattern without
the iterative observable deviation. The principle of configura-
tion optimization is introduced to themodel repair technology
in this case. The customized business process is initiated by a
subset of the reference process model, and such processes are
varied according to the requirements of stakeholders under
the given constraints [19]. This paper proposes that common
and variable parts in a configurable process are behaviors that
can and cannot be replayed, respectively, between the event
log and the process model. They are also respectively called
fitted and unfitted behaviors. Configuration adds observable
deviation on the process model by the conflict substructure
that consists of the invisible transition and this deviation.
All observable deviations in the behavioral pattern without
iterative observable deviation can be accurately repaired by
configuration. This paper focuses on improving precision as
much as possible while ensuring that the fitness is 1 and with-
out increasing the number of repair activities (the simplicity
and generalization are not affected). Fig.2 is the improved
repair of Fig.1 (a) and (b). The noise problem is beyond the
scope of this article, and the event log is considered as a set
of filtered sequences of execution [20].

VOLUME 9, 2021 23673

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

The remainder of this article is structured as follows: The
preliminaries required for real-time repair are described in
Section 2. The differences between the event log and the pro-
cess model are identified from two perspectives in Section 3,
and real-time repairs to various unfitted behavioral patterns
are introduced in Section 4. The feasibility and effectiveness
of the proposed method are verified in Section 5 through
experimental evaluation, and Sections 6 and 7 respectively
describe related work in the area and the conclusions of this
study.

II. PRELIMINARIES
Definition 1 (Event Log): The event log is a six-tuple L =

(E,C, µ, `, o,ℵ,∝), where E represents all events in the log,
∀e ∈ L. c is uniform identifier for a trace that occurs multiple
times during system operation, ∀c ∈ C . µ associates each
event in a trace to a case, µ(ei) = c. ` assigns a label to
corresponding an event, `(e) = a, ∀a ∈ ℵ. o converts a label
into an event, o(a) = `(e). ℵ is the label set of all events, and
`(e) ∈ ℵ, ∀e ∈ L. ∝ represents the weak order relationships
between adjacent events in the log, ∝⊆ E × E .
Definition 2 (Labeled WF-Net System): A tuple N =

(P,T ,F,Z , λ, σ,Mi) is set as the labeled Petri net system,
where P is a finite set of places, T is a finite set of transitions,
F represents the flow relationships between adjacent places
and transitions,F ⊆ (P ≺ T) ∪ (T ≺ P). Z is a finite set
of labels in the Petri net system,Z = Z ∪ {τ }. λ assigns
labels to the corresponding transitions in the Petri net system,
λ : T ← Z∪{τ }, and ∀λ(t) ∈ Z∪{τ }. σ converts a label into a
transition, σ (a) = λ(t).Mi is the initial marking in net system
N . This paper restricts the Petri net system to a safe one, and
thusMi(p) = 1. The labeled Petri net system can be regarded
as a labeledWF-net systemN = (P,T ,F,Z , λ, σ,Mi, pi, pf)
if and only if |pi| = 1 ∧ |pf | = 1, where pi ∈ P and pf ∈ P
represent the initial and the final places in the net system,
respectively.
Definition 3 (Unfitted Behavioral Pattern): Behavioral

pattern consists of several activities in event log or pro-
cess model and behavior relationship between them. Model
repair exclusively considers differences produced when the
event log cannot be replayed on the process model. The
unfitted behavior is caused by the corresponding patterns
between the event log and the process model during replay.
Each pair of the corresponding patterns that causes unfitted
behavior can be merged into an unfitted behavioral pattern
based on the conformance check of behavioral relationships.
B(L/N∗)(+\×\≺) is the behavioral pattern produced by unfit-
ted behavioral relationships (concurrency/causality/conflict).
B(L/N∗)⊆ represents the behavioral inclusion pattern, which
contains behavior that occurs only in the event log or the
process model. B`(e) and Bλ(t) represent an activity that can be
observed in the event log but cannot be captured in the process
model, and an activity in the process model that prevents the
event log from being replayed, respectively.
Definition 4 (Optimal Alignment): Alignment is a set of

comparisons between the executive sequences in the event

log and the corresponding firing sequences in the process
model, and is denoted by ξ∗. Let MLN∗ and ML/MN∗ be
sets of synchronous and asynchronous moves produced by
the alignment, respectively. The deviation results from either
ML or MN∗ ; thus, it is divided into the following two types:
i) the insert deviation that can be observed on the event log
but cannot be captured in the process model is denoted by
Esert(`(e)), ∀e ∈ L; ii) the skip deviation that belongs only
to the process model and causes the event log to not be
replayable on the process model, where this is denoted by
Skip(λ(t)), ∀t ∈ T . The distance between the corresponding
activities in the set of asynchronous moves is set to one,
and otherwise to zero: Dis(ML) = Dis(MN∗) = 1 and
Dis(MLN∗) = 0. Optimal alignment minimizes the distance
between the event log and the process model by comparing
the corresponding sequences, Dis(ξop) ≤ Dis(ξ), ξop ∈ ξ∗,
and ∀ξ ∈ ξ∗.
Definition 5 (Configured Replay Graph): The configured

replay graph is a four-tuple CG = (C,T ,Add0,Hide0). C
represents the set of execution configurations of reachable
activities during replay. Because the execution configuration
of any activity is the set of several sequences of reaching this
activity from an initial activity, the set of execution config-
urations in the reachable activity structure is C(℘). Based
on the nesting performance of the cycle, it can be inferred
that there is no the maximized size of the set of execution
configurations in the reachable activity structure in cycle.
0 is the set of labels that connect two adjacent execution
configurations, Add0 is the label set of activities that can
be observed on the event log but cannot be captured in the
net system, ∀Add(`(e)) ∈ Add0. Hide0 is the label set of
activities in the net system that prevent the event log from
being replayed properly, ∀Hide(λ(t)) ∈ Hide0.
Definition 6 (Iterative Insert Deviation): The iterative

insert deviation is a special deviation produced by the self-
loop in the event log. The iterative insert deviation includes
the following two types: i) the insert deviation that is pro-
duced only by the self-loop, IEsert`(e)n; ii) the same insert
deviation that is produced by the both the self-loop and the
unfitted behavior, IEEsert`(e)n. n denotes the number of
iterations of the iterative insert deviation. The non-iterative
deviation produced by unfitted behavior is included in
IEEsert`(e)n. Thus, the number of iterations of IEEsert`(e)n

is counted from the second occurrence, whereas IEsert`(e)n

needs to record all occurrences. The iterative insert deviation
may occur once or multiple times in different cases of the
event log and the cost per iteration is one.
Definition 7 (The Repair Operation of Unfitted Behavior):

The repair operation detects the complete information of
deviation by the optimal alignment and repairs the process
model using the self-loop insert or invisible transition skip,
RO. According to the different types of deviations, the repair
operation can be divided into the following two parts: i) the
insert/skip deviation can be repaired by the self-loop or invisi-
ble transition, RO(a); ii) the directly following deviations that
satisfy a certain behavioral relationship can be constructed

23674 VOLUME 9, 2021

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

FIGURE 3. An example of the repair operation.

FIGURE 4. An example of the configuration operation.

TABLE 1. Symbols of definition 5-8.

into substructure and repaired by the self-loop insert/skip,
RO(s). Fig.3 describes the repair operations of the inserted
concurrent substructure and skipped deviation.
Definition 8 (The Configuration Operation of Unfitted

Behavior): Configuration optimization analyzes all mis-
matched behaviors between business processes. However,
this paper considers only the unfitted behavior in the replay,
C(L♦N ∗)uf . The configuration operation adds or removes
the conflict substructure formed by the configurable behav-
ior and invisible transition on the process model, CO [21].
Configuration operations can be divided into the following
two types according to configurable behavior: i) the con-
figurable activity is added or hided on process model by
invisible transition, CO(a); ii) the configurable substructure
is added or hided on process model by invisible transition,
CO(s). Fig.4 describes the configuration operations of added
activity and removed causal substructure (skip and remove
are consistent).

Some of the symbols in this section and their usages are
recorded in the table 1.

III. DIAGNOSIS OF THE PROBLEM
The event log and the process model may have exhibit unex-
pected and inconsistent behaviors during operation. The event
log cannot be replayed on the process model, and leads to
unfitted behavior. This problem needs to be solved by model

repair. This section introduces two methods for the diagnosis
of differences in unfitted behavioral patterns from different
perspectives.

A. PARTITION OF BEHAVIORAL PATTERNS
The refined reachable activity structure is improved on the
basis of the refined process tree [22]. Fragments of the
reachable activity structure are divided layer by layer from
whole to part according to different behavior relations. When
the reachable activity structure is refined, all corresponding
fragments that satisfy the shortest distance can be discovered
under the given constraints.
Definition 9 (The Refined Reachable Activity Structure):

R(℘) = (conc, seq, conf ,C(R(℘))) refines the reachable
activity structure into several fragments according to differ-
ent behavioral relationships, i.e., concurrency, sequence, and
conflict (a single activity that cannot be divided by these
three behavioral relationships can be regarded as an inde-
pendent behavioral pattern). conc represents the concurrency
fragment, in which the activities occur simultaneously in any
order, seq represents the sequence fragment, in which the
behavioral relationship between the immediately following
activities is causality, and conf represents the conflict frag-
ment, where activities on different branches are mutually
exclusive. The construction of the refined reachable activity
structure during replay needs to satisfy certain constraints,
that is, C(R(℘)). In order of priority, the rules are as follows:

I)
p(R(℘)) = (ai, seq(℘)/conc(℘)/conf (℘), af)⇒
(`(e0) = ai/λ(t0) = ai) ∧ (`(en) = af /λ(tm) = af)∧
|E| = n ∧ |T | = m

II) entry(seq/conc/conf) ≺ (seq/conc/conf) ≺

exit(seq/conc/conf)
III) |entry(seq/conc/conf)| = |exit(seq/conc/conf)|

V)

(
∑|seq|

i=1 ai = S ⇒ |S| > 1)/
(
∑|conc|

i=1 ai = P⇒ |P| > 1)/
(
∑|conf

I=1 ai = E ⇒ |E| > 1)/
(
∑|`(E)/λ(T)|

i=1 ai = A⇒ |A| > 1)
VI) C(R(℘N∗)) ≈ C(R(℘L))
VII) pre(seq) > pre(conc, conf)

pre(seq) > pre(conc, conf) represents the preferential divi-
sion of the sequence fragment, and C(R(℘N∗)) ≈ C(R(℘L))
shows that refining the reachable activity structure of the
process model under this constraint must minimize the dis-
tances between its behavioral patterns and the corresponding
behavioral patterns in the event log [23].

Fig. 5 (a) and (b) shows the refined reachable activity
structures of the event log L1 and the network system N ∗,
respectively. The dashed orange, green, and blue lines are
used to divide the concurrency fragment, sequence fragment,
and conflict fragment, respectively, while the dashed purple
line represents the initial activity and the final activity of the
reachable activity structure.

According to the structures above, all corresponding frag-
ments that satisfy the shortest distance can be obtained, and
are recorded as follows:

VOLUME 9, 2021 23675

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

FIGURE 5. The Refine reachable active structure: (a) The event log. (b) The
net system.

The resulting corresponding fitted and unfitted behavioral
patterns are:

B. COLLECTING COMPLETE INFORMATION ON THE
DEVIATION
This section describes the following: i) the identification of
iterative insert deviation, ii) the detections of occurrence and
location of non-iterative insert deviation, and iii) the observa-
tion of behavioral relationship between several non-iterative
insert deviations. These three kinds of deviation information
are served to the repair operation in definition 7.

1) IDENTIFYING ITERATIVE INSERT DEVIATION
The iterative insert deviation is a special type of deviation,
meaning that it occurs if and only if the behavior in the event
log passes through a self-path of the loop.

The corresponding behavioral patterns between the initial
network system N ∗ in Fig. 6 and the event log L2 are merged
based on the conformance check of the behavioral relation-
ship. The consistent behaviors between the corresponding
patterns are directly merged into the fitted behavioral pat-
terns. The fitted and unfitted behavioral patterns are recorded
as follows:

The conformance check based on the behavioral relation-
ship can detect the unique behavior on network system and
the unfitted behaviors (the unique behavior on network sys-
tem is BN∗≺(EF)). BN∗≺(EF) is directly retained without

FIGURE 6. Repaired net system with iterative insert deviations.

further analysis, and the behavioral patterns used for replay
are recorded as:

The event log is completely replayed on the process model
based on above behavioral patterns, resulting in the following
the optimal alignment [24]:

The red letter in the optimal alignment above represents
IEsert`(e)1. Even if IEsert`(e)1 occurs only once, it is con-
sidered an iterative insert deviation: for example, IEsertC1,
and IEsertD1 in ξop1 and IEsertB1 and IEsertC1 in ξop2. The
purple dotted line and solid red line in Fig. 6 show the repair
of these iterative insert deviations and SkipD, respectively.
The consistency measurements between the repaired N ∗ and
L2 are f = 0.91 and p = 0.85, respectively. The type of devi-
ation ofD in ξop2 is IEEsertD2

= EsertD∪IEsertD1. In terms
of precision, the repair of the black solid line in Fig. 6 cannot
accurately replay the non-iterative insert deviation EsertD
in IEEsertD2. The consistency measurements between the
repaired N ∗ and L2 are f = 1 and p = 0.90, respectively.

2) DETECTING NON-ITERATIVE INSERT DEVIATION
The occurrence and location of non-iterative insert deviation
can be determined by optimal alignment. Because the optimal
alignment is produced by fitted and unfitted behavioral pat-
terns, the behavioral relationship between the directly follow-
ing deviations can be discovered. Several directly following
deviations are constructed into a substructure according to the
detection-related information in order to reduce the size of the
event log by as much as possible.

To detect complete information on non-iterative insert
deviations, all corresponding behavioral patterns produced by
the refined reachable activity structures are set as follows:

23676 VOLUME 9, 2021

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

The fitted and unfitted behavioral patterns between the
event log and the net system are recorded as follows:

The following optimal alignment can be obtained based
on the behavior relation that cannot be replayed (the iterative
insert deviations are contained in the event log L) [25]:

The background colors are used above to distinguish
between iterative insert deviations and non-iterative insert
deviations produced by different unfitted behavioral patterns.
Thus, the deviations detected by optimal alignment can be
divided into the following five groups: IEsertB2, IEsertB1,
EsertC , (IEEsertD3,EsertE,EsertF), and (SkipG, SkipH).
The following two methods are used to determine their
repair locations: i) `(e) ∈ ML . The location is the rear
place of transition in the last synchronous movement before
the asynchronous movement that causes this deviation,
loc(Esert`(ei)) = (σ (ai−1))• ∧ `(ei) = ai. ii) a ∈ MN∗ .
The pre and rear places of the transition in the asynchronous
movement produced by this deviation are used as the start
and the end of the invisible transition, respectively, that is,
loc(Skipλ(t)) = •(σ (λ(t))) ∪ (σ (λ(t)))•. The two groups
of directly following non-iterative insert deviations can be
extracted from the above optimal alignment:M ′L = {D,E,F}
and M ′N∗ = {G,H}. The two substructures are constructed
based on different behavioral relationships between the devi-
ations: Nsl−E(D,E,F)≺ and NS(G,H)+.

C. DISCOVERING CONFIGURABLE BEHAVIOR
Configuration is an optimization technique that renders com-
patible mismatching behavior between the reference process
model and the customized business process. The event log
that does not contain the iterative insert deviation can be
considered a reference process model during the discovery
of configurable behavior [26]. This section introduces the
configured replay graph based on the fitted and unfitted
behavioral patterns produced by the event log replay on the
process model. The configurable behavior between the event
log and the process model can be discovered by the config-
ured replay graph, and is served to the configuration operation
in definition 8.

Fig. 7 constructs the configured replay graph based on
the fitted and unfitted behavioral patterns produced by Fig.5.
B≺/+(BB≺/×(CD)) is replayed as B ≺ C ≺ Add(D) to iden-
tify a configurable activity Add(D). B×/+(EF) is replayed as
(E ≺ Hide(F))/(F ≺ Hide(E)), where the two configurable
activities are exclusive and thus are used to form configurable
substructures denoted by NA(FE)×.

FIGURE 7. Configuration replay graph.

IV. REAL-TIME REPAIR
To improve the consistency of the business process as much
as possible, the process model repair with respect to the
event log needs to improve in precision and maintain its
fitness. It is difficult to balance fitness and precision using
the available methods. This problem is solved by the real-
time repair proposed in this section.

A. PRINCIPLE AND EFFECT OF REAL-TIME REPAIR
1) LIMITATIONS OF REPAIR
The insert deviation produced by the self-loop in the event log
occur an infinite number of times. Otherwise, it is occurred
independently. All of deviations in a dataset can be replayed
does F equal one, i.e., C cos t = 0. However, only if all of
1|`(e)| and 1|λ(σ (`(e)))| are both 1 or∞ does P equal one.
The repair for the skip deviation does not affect precision.
This deviation is removed by the invisible transition in any
case. Therefore, existing methods can be divided into the
following two types in terms of the repair of insert devia-
tion: i) the insert deviation is repaired using the self-loop,
i.e., Ro(D). The corresponding activity of this deviation is
iterative in the process model (1|λ(σ (`(e)))| = ∞). All
insert deviations in a dataset can be replayed, but the non-
iterative insert deviation cannot be accurately replayed. That
is, F(RO(D)) = 1 and P(RO(D)) ≤ 1 (ϕ). ii)The insert
deviation is configured by adding confc, i.e., CO(D). The
corresponding activity of this deviation is non-iterative in the
process model (1|λ(σ (`(e)))| = ∞). The iterative insert
deviation cannot be replayed, because of which fitness is
affected to a certain extent. That is, P(CO(D)) = 1 and
F(CO(D)) ≤ 1 (�) [13]. It’s worth noting that the iterative
activity produced by self-loop is not contained in the initial
process model.

2) OPTIMIZATION OF REPAIR
The real-time repair proposed in this section can repair
each unfitted behavioral pattern independently. The fit-
ness and precision of a dataset depend on the total costs

VOLUME 9, 2021 23677

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

FIGURE 8. The principle of real-time repair.

of repairable and accurately repairable deviations in all
behavioral patterns, respectively. The method of detection
described in Section III checks for the iterative insert
deviation in the given unfitted behavioral pattern. The
repair and configuration operations can be switched to
optimize the behavioral patterns according to the different
results [27].

The repair operation is executed to repair the speci-
fied behavioral pattern, i.e., RO(IBP). F(RO(IBP)) = 1
in any case, but P(RO(IBP)) < 1 is affected by }.
On the contrary, the configuration operation is executed
to repair the other behavioral pattern, i.e., CO(N − IBP).
P(CO(N − IBP)) = 1 can be obtained by -λ and
F(CO(N − IBP)) = 1.
The improvements in real-time repair are as follows: i)

all deviations can be replayed by M − R(D) as compared
with CO(D), i.e., ϒ . Only if

∑
D |IEsert`(e)| is zero does

F(CO(D)) equal F(M − R(D)). ii)
∑

N−IBP |N − IEsert`(e)|
can be accurately replayed by M − R(D) as compared
with RO(D), that is, 4. Only if

∑
N−IBP |N − IEsert`(e)| is

0 does P(RO(D)) equal P(M−R(D)). Therefore, the proposed
method can improve precision as much as possible under
the premise of perfect fitness. Table 2 presents the measure
formulas and symbols of various repair methods.

Fig. 8 describes the basic principle of real-time repair. It
checks the unfitted behavioral patterns using iterative insert
deviations. The repair operation is executed if the result
returns an affirmative (i.e., the pattern contains the iterative
insert deviation). By contrast, the configuration operation
is executed. As shown in Fig. 8, Br represents the fitted
behavioral pattern, B+/≺, B≺/×, and BL⊆+are the unfitted
behavioral patterns with insert deviations, and B×/+ and
BN∗⊆≺ are unfitted behavioral patterns with skip deviations.
Thus, no check is executed in B×/+ and BN∗⊆≺.

B. REAL-TIME REPAIR OF DIFFERENCES PRODUCED BY
BEHAVIOR PROFILE
The behavior profile in the business process can be included
in three behavioral relationships: concurrency, causality, and
conflict. This section introduces real-time repair to the unfit-
ted behavioral pattern produced by the behavioral relations
above.

TABLE 2. Formulas and symbols.

1) UNFITTED BEHAVIORAL PATTERN PRODUCED BY
CONCURRENCY AND CAUSALITY
The concurrent/causal pattern refers to the concurrent behav-
ioral relationship included in the pattern of the event log,
whereas the causal behavioral relationship is included in
the corresponding pattern of the process model [28]. Oth-
erwise, no repair is needed. The following two operations
can be interchangeably performed in the concurrent/causal
pattern according to the results of checking for iterative insert

23678 VOLUME 9, 2021

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

deviation: i) the occurrence and location of iterative insert
deviation are uncertain; therefore, the repair operation needs
to be implemented according to the deviation-related infor-
mation detected by the optimal alignment; ii) the configu-
ration operation involves adding or hiding the configurable
behavior to or from the process model by constructing a con-
flict substructure comprising configurable behavior and an
invisible transition and throughwhich each repaired deviation
can occur once at most.
Example 1: The fitted and unfitted behavioral patterns

between the event log L3 and the initial net system N ∗

in Fig. 9 are identified during replay as follows:

B≺+ doesn’t need to be repaired, and the behavioral patterns
used for repair are denoted by:

According to the different results of checking for the
iterative insert deviation in the unfitted behavioral pattern,
two methods of repair are described in Fig. 9: i) the event
log L3 is changed into L ′3, whereas the fitted and unfitted
behavioral patterns are unchanged. Iterative insert deviations
and non-iterative insert deviation are produced by the unfitted
patterns between N ∗ and L ′3 according to definition 5, that
is, IEsertD2 and EsertD. IEsertD2 and EsertD at different
places, and regarded as two repair activities [29]. The iterative
insert deviations are included in B+/≺(CD), so two repair
activities are inserted into N ∗ using two self-loops. The red
dashed line and the solid green line represent the repair
operations when the given pattern contains the iterative insert
deviations. EsertD cannot be accurately repaired using self-
loop insert. ii) The configuration operations are executed
when L ′3 = L3. Two constructed substructures are configured
on the net system N ∗, as shown by the dashed black line
and the solid green line shown in Fig. 9 [30]. The iterative
insert deviation is not included in B+/≺(CD), allowing all
insert deviations to be accurately repaired by the configu-
ration operations. The green places represent locations in
common between the configuration operation and the repair
operation.

2) UNFITTED BEHAVIORAL PATTERN PRODUCED BY
CONCURRENCY AND CONFLICT
The pattern of concurrency/conflict refers to the behavioral
relationship in the pattern of the event log as concurrency,
while the behavioral relationship in the corresponding pattern
of the process model is identified as conflict. Otherwise,
it is a pattern of conflict/concurrency. As this pattern con-
tains only the skip deviation, the improvements in precision
and fitness are identical for both operations. The pattern

FIGURE 9. Repaired net-work system based on concurrent/causal
behavior pattern.

of concurrency/conflict can switch between the operations
depending on whether the unfitted behavioral pattern con-
tains the iterative insert deviation. The deviation is diverse
when the causality/conflict pattern contains an iterative insert
deviation; thus, the repair operation should be performed
based on the deviation-related information detected by the
optimal alignment. Otherwise, the configuration operation is
executed. Because the insert deviation is not included in the
conflict/concurrency pattern, both operations can have the
same effect on it in any case. This is denoted by RO ⇔
CO(B(a,a′)×/+) = Skip/Hide(λ(t), λ(t ′)) (i.e., the behaviors
on the two branches are skipped separately).
Example 2: The fitted and unfitted behavioral patterns

between the initial net system N ∗ in Fig. 10 and the event
log L4 are considered as follows:

According to the different results from checking for the
iterative insert deviation, two operations can be used to
repair B+/×(BC): i) the event log L4 is changed to L ′4.
The iterative and non-iterative insert deviations are pro-
duced, i.e., IEEsertC3 and EsertC . The iterative insert devi-
ation is included in B+/×(BC), after which the two repair
activities are inserted into N ∗ using two self-loops. The
dashed red line in Fig. 10 indicates repair operations of
EsertC and IEEsertC3, respectively. EsertC cannot be accu-
rately repaired using a self-loop insert. ii) The configuration
operation is executed when L ′4 = L4. The black dashed
line shows the configuration of the conflict substructure in
the configured replay graph. The iterative insert deviation
is not included in B+/×(BC). Thus, all insert deviations
can be accurately repaired by the configuration operation.
The solid green line in Fig. 10 shows the repair made to
B+/×(B≺/≺(B+/+(BC)BL/N∗ (D)B≺/≺(EF)), and B+/≺(BC)
has been repaired as B+/+(BC). The insert deviation is not
present in this behavioral pattern, which allows all devia-
tions to be accurately repaired by the repair or configuration
operation. The black place represents the location of the
configuration operation, and the blue and purple places con-
nect configurable and common activities between repairable
activities and configurable activities, respectively.

VOLUME 9, 2021 23679

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

FIGURE 10. Repaired net-work system based on the
concurrent/conflicting behavioral pattern.

3) UNFITTED BEHAVIORAL PATTERN PRODUCED BY
CAUSALITY AND CONFLICT
The pattern of causality/conflict refers to a behavioral rela-
tionship in the pattern of the event log characterized by
causality, while the behavioral relationship in the correspond-
ing pattern of the process model is conflict. Otherwise, it is a
pattern of conflict/causality. The deviations or configurable
behaviors produced by the causality/conflict pattern origi-
nate from the branch with the least number of activities in
the conflict pattern. The repair operation is performed on
the process model based on the deviation-related informa-
tion detected by the optimal alignment when the pattern of
concurrency/conflict includes the iterative insert deviation.
Otherwise, the configuration operation is executed accord-
ing to configurable behavior in the configured replay graph.
Because the conflict/causality pattern does not contain insert
deviation, the effect of both operations is the same (i.e.,
behaviors on the two branches of the conflict pattern are
skipped separately).
Example 3: The fitted and unfitted behavioral patterns

between the initial network systemN ∗ in Fig. 11 and the event
log L5 are recorded as follows:

According to the results of checking for the iterative insert
deviation, B≺/×(BC) can be repaired in the following two
ways: i) The event log L5 is changed to L ′5. The itera-
tive and non-iterative insert deviations are produced, i.e.,
{IEsertC2, IEEsertD3

} and EsertD. The iterative insert devi-
ations are included in B≺/×(B≺/≺(BC)D), after which two
repair activities are inserted into N ∗ using two self-loops. .
The dashed red line in Fig. 11 indicates repair operations.
IEEsertD3 and EsertD at the same places, which are regarded
as a repair activity. IEsertC2 and IEEsertD2 can be accurately
repaired, whereas EsertD cannot be accurately repaired. ii)
The configuration operation is executed when L ′5 = L5. The
black dashed line represents Add(D) as a substructure to be
configured inN ∗. The iterative insert deviation is not included
in B≺/×(B≺/≺(BC)D), which allows the insert deviation to be
accurately repaired by the configuration operation. In Fig. 11,

FIGURE 11. Repaired net-work system based on the causal/conflicting
behavior pattern.

the solid green line represents the repair of the unfitted behav-
ioral pattern that contains only the skip deviation denoted by
B×/≺(EF). The deviations or configurable activities in this
unfitted behavioral pattern are {SkipE ∪ SkipF}/{Hide(E) ∪
Hide(F)}, and cannot be skipped as a whole because of
selective occurrence.

Algorithm 1 describes how to construct the operations
of configuration and repair in the five unfitted patterns:
B+/≺, B+/×/B×/+, and B≺/×/B×/≺. The sets of configu-
ration operations and repair operations are assumed to be
empty (line 1). The configuration operations (lines 6–8) and
repair operations (lines 8–10) are performed on the patterns
of B+/≺, B+/×/B×/+ (lines 13–15 and 15–17, respectively),
and B≺/×/B×/≺ (lines 20–22 and 22–24, respectively). The
sets of configuration and repair operations of the unfitted
behavioral patterns formed due to causality, concurrency, and
conflict are returned. The judgment formula is then used
to choose the repair or the configuration operation in the
given behavioral pattern, denoted by I cos tBP = 0 (ψ is
the check function that obtains the total cost of iterative
insert deviations in the given pattern). The occurrences of
IEEsert`(e) and IEsert`(e) are random; therefore, all self-
loop insert formations are related to repair operations of
patterns and contain insert deviations, where this is denoted
by RO(B(+/≺)(+/×)(≺/×)) ← χ . The repair operations of
patterns without an insert deviation are interchangeable with
configuration operations.

4) REAL-TIME REPAIR TO DIFFERENCES PRODUCED BY
BEHAVIOR INCLUSION
The behavior inclusion pattern refers to behavior included in
a pattern that cannot be captured on the process model but
can be exactly recorded in the event log. On the contrary,
only behavior that disables the event log from being replayed
is considered. All activities in the complete behavior inclu-
sion pattern are constructed into a substructure according to
behavior type for repair. The partial behavior inclusion in a
conflict pattern means that the event log contains a conflict
pattern and the process model can capture only behavior on
one branch of this pattern. Otherwise, it does not need to be
repaired. The resulting differences are a combination between
common and specific behaviors in the event log. There can
be uncertain occurrences of an iterative insert deviation in an
unfitted behavioral pattern. The relevant operation is thus per-
formed according to check result of iterative insert deviation.

23680 VOLUME 9, 2021

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

Algorithm 1 Real-Time Repair to Differences Produced by
Behavior Profile
Input: net N,Log L,R(℘L),R(℘N), ψ , Aop
Output: CO, RO
1: CO← ∅, RO← ∅
2: for each ei ∈ L do
3: for each tj ∈ T do
4: for each ak ∈ ℵ ∪ Z do
5: if `(ei) = λ(tj) = ak ∧ B+⊥(a1, a2) then
6: if ψ(I cos t) = 0 then
7: CO← (Add(a2) ∪Hide(a2))
8: else
9: RO← skip(a2)) ∪ χ (sl− Esert(a2), sl−

IEsert(`(ei)))
10: end
11: end
12: if `(ei) = λ(tj) = ak ∪ a′k ∧ B+/×/B×/+(a1, a2)

then
13: if ψ(I cos t) = 0 then
14: Co← NA/H(a1,a2),
15: else
16: RO← χ (sl− Esert(a1/a2),

sl− IEsert(`(ei)))/RO ⇔ CO
17: end
18: end
19: if `(ei) = λ(tj) = ak ∧ B⊥\×/B×/⊥(a1, a2) then
20: if ψ(I cos t) = 0 then
21: CO← (Add(a1/a2)/(Hide(a1)∪Hide(a2)))
22: else
23: RO← χ (sl− Esert(a1/a2),

sl− IEsert(`(ei)))/RO ⇔ CO
24: end
25: end
26: end
27: end
28: end
29: return CO, RO

Example 4: According to the different types of behavior
inclusion patterns, the fitted and unfitted behavioral patterns
between L6 and the initial net system N ∗ in Fig. 12 can be set
as follows:

Because BL6⊆•×((C)BL6⊆≺(ED)) is the unfitted behavioral
pattern caused by partially conflicting behavior inclusion,
it contains both insert and skip deviations. According to the
complete information on the deviation and the results of
checking for the iterative insert deviation, two methods are
used to repair the unfitted behavioral patterns in Fig. 12: i) L6
is changed to L ′6. The iterative and non-iterative insert devi-

ations are produced, i.e., (IEsertC2, IEEsertG3, IEEsertH3)
and (EsertD,EsertE,EsertF,EsertI). Seven repair activities
are inserted into N ∗ using seven self-loops. The red dotted
line and the solid green line in Fig. 12 describe the repair
operations. In this case, all non-iterative insert deviations can-
not be accurately repaired. ii) The configuration operations
are executed when L6 = L ′6. The black dashed line and the
solid green line describe the configuration operations on N ∗.
The iterative insert deviation is not included in the unfitted
behavior pattern, so all insert deviations can be accurately
repaired by the configuration operations. The solid green line
in Fig. 12 shows the repair made to BN∗⊆≺(JK). No insert
deviation is contained in BN∗⊆≺(JK). Thus, all deviations can
be accurately repaired by the repair or the configuration.

Algorithm 2 Real-Time Repair to Differences Produced by
Behavior Inclusion
Input: net N,Log L,R(℘L),R(℘N),icost
Output: CO, RO
1: CO← ∅, RO← ∅
2: for each ak ∈ ℵ ∪ Z do
3: if BL/N∗+/⊥/×((a1, a2) ∈ R(℘L)/R(℘N∗)
∧BN∗/L+/⊥/×(a1, a2) ∈ R(℘N∗)/R(℘L)) then

4: if ψ(i cos t) = 0 then
5: CO← (τ ⊥ ((NA⊥/

NA+/NA×), τ)× ⊥ τ)/(τ ⊥ (τ, (NH⊥/

NH+/NH×))× ⊥ τ)
6: else
7: RO← χ (sl− IEsert(`(ei)),

Nsl−E(a1,a2)+,NslE(a1,a2)⊥,Nsl−E(a1,a2)×)/(NS⊥/

NS×/NS+)
8: end
9: end

10: if BL×(a1, a2) ∈ R(℘L) ∧ (a1 ∈ R(℘N∗)) then
11: if ψ(I cos t) = 0 then
12: CO← (Add(a2) ∪Hide(a1))
13: else
14: R0← χ (sl− Esert(a2), sl− IEsert(`(ei)))

∪skip(a1)
15: end
16: end
17: end
18: return CO, RO

Algorithm 2 describes the configuration and repair opera-
tions of various behavior inclusion patterns. First, the sets of
configuration and repair operations are set to empty (line 1);
second, the configuration operations (lines 4–6) and repair
operations (lines 6–8) of the three types of complete behav-
ior inclusion patterns are constructed. Third, the config-
uration (lines 11–13) and repair operations (lines 13–15)
of the partial behavior inclusion in the conflict pattern are
constructed. Finally, the sets of configuration and repair
operations produced by the behavior inclusion patterns are
returned.

VOLUME 9, 2021 23681

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

FIGURE 12. Repaired network system based on the behavior inclusion pattern.

C. SUBSTRUCTURE OF DEVIATIONS
Precision needs to be improved in the behavioral pattern
containing an iterative insert deviation. The directly fol-
lowing non-iterative insert deviations detected by the opti-
mal alignment can be constructed into a substructure, i.e.
the several deviations are regarded as a substructure. Thus,
the degree of accurate replay is improved in this case (i.e.,
the number of events in the event log that need to be
accurately repaired are reduced, whereas the number of
events that can be accurately repaired remains the same).
Esert(`(e1), `(e2), . . . , `(en))+/≺ represents the directly fol-
lowing non-iterative insert deviations that satisfy the concur-
rency/causality relationship. The size of the event log cannot
be reduced by the conflict substructure; thus, the directly
following non-iterative insert deviations are composed based
only on concurrency and causality relationships.

V. EVALUATION
A. EXPERIMENTAL SETUP
This section describes the results of a comparison between the
method proposed in this article and the existing method14. An
experiment was performed on a 64-bit Win10 computer with
Inter(R) Core(TM) i5-2.11 GHz, with 8 GB of memory space
and JDK1.7. The method proposed here involved the follow-
ing two improvements: i) the two operations were switched
according to whether there was an iterative insert deviation in
the unfitted behavioral pattern; ii) in case of an iterative insert
deviation in the pattern, the directly following non-iterative
insert deviations were constructed into a substructure based
on different behavioral relationships.

1) TOOL SUPPORT
The performance of the existing method was verified using
the Prom framework. To ensure fairness of the experimental
results, wewrote a plug-in calledM-repair into JAVA to verify
the fitness and precision of the repaired dataset according to
the different functions implemented by the twomethods. This
plug-in is publicly available on Google Cloud, and a set of
data have been attached for testing.2 The experiment used
JAVA to write a plug-in PSLG similar to CPN-Tools, which
automatically generated event logs in txt format or xes format

2https://drive.google.com/file/d/1iFsfW4XJJRrXPk8s7rw8xO8K
40OW0-LQ/view?usp=sharing.

FIGURE 13. The real-life business process with the iterative insert
activities.

by taking advantage of the random triggering of activities in
the business process.

2) DATASETS
The experiment used datasets from an artificial business pro-
cess and a real-life business process for evaluation, denoted
respectively by Da and Dr . The real-life business process
was from a life insurance company in China. It described
processes from the application of the policy to the signing of
the contract. The set of firing sequences consistent with these
behaviors was obtained by simulating the business process.
The unfitted behavioral patterns in the datasets were divided
into the following three types: i) unfitted behavioral patterns
caused by concurrency/causality/conflict/single activity, ii)
behavior inclusion patterns, and iii) unfitted behavioral pat-
terns caused by the cycle. To guide the normal conduct of the
experiment, we changed the firing sequences and obtained
the given processmodel according to the three unfitted behav-
ioral patterns above. The three corresponding event logs were
automatically extracted from each business process based
on random self-loop insert activities using the PSLG plug-
in. Each business process was related to the three process
models. An event log and a process model formed a dataset.
The experiment consisted of three business processes, for a
total of nine event logs and given processes. Therefore, the set
of datasets of the experiment contained artificial datasets,

23682 VOLUME 9, 2021

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

FIGURE 14. The operation interface of M-repair-check plugin.

FIGURE 15. The given process model before real-time repair.

TABLE 3. Information of datasets.

real-life datasets, and datasets with loops. The automatically
generated event log contained 500 cases, for a total of 10
representative cases selected from the initial event log to
ensure that all events and the behavior relations between them
as recorded in the event log were observed. The 10 represen-
tative execution sequences were repeated 200 times based on
the number of occurrences of each sequence, so that the event
log for each dataset contained 2000–2800 traces. In this way,
a business process yielded three sets of sequences of execu-
tion from different event logs. These sequences, along with
the set of initial firing sequences of the business process, were
optimally aligned to form three datasets. The information of
nine datasets in experiment were recorded in table 3.

The real-life business process of the experiment was shown
in Fig. 13. The red ellipses indicate seven observable activi-
ties randomly inserted into the business process using seven
self-loops.

3) EXPERIMENTAL STEPS AND CRITERIA
The experimental steps consisted of the following three parts:
i) the replay fragments in the dataset were divided accord-
ing to the different behavioral relationships under the given
constraints. Then, the unfitted behavioral patterns produced
by them were accurately identified. ii) The plug-in M-repair
determined whether the iterative insert deviation was present
in the unfitted behavioral pattern and chose the appropriate

operation for the repair process model accordingly. iii) The
fitness and precision of the repaired datasets were automati-
cally measured. Because real-time repair required switching
operations, I cos tBP > 0 was used to identify the iterative
insert deviation of the behavioral pattern in the plug-in.

4) PLUG-IN OPERATION INTERFACE
Fig. 14 shows the display interface of a dataset executed in
the plugin M-repair. The input parameters include the input
variables and invariables. The button (called ‘‘calculation
results’’) was used to obtain the fitness and precision of the
dataset repaired by the two methods. In Fig. 14, the upper-left
corner shows the area of various input parameters required by
the experiment, the left side of the lower-left corner contains
detailed comments on the types of variables, and the right side
shows the area of outputs of the values of fitness and precision
obtained when the dataset was repaired by the two methods.

5) EXAMPLES OF THE PRE- AND POST-REPAIR PROCESS
MODELSES
A real-life business process is used as an example and an
observable activity is generated by the self-loop. The event
logs were extracted from the business process using the PLSG
plug-in. Unfitted behaviors were obtained between the given
process model and the event log. The initial process model
and that after real-time repair are shown in Figs. 15. It was
mined by the Prom framework. The fitness and precision
were 1 and 0.8 when the event logs were replayed, as shown
in Fig. 15. Fig. 16 extracts the sub-model containing the
repair operation for a behavioral pattern and the configuration
operation for the other behavioral pattern (t15 is the invisible
transition). This sub-model is represented by the purple box.

VOLUME 9, 2021 23683

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

FIGURE 16. The process model after real-time repair based on real-life
event log.

The conflict substructure constructed by t14 and t15 is the
execution of the configuration operation, whereas the self-
loop insert transition t25 represents the repair operation of the
observable deviation. The repair and configuration operations
are marked with blue and red dotted boxes in Fig. 16, respec-
tively. The two operations can be alternatively performed
according to whether there is iterative insert deviation in
the unfitted behavioral pattern. The dataset contained only
one unfitted behavioral pattern with an iterative insert devi-
ation; there were thus seven configuration operations and a
repair operation in the repaired process model. The behav-
ioral patterns without an iterative insert deviation repaired
by the configuration operations could entirely be accurately
replayed. On the contrary, the non-iterative insert deviations
could not be accurately replayed using the existing or the
proposed method. Therefore, the loss of precision in the pro-
posedmethodwas dependent only on deviations that occurred
once in the behavioral pattern containing an iterative insert
deviation.

B. ANALYSIS OF RESULTS: FITNESS IS 1 AFTER REPAIR
To ensure that the fitness between the repaired model and
the event log was always one, all observable deviations were
inserted into the model using self-loops. M-Repair used dif-
ferent metrics to calculate the fitness and precision of the real-
time repair and repair [17]. The formula for the behavioral
pattern is shown in Table 4. R cos tBP, E cos tBP, I cos tBP, and
N − I cos tBP represent the total cost of the deviations, cost of
the insert deviations, cost of the iterative insert deviations, and
the cost of the non-iterative insert deviations in the unfitted
behavioral pattern, respectively.

1) EVALUATION OF BUSINESS PROCESS WITHOUT LOOP
Six datasets without loops were derived from the artificial
and real-life business processes. The numbers of iterative
insert deviations in the datasets were different, because of
which there was a difference in improvements in precision
yielded by the proposed method and the self-loop insert/skip.

The initial value of precision was the value that all insertion
deviations cannot accurately repair and that can potentially
be improved with the repair of each behavior pattern.
• Results on the artificial datasets
Fig. 17 describes the results of implementation of the three

datasets on the artificial business process. The squares and
triangles represent the values of precision repaired by the
existing method and the proposed method, which are denoted
by P and M-p, respectively. The improvements effected by
M-p in Figs. 17 (a) and 17 (c) were significantly lower than
those in Fig. 17 (b), while those in Fig. 17 (a) were superior
to those Fig. 17 (c). The former result obtained because the
unfitted behavioral patterns with the iterative insert devia-
tion only accounted for 20% of the total number of patterns
in Fig. 17 (b). Thus, the precision of all other behavioral
patterns were improved owing to the configuration operations
in M-P. Fig. 17 (b) shows precision 21% higher than those
of the existing method. The latter result obtained because
n was three in the causal behavior inclusion pattern of the
dataset as described in Fig. 17 (a). We constructed the three
datasets directly following non-iterative insert deviations into
the substructure. Precision improved by 6% (Fig. 17 (a))
relative to that of the existing method and was 2% higher than
that in Fig. 17 (c). The costs of repair of the twomethods were
the same. i cos t+ and r cos t+ represent the increasing costs
of the iterative insert deviations and the repairable deviations,
respectively.
• Results on real-life datasets
Fig. 18 depicts the experimental results of the three datasets

applied to the business process considered. They differed in
terms of improvements in precision after being repaired when
the two methods were used. The improvements of P effected
by M-p, shown in Figs. 18 (a) and (c), were significantly
lower than that shown in Fig. 18(b). The improvement of P
by M-p in Fig. 18 (a) was 3% lower than Fig. 18 (c). The
reason for the former result is similar to those shown in Figs.
17 (a), (b), and (c). In Fig. 18 (b), the unfitted behavioral
patterns with iterative insert deviations account for only 20%
of the dataset. Precisionwas improved by 22% comparedwith
the existing method. The ratio of the cost of iterative insert
deviations in terms of total cost is denoted by Ic+/Rc+. The
reason for the latter was Ic+/Rc+ in Fig. 18 (a) slightly higher
than Fig. 18 (c). Ic+/Rc+ was inversely proportional to the
improvement in precision in general. The costs of repair of
the two methods were the same.
• Results on datasets with loops
Fig. 19 describes the experimental results of the three

datasets in case of loops. Differences were observed in terms
of the improvement in precision. Compared with P, the value
of M-P (Fig. 19 (c)) recorded the highest improvement. This
is because unfitted behavioral patterns with iterative insert
deviations accounted for only 10% of this dataset. The pre-
cision was 33% higher than that of the existing method. The
unfitted behavioral pattern produced by the cycle had the
following three different repair-related effects: i) the path of

23684 VOLUME 9, 2021

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

TABLE 4. The Formulas to measure repair performances.

FIGURE 17. Results using the artificial datasets.

FIGURE 18. Results using the real-life datasets.

the loop existed only in the event log. In this case, if there
were deviations only generated by cycle, the improvement
in precision of both repair methods was the same (i.e., they
both used invisible transitions to connect the loop from start
to end). ii) The acyclic part was unfitted and could be repaired
directly according to the operation of the acyclic part. iii)
Behavior on the return path could not be replayed. At this
time, the behavioral patterns on the return path could be
divided, and the unfitted behavioral patterns could be repaired
using the repair method used on the acyclic part. Accordingly,

the unfitted behavioral patternswith iterative insert deviations
accounted for 20% (Figs. 19 (a) and (b)). The iterative insert
deviations divided by the total cost were 7% higher than
in Fig. 19 (a); however, the difference in precision led to only
a 1% difference in terms of improvement, because Fig. 19 (a)
used only invisible transitions to repair the cycle, and there
was no deviation in the acyclic part and return path. Thus,
the deviations produced by this loop could be accurately
repaired by two methods. M-p improved by 21% compared
with P, while the result was 1% higher than that in Fig. 19 (b).

VOLUME 9, 2021 23685

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

TABLE 5. Experiment results on different datasets. Experiment results on
artificial datasets.

The costs of repairs incurred by the two methods were the
same.

The experimental results on the nine datasets are shown
in Table 5. Ic+/Rc+ inDa1 was 9% higher thanDa3, whereas
the improvement in precision in Da3 was 2% lower than that
in Da1, because there was a causal behavior-inclusion pattern
inDa1. The three non-iterative insertion deviations were con-
structed as a causal substructure. The value of Ic+/Rc+ of
Dr2 was 5% lower than that of D |

←
3, whereas improvement

in its precision was 10% lower. This is because non-iterative
insert deviations in the acyclic part were repeatedly produced
by the cycle. The precision of the first six datasets without
loops improved by an average of (6%+ 21%+ 4%+ 7%+
22%+10%)/6 ≈ 12%, whereas that of the last three datasets
with loops was (21%+ 20%+ 23%)/3 ≈ 21%, according to
Table 5.

C. ANALYSIS OF RESULTS: FITNESS IS UNCERTAIN AFTER
DIFFERENT REPAIRS
The datasets were repaired using the proposed method and
two existing methods. The two existing methods were as
follows: i) the insert deviation was repaired by the self-loop
described in Section V.B to ensure fitness in any case. The
iterative insert deviation could be accurately repaired only
by this method, so that precision was affected by the non-
iterative insert deviation. This is denoted by RO. ii) The
configurable activity and invisible transition were combined
into a conflict structure that was to the appropriate location
in the process model. The iterative insert deviation could
not be repaired, because of which the fitness of the dataset
with iterative insert deviations could not be guaranteed by
this method. This is denoted by CO. Fitness and precision
formulae of CO were added to M-repair to implement by
F(CO) andP(CO). The proposedmethod is denoted byM−R.
The datasets in Fig. 18(a), Fig. 19(a), and Fig. 19(b) are used
as examples to analyze the results below, and are denoted by
Dr1, D |

←
1, and D |

←
2, respectively. It’s worth noting that the

iterative activity produced by self-loop was not contained in
the initial process models of nine datasets.

1) PERFORMANCE ANALYSIS OF THREE REPAIRS WITH
UNCERTAIN DEGREES OF FITNESS
Fig. 20 shows the results of repairs ofDr1,D �

1, andD �

2 using
the above three methods. The main aim of model repair is
to be able to completely replay the event log to the process
model. Thus, fitness of 1 must first be guaranteed after repair.
The results in Dr1, D �

1, and D �

2 (Figs. 20 (a), (b) and (c))
show that the precision of M − R was higher than that of RO
by P ↑ {7%, 21%, 20%}. The fitness of M − R and RO were
both one in Dr1, D �

1, and D �

2. The iterative deviations in the
event log were removed, so the precision of CO was one [13].
However, the fitness of CO was 86%, 92% and 89% in Dr1,
D �

1, andD �

2, respectively. Although the precision ofCO was
higher than that ofM −R, it needed to sacrifice the replay of
iterative insert deviations. Therefore,M − R was the optimal
solution to instances of unfitted behavior in terms of fitness
and precision in Dr1, D �

1, and D �

2.

2) RECALL, ACCURACY, AND NUMBER OF REPAIR
ACTIVITIES
The recall and accuracy of the three methods were compared
using the same number of repair activities. The number of
repair activities was divided into nine groups and increased
continuously according to the unfitted behavioral pattern in
each dataset.

The recall represents the ratio of the cost of replay devi-
ations to the total cost of deviations, and is denoted by
C cos tr/C cos t . The recall values of RO andM − R reached
one while CO could not in Dr1, D �

1, and D �

2 (Figs. 21 (a),
(b) and (c)). The recall of CO in Dr1 was 22%, 16% less than
those shown in D �

1, and D �

2, respectively. This is because
all iterative insert deviations could not be replayed by CO.
Ic+/Rc+ inDr1 was much higher than those inD �

1, andD �

2.
Accuracy refers to the ratio of the cost of insert deviations

that can be accurately repaired to the total cost of insert devi-
ations and is denoted by E cos tr/E cos t . The accurate repair
of a deviation means that the similarity between the behavior
following repaired and the original behavior is one. M − R
recorded the accuracies as shown in Dr1, D �

1 and D |
←

2 (Figs.

20 (a), (b) and (c)), of 62%, 90%, and 89%, respectively. The
accuracies of RO were 19%, 53%, and 53% less than those
of M − R shown inDr1, D �

1, and D �

2, respectively. This is
because Ic+/Rc+ of D �

1 and D �

2 was significantly lower
than Dr1. The insert deviations accurately repaired byM −R
were divided into the following two types: i) iterative insert
deviations; ii) all insert deviations of the unfitted behavioral
pattern without iterative insert deviations (i.e., a part of non-
iterative insert deviations). However, only the iterative insert
deviations could be accurately repaired by RO. The accuracy
ofCO was one in Fig. 21 (a), (b), and (c). All insert deviations
in the preprocessed event log were accurately repaired by
CO [13]. However, recall of CO could not be guaranteed.
Therefore, M − R was the optimal solution to instances
of unfitted behavior in terms of recall and accuracy, given

23686 VOLUME 9, 2021

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

FIGURE 19. Results using the artificial and real-life data sets with loops.

FIGURE 20. Results using the real-life datasets under uncertain conditions.

the same number of repair activities in Dr1, D �

1, and D �

2
(Figs. 21 (a), (b), and (c)).

The experimental results on the three datasets show that
the real-time repair proposed in this paper is feasible and
effective. It can improve precision as much as possible
while guaranteeing fitness. The improvements in precision
varied on different datasets for the following reasons: i)
the number of unfitted behavioral patterns without iterative
insert deviation in different datasets is different, ii) the num-
bers of substructures combined by the directly following
insert deviations in different datasets were different, and
iii) the types of cycles that needed to be repaired were
different.

VI. RELATED WORK
The method proposed in this paper is closely related to the
following three technologies: i) conformance check of busi-
ness processes, ii) configuration optimization, and iii) model
repair [31].

A. CONFORMANCE CHECK
According to the different types of deviations, the preva-
lent conformance check technology can be divided into two
categories: i) the occurrence and location of the deviation
were detected based on the optimal alignment between the
event log and the process model; ii) the mismatched behav-
ioral pattern was found based on the behavioral relationships
between the event log and the process model [26]. The first
check method used a heuristic algorithm, and trace replays
were used to obtain an effective optimal alignment [32].
The costs of synchronous and asynchronous moves were
set to zero and one, respectively (the cost of asynchronous
movement with invisible transition was zero). The second
method of conformance check involved generating a par-
tial synchronization product between the event log and the
process model by constructing the event structure. Then,
the execution configuration set was expanded to discover the
elements of deviation and their potential behavioral relations.
By introducing types of deviations to the nine mismatched

VOLUME 9, 2021 23687

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

FIGURE 21. The number of repair activities, recall, and accuracy.

TABLE 6. Repair performance and range of application of various methods.

patterns, the hide operation was analyzed from different per-
spectives [33]. The two consistency checks were combined
in this paper. We refined the reachable activity structure,
and identified unfitted behavioral patterns andmodel-specific
behavioral patterns through the conformance check of behav-
ioral relationships. The optimal alignment and configured
replay graph produced by the unfitted behavioral patterns
were used to detect the complete information on deviation
and configurable behavior, respectively. The optimal align-
ment was applied to the unfitted behavioral pattern with the
iterative insert deviation to detect it. Otherwise, the unfitted
behavioral pattern required the configured replay graph to
observe the configurable behavior.

B. MODEL REPAIR
The goal of model repair is to enable the event log to replay on
the repaired process model and maintain the unique behavior
of the original model as much as possible. The pseudo-
Boolean constraint was used to deal with multi-objective
problems. The approach achieves the maximum replay of
the model at the minimum cost [34]. Unnecessary redundant
behaviors in the process model are avoided as much as pos-
sible by manual repair compared with automatic operations
[35]. They improve fitness reasonably while reducing the cost
of repair as much as possible. The defined extension align-
ment was added to the reachable marks of the process model,
and deviations in themodel were calculated and repaired [36].
The location of repair of the model was determined by Petri

net and the transformation relationship between the alterna-
tive structures [37]. Various measure criteria were considered
for the repair process model, but the above two methods were
the only ones applied using the alternative structure. Accord-
ing to six algorithms, suggestions for repair were obtained
under the given constraints, and a balance between fitness
and computation was struck [38]. Each deviant element was
repaired using a self-loop insert/skip according to the rec-
ommendations for repair, often at the expense of precision
to improve fitness. The directly following non-iterative insert
deviations in the concurrency behavior inclusion pattern were
used to form a substructure to improve precision, but this is
limited in terms of application [17]. In this paper, the directly
following non-iterative insert deviations were reconstructed
into a substructure according to the behavioral relationships
detected by the optimal alignment applied to unfitted behav-
ioral pattern with an iterative insert deviation.

C. CONFIGURATION OPTIMIZATION
Configuration optimization is compatible with the variables
generated and used in the process of change based on the ref-
erence model, with common characteristics under the given
constraints. It processes all configurable variables through
adding or hiding the selection substructures of the control
flow [39]. Configurable fragments are constructed from the
empirical behavior recorded in the event log to produce a
process model that can satisfy both the common behavior and
the customized behavior [40]. In this paper, this configuration

23688 VOLUME 9, 2021

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

optimization technique was introduced to model repair. The
fitted behavior between the event log and the process model
was regarded as a common parameter while the configurable
behavior caused by unfitted behavior was regarded as a vari-
able [41]. All iterative insert deviations cannot be replayed
by configuration, which affects the improvement of the fit-
ness [42]. Configurable behavior in the replay was optimized
through the configuration operation when no iterative insert
deviation occurred in the unfitted behavioral pattern in this
paper. Through the configuration operation, the non-iterative
deviation in the event log could be accurately replayed. Thus,
fitness and precision were completely improved when the
unfitted behavioral pattern was configured without iterative
insert deviation. The features of existing four model repair
methods and the proposed method are summarized in table
6. The deviations are inserted on process model using self-
loops or skipped from process model by invisible transitions,
and used the fitness and precision repaired by this method
as a reference value [36].→, ↑, and ↓ represent unchanged,
increase, and decrease after repair of the current method
compared with the reference precision, respectively.

VII. CONCLUSION
This paper proposed a method to repair behavior that cannot
be replayed in case of an uncertain insert deviation that
answered the following two questions: i) how can precision
be improved in cases of an unfitted behavioral pattern with an
iterative insert deviation? ii) How can precision be improved
when there is no iteration insert deviation in the unfitted
behavioral pattern? The solution to the above problems was
divided into the following parts:

1) The corresponding unfitted behavioral patterns were
identified by refining the reachable activity structures
of the event log and the process model. The optimal
alignment and configured replay graph were produced
to detect complete information on the deviation and the
configurable behavior, respectively.

2) The process model was repaired by switching between
operations based on the results of checking for iter-
ative insert deviations in the given pattern. If they
were present, the directly following non-iterative insert
deviations were constructed into a substructure accord-
ing to the behavioral relationship. The insert devi-
ation or substructure was repaired using a self-loop
insert. By contrast, the process was repaired using a
conflict substructure combined with an invisible tran-
sition and configurable behavior. Therefore, the behav-
ioral pattern with iterative insert deviation improves
the precision by reducing the size of the event log and
maintaining the cost of accurately repairable devia-
tions. Otherwise, the fitness and precision can be com-
pletely repaired by configuration operation.

REFERENCES
[1] V. Huser, ‘‘Process mining: Discovery, conformance and enhancement

of business processes,’’ J. Biomed. Inform., vol. 45, pp. 1018–1019,
Jun. 2012.

[2] W. van der Aalst, T. Weijters, and L. Maruster, ‘‘Workflow mining: Dis-
covering process models from event logs,’’ IEEE Trans. Knowl. Data Eng.,
vol. 16, no. 9, pp. 1128–1142, Sep. 2004.

[3] W. M. P. V. Der Aalst, ‘‘Distributed process discovery and conformance
checking,’’ in Proc. Int. Conf. Fundam. Approaches Softw. Eng., 2012,
pp. 1–25.

[4] E. Asare, L. Wang, and X. Fang, ‘‘Conformance checking: Workflow
of hospitals and workflow of open-source EMRs,’’ IEEE Access, vol. 8,
pp. 139546–139566, 2020.

[5] D. Fahland andW.M. P. V. Der Aalst, ‘‘Repairing process models to reflect
reality,’’ in Proc. Conf. Bus. process Manage., 2012, pp. 229–245.

[6] M. Weidlich, A. Polyvyanyy, N. Desai, J. Mendling, and M. Weske,
‘‘Process compliance analysis based on behavioural profiles,’’ Inf. Syst.,
vol. 36, no. 7, pp. 1009–1025, Nov. 2011.

[7] A. Rozinat and W. M. P. van der Aalst, ‘‘Conformance checking of
processes based on monitoring real behavior,’’ Inf. Syst., vol. 33, no. 1,
pp. 64–95, Mar. 2008.

[8] S. K. L. M. vanden Broucke, J. De Weerdt, J. Vanthienen, and B. Baesens,
‘‘Determining process model precision and generalization with weighted
artificial negative events,’’ IEEE Trans. Knowl. Data Eng., vol. 26, no. 8,
pp. 1877–1889, Aug. 2014.

[9] A. Adriansyah and B. F. Van Dongen, ‘‘Cost-based conformance check-
ing using the a algorithm,’’ BPM Center Report, vol. 1111, pp. 1–14,
May 2011.

[10] A. A. Adriansyah, B. F. Van Dongen, and W. M. P. V. Der Aalst, ‘‘Confor-
mance checking using cost-based fitness analysis,’’ in Proc. Conf. Enter-
prise Distrib. Object Comput., Aug. 2011, pp. 55–64.

[11] D. Fahland and W. M. P. van der Aalst, ‘‘Simplifying discovered process
models in a controlled manner,’’ Inf. Syst., vol. 38, no. 4, pp. 585–605,
Jun. 2013.

[12] Z. He, Y. Du, L. Qi, and H. Du, ‘‘A model repair approach based on
Petri nets by constructing free-loop structures,’’ IEEE Access, vol. 7,
pp. 24214–24230, 2019.

[13] W. van der Aalst, A. Adriansyah, and B. van Dongen, ‘‘Replaying history
on process models for conformance checking and performance analy-
sis,’’ WIREs Data Mining Knowl. Discovery, vol. 2, no. 2, pp. 182–192,
Mar. 2012.

[14] F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. P. van der Aalst,
‘‘Balanced multi-perspective checking of process conformance,’’ Comput-
ing, vol. 98, no. 4, pp. 407–437, Apr. 2016.

[15] N. Macedo, T. Jorge, and A. Cunha, ‘‘A feature-based classification
of model repair approaches,’’ IEEE Trans. Softw. Eng., vol. 43, no. 7,
pp. 615–640, Jul. 2017.

[16] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, and
W. M. P. van der Aalst, ‘‘Measuring precision of modeled behavior,’’ Inf.
Syst. E-Bus. Manage., vol. 13, no. 1, pp. 37–67, Feb. 2015.

[17] D. Fahland and W. M. P. van der Aalst, ‘‘Model repair—Aligning process
models to reality,’’ Inf. Syst., vol. 47, pp. 220–243, Jan. 2015.

[18] M. De Leoni, W. W. V. Der Aalst, and B. F. Van Dongen, ‘‘Data-and
resource-aware conformance checking of business processes,’’ inProc. Int.
Conf. Bus. Inf. Syst., 2012, pp. 48–59.

[19] M. Asadi, B. Mohabbati, G. Gröner, and D. Gasevic, ‘‘Development
and validation of customized process models,’’ J. Syst. Softw., vol. 96,
pp. 73–92, Oct. 2014.

[20] R. Conforti, M. L. Rosa, and A. H. M. T. Hofstede, ‘‘Filtering out infre-
quent behavior from business process event logs,’’ IEEE Trans. Knowl.
Data Eng., vol. 29, no. 2, pp. 300–314, Feb. 2017.

[21] X. Fang, R. Cao, X. Liu, and L. Wang, ‘‘A method of mining hidden
transition of business process based on region,’’ IEEE Access, vol. 6,
pp. 25543–25550, 2018.

[22] J. Vanhatalo, H. Volzer, and J. Koehler, ‘‘The refined process structure
tree,’’ Data Knowl. Eng., vol. 68, no. 9, pp. 793–818, 2009.

[23] T. Calders, C. Guenther, M. Pechenizkiy, and A. Rozinat, ‘‘Using min-
imum description length for process mining,’’ in Proc. SAC, 2009,
pp. 1451–1455.

[24] A. Armascervantes, P. Baldan, M. Dumas, and L. Garciabanuelos, ‘‘Diag-
nosing behavioral differences between business processmodels,’’ Inf. Syst.,
vol. 56, pp. 304–325, May 2016.

[25] N. Kleiner, ‘‘Delta analysis with workflow logs: Aligning business pro-
cess prescriptions and their reality,’’ Requirement Eng., vol. 10, no. 3,
pp. 212–222, Aug. 2005.

[26] M. La Rosa, W. M. P. V. Der Aalst, M. Dumas, and F. Milani, ‘‘Business
process variability modeling: A survey,’’ ACM Comput. Surv., vol. 50,
pp. 1–45, May 2017.

VOLUME 9, 2021 23689

L. Zhang et al.: Real-Time Repair of Business Processes Based on Alternative Operations in Case of Uncertainty

[27] J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst, ‘‘Mining
configurable process models from collections of event logs,’’ in Business
Process Management. Berlin, Germany: Springer, 2013, pp. 33–48.

[28] L. Garcia-Banuelos, N. R. T. P. van Beest, M. Dumas, M. L. Rosa,
and W. Mertens, ‘‘Complete and interpretable conformance checking of
business processes,’’ IEEE Trans. Softw. Eng., vol. 44, no. 3, pp. 262–290,
Mar. 2018.

[29] M. de Leoni, F. M. Maggi, and W. M. P. van der Aalst, ‘‘An alignment-
based framework to check the conformance of declarative process mod-
els and to preprocess event-log data,’’ Inf. Syst., vol. 47, pp. 258–277,
Jan. 2015.

[30] T. Nguyen, A. Colman, and J. Han, ‘‘Modeling and managing variability in
process-based service compositions,’’ in Proc. Int. Conf. Service Oriented
Comput., 2011, pp. 404–420.

[31] J. C. A. M. Buijs, M. L. Rosa, H. A. Reijers, B. F. V. Dongen, and
W. M. P. V. D. Aalst, ‘‘Improving business process models using observed
behavior,’’ inProc. Int. Symp. Data-Driven Process Discovery Anal., 2012,
pp. 44–59.

[32] W. Song, X. Xia, H.-A. Jacobsen, P. Zhang, and H. Hu, ‘‘Efficient align-
ment between event logs and process models,’’ IEEE Trans. Services
Comput., vol. 10, no. 1, pp. 136–149, Jan. 2017.

[33] N. L. Garca-Ba, B. N. Van, M. Dumas, and M. L. Rosa, ‘‘Business process
conformance checking based on event structures,’’ in Proc. 27th Nordic
Workshop Program. Theory, vol. 2015, Art. no. 3.

[34] C. Di Francescomarino, R. Tiella, C. Ghidini, and P. Tonella,
A Multi-objective Approach to Business Process Repair. Berlin, Germany:
Springer, 2014, pp. 32–46.

[35] A. A. Cervantes, N. R. T. P. V. Beest, M. L. Rosa, M. Dumas, and
L. García-Bauelos, ‘‘Interactive and incremental business process model
repair,’’ in Proc. Int. Conf., 2017, pp. 53–74.

[36] H. Qi, Y. Du, L. Qi, and L. Wang, ‘‘An approach to repair Petri net-
based process models with choice structures,’’Enterprise Inf. Syst., vol. 12,
nos. 8–9, pp. 1149–1179, Oct. 2018.

[37] X. Zhang, Y. Du, L. Qi, and H. Sun, ‘‘Repairing process models con-
taining choice structures via logic Petri nets,’’ IEEE Access, vol. 6,
pp. 53796–53810, 2018.

[38] A. Polyvyanyy,W.M. P. V. D. Aalst, A. H.M. T. Hofstede, andM. T.Wynn,
‘‘Impact-driven process model repair,’’ ACMTrans. Softw. Eng. Methodol.,
vol. 25, no. 4, pp. 1–60, May 2017.

[39] N. Assy, W. Gaaloul, and B. Defude, ‘‘Mining configurable process frag-
ments for business,’’ Process Des., vol. 8463, pp. 209–224, May 2014.

[40] W. M. P. van der Aalst, A. Dreiling, F. Gottschalk, M. Rosemann, and
M. H. Jansen-Vullers, ‘‘Configurable process models as a basis for refer-
encemodeling,’’ inProc. Int. Conf. Bus. ProcessManage., vol. 3812, 2006,
pp. 512–518.

[41] C. Li, M. Reichert, and A. Wombacher, ‘‘Mining business process vari-
ants: Challenges, scenarios, algorithms,’’ Data Knowl. Eng., vol. 70,
pp. 409–434, May 2011.

[42] G. Gröner, F. Silva Parreiras, and D. Gaáevi, ‘‘Modeling and validation of
business process families,’’ Inf. Syst., vol. 38, no. 5, pp. 709–726, Jul. 2013.

LIWEN ZHANG is currently pursuing the Ph.D.
degree with the Department of Computer Science
and Engineering, Anhui University of Science and
Technology, China. Her current areas of research
include Petri net, process mining, model repair,
and configuration optimization.

XIANWEN FANG received the M.A. degree from
the Shandong University of Science and Tech-
nology, China, in 2004, and the Ph.D. degree
from the Key Laboratory of Service Computing,
Tongji University, in 2011. He is currently a Pro-
fessor with the Department of Computer Science
and Engineering, Anhui University of Science and
Technology, China. His research interests include
Petri net, trustworthy software, and Web services.

CHIFENG SHAO is currently pursuing the mas-
ter’s degree with the Department of Computer Sci-
ence and Engineering, Anhui University of Sci-
ence and Technology, China. His current areas of
research include Petri net and process mining.

LILI WANG received the M.A. degree from the
Shandong University of Science and Technology,
China, in 2007. She is currently an Associate
Professor with the Department of Computer Sci-
ence and Engineering, Anhui University of Sci-
ence and Technology, China. Her current areas of
research include Petri net and formal verification
of software.

23690 VOLUME 9, 2021

