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ABSTRACT Large-scale spatiotemporal data mining has created valuable insights into managing key areas
of society and the economy. It has encouraged data owners to release/publish trajectory datasets. However,
the ill-informed publication of such valuable datasetsmay lead to serious privacy implications for individuals.
Moreover, as a major goal of data protection, balancing privacy and utility remains a challenging problem
due to the diversity of spatiotemporal data. However, the user dimension was not considered for traditional
frameworks, which limits the application at the global level as opposed to the user level. Many researchers
overcome this issue by assuming that a user in the dataset generates only one trajectory. Actually, a user
always generates multiple and repetitive trajectories during observation. Only considering one trajectory
for one user may cause insufficient privacy protection at the trajectory level alone, as a user’s privacy can
be manifested in many trajectories collectively. In addition, it demonstrates strong user correlation when
using multiple and repetitive trajectories. If not considered, additional information will be lost, and the
utility will be decreased. In this article, we propose a novel privacy-preserved trajectory data publishing
method, i.e., IDF-OPT, which can reduce global least-information loss and guarantee strong individual
privacy. Comprehensive experiments based on an actual trajectory publishing benchmark demonstrate that
the proposed method maintains high practicability in trajectory data mining.

INDEX TERMS Differential privacy, trajectory data publishing, data correlation, utility optimization.

I. INTRODUCTION
With the development of information technology and its pen-
etration into daily life, sensor devices connected to the Inter-
net, such as smartphones and wearable devices, are widely
used, which results in a vast amounts of personal data with
geographic location and time stamps being collected and
stored [1].

Large-scale spatiotemporal datasets with abundant tempo-
ral and spatial information provide the basis for the research
of trajectory data mining [2], [3]. The knowledge of regu-
larity and aggregation of individuals or groups contained in
the statistical information of trajectory data offers valuable
insights into key areas of society and economy, such as
transportation and urban planning [4], [5], health and welfare
[6], [7], epidemiology, and natural disaster management
[8]–[10]. Thus, the tendency of sharing large spatiotemporal

The associate editor coordinating the review of this manuscript and

approving it for publication was Chintan Amrit .

datasets among multiple entities is becoming increasingly
obvious. However, malicious attackers can also mine and
spy on the sensitive information hidden in the data, such as
home or work addresses, preferences, social relationships,
income, andmedical conditions, etc. Data mining and privacy
protection have become two sides of the same coin. Any
inappropriate data release may cause serious infringement of
users’ privacy. Meanwhile, application-oriented data publish-
ingmust be the priority of privacy protection. At present, with
the development of privacy protection technology, balancing
privacy and utility in the design of privacy protectionmethods
has become a major goal. At the same time, in the context
of big data, owing to the drive toward shared data, there are
many additional privacy leaks caused by data association.
The issue of related privacy leaks has become a new research
hotspot for data privacy protection [11], [12].

Trajectory data refers to a sequence of geographic loca-
tion coordinates of a moving object in a specified time
slice arranged in time stamp order. The dataset formed by
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several trajectories is represented as a trajectory database.
Determined by its nature, the trajectory database has
the characteristics of high dimensionality, sparseness, and
sequentiality [13]. In recent years, privacy preserved data
publication has become a research hotspot in the fields of net-
work security and data security [14], [15]. Many researchers
have accumulated a diversity of research results and man-
ifested rich achievements in privacy protection level, data
utility, publishing data characteristics and so on [16], [17].

The present study of the privacy protection data release
mechanism is mainly based on anonymity and differential
privacy. Data publishing based on anonymity has led to
some research work based on partitioned privacy models
[18]–[20], such as k-anonymity [18], l-diversity [19], and so
on. However, the design of the trajectory anonymity method
is highly dependent on the background knowledge, which
shows the vulnerability to the background knowledge of the
attacker. Differential privacy (DP) [21], [22] is proposed for
the privacy disclosure of statistical databases. Its advantage
is that it provides background knowledge which is indepen-
dent of attack and a strict and quantifiable privacy protec-
tion method. Trajectory data protection based on differential
privacy technology enables the statistics of the published
trajectory dataset and original trajectory dataset to meet the
upper limit of the indistinguishable threshold by adding noise
to the target database to ensure that the modification of a
trajectory record in the dataset will not have a significant
impact on the statistical results.

The existing trajectory data publishing methods based on
differential privacy technology can be divided into two types.
One of the types is the trajectory data publishing technology
of position protection [23]–[26], which treats a trajectory
as a database and each position in the trajectory as a sep-
arate record. The research on location privacy protection
provides reasonable privacy protection solutions for location-
based services (LBS). However, some studies have demon-
strated the difference between location privacy and trajectory
release [26]. The goal of another type is to publish a set
of trajectories and treat each trajectory as a separate record,
releasing a privacy protected synthetic trajectory dataset
[27], [28] or trajectory data statistical dataset [29]–[34] based
on differential privacy technology. In this type, trajectory
statistics publishing technologies based on differential pri-
vacy that have been widely applied and recognized include
n-gram [30] and DPT [31]. This kind of algorithm focuses
on the high-dimensional characteristics of trajectory data
and uses tree data or hierarchical structure to add noise to
trajectory statistics to protect privacy and retain trajectory
information to the maximum extent.

However, based on the review of existing research results,
it is found that the current approach focuses on the privacy
protection at the trajectory level but ignores the user dimen-
sion. Among them, the trajectory data publishing technology
of location protection focuses on the location obfuscation
mechanism on a trajectory to satisfy location privacy; the
operation of differential privacy protection of the tracking

FIGURE 1. Observations of multiple and repeated trajectories from users.

dataset focuses on modifying a tracking record and adding
noise to make the released tracking dataset indistinguishable
from the original tracking dataset to satisfy the tracking pri-
vacy. This causes the continued existence of the problem set-
ting of trajectory data release of traditional privacy protection:
removing the user dimension and separating the connection
between user and trajectory for privacy protection [18]–[20],
[23]–[26]; supposing that one user can only generate one tra-
jectory [27]–[34], the default privacy protection operation on
a trajectory can protect the privacy of individual users. Actu-
ally, by observing the actual cases of the trajectory dataset,
such as the D4D-Senegal dataset [35], from the perspective
of user dimension, each individual would produce multiple
trajectories during the observation time, many of which were
repeated as shown in Fig.1. We observed repeated trajectories
for the same user and the same trajectory for different users.

We believe that adding the user dimension is very impor-
tant for mining knowledge of the regularity and aggregation
of individuals. However, in the traditional trajectory data
publishing scenario, that is, data publishing without user
dimensions, only all/a group of user statistics can be obtained,
so the trajectory data application can only be carried out for
all/a group of users. The release of such data cannot obtain
personal statistical information, which limits its application.

To better release large-scale spatiotemporal data for appli-
cation, we intend to define such a trajectory dataset as the
individual trajectory dataset (ITD) and carry out research on
privacy protection data release. Compared with the traditional
trajectory dataset, the ITD added the dimension of users,
as shown in Table 1. Through in-depth analysis and research,
we found that due to the addition of the user dimension in
addition to the traditional features of the personal trajectory
database, the trajectories produced by individual users in the
ITD have the characteristics of multiplicity and repeatability;
at the same time, there is a certain correlation between tra-
jectory data of different individual users.

Based on the literature review, we found that because
of the addition of user dimension and new features of the
ITD, the traditional differential privacy technology faces the
following three challenges in trajectory data publishing under
ITD scenarios:
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TABLE 1. ITD vs. traditional trajectory dataset.

• How to ensure adequate privacy protection for individ-
uals in the dataset. In the scenario where one user gen-
erates one trajectory and one record belongs to one user,
differential privacy can provide a strict and quantifiable
privacy protection method for sensitive personal infor-
mation in the dataset. However, the individual trajectory
data release scenario described by the ITD, in which
individual users generate multiple repeated trajectories,
presents new requirements for differential privacy oper-
ations. On the one hand, traditional methods ignore the
multiplicity of individual trajectory production. Current
trajectory publishing technology defines privacy in a
single trajectory and quantifies it. Faced with the prob-
lem of multiple trajectories produced by a user and
repeated trajectories, existing research approaches are
insufficient in quantifying the level of personal privacy
protection. On the other hand, due to the neglect of the
individual dimension, privacy protection remains at the
trajectory level. However, the privacy protection target
for individual users should bemultiple trajectories rather
than a single trajectory, and privacy protection at the
trajectory level alone cannot provide sufficient privacy
protection for each individual. At present, research on
the privacy protection methods for multiple trajectories
for individual users is insufficient.

• How to measure the correlation of differential privacy
protection levels among individual users. In the ITD
scenario, considering the perspective of user dimen-
sion, different individual trajectory data have high
repeatability, leading to correlation between the data
of different individuals, and the relevant data will gen-
erate additional privacy leakage of different degrees.

Therefore, the level of privacy protection of individuals
is not only affected by their own privacy parameters
but is also affected by their relevant individual datasets.
At present, research on the correlation level of privacy
protection of individual users is insufficient.

• How to improve the utility of the overall published
data. In the ITD scenario, to ensure that the publishing
algorithm meets the requirement of differential privacy
protection, repeatability of individual trajectories will
lead to a huge loss of data utility. On the one hand, sim-
ply extending the traditional trajectory data publishing
method to the ITD scenario is highly sensitive. On the
other hand, adding noise to a trajectory in the trajec-
tory dimension based on differential privacy protection
technology may lead to more statistical information loss
for individuals who repeat the trajectory. As a result,
ITD privacy protection based on the existing differential
privacy method will cause a large loss of data utility.

In this article, we propose a new privacy-preserved trajec-
tory data publishing framework, i.e., risk-aware individual
differential privacy optimization (IDF-OPT). It provides a
solution to publish the sanitized ITD in the way of differential
privacy methodology, which suppresses the riskiest trajectory
under a specific threshold and simultaneously makes the pro-
tection secrets indistinguishable. The methodology proposed
will cost the least-information loss in the global case and
provides strong individual privacy guarantee.

The major contributions of the paper are as follows:

• The paper proposes a new privacy preserved trajec-
tory data publishing method via differential privacy,
i.e., IDF-OPT. It suppresses the high risk trajectory of
individuals and adds noises to statistical dataset ensur-
ing the indistinguishability to provide a strong privacy
guarantee for each individual.

• The paper proposes a correlated differential privacy
leakage model which provides a more delicate describ-
ing and dynamic standard for measuring the complex
correlated data. It is an appropriate tool used to measure
the correlated differential privacy leakage of individual
drawing from the ITD scenario.

• The paper designs Pareto multiobjective optimization
model and proposes an individual DF-optimization algo-
rithm which uses to obtain a group of Pareto efficient
parameters of correlated individuals maximizing the
preserved utility of data.

II. RELATED WORK
A. PRIVACY-PRESERVED TRAJECTORY DATA PUBLISHING
Pufferfish privacy [36] gives a series of strict definitions
related to privacy for data publishing, abstracting privacy
protection as the indistinguishable pairs of potential secrets
reaching a certain threshold through certain methods to
achieve the privacy protection of the protection target. The
existing research on trajectory data publishing for privacy
protection uses anonymous technology or differential privacy
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technology to make the target trajectory in the trajectory
dataset reach the indistinguishability threshold to achieve
privacy protection.

The anonymity mechanism is mainly utilized to generate
an anonymous set by means of generalization, bucketiza-
tion, suppression, etc., so that the indistinguishable pairs in
potential secrets reach the anonymity threshold. Researchers
have proposed a variety of trajectory anonymity methods to
ensure that the published trajectories meet specific thresh-
old requirements [37]–[39]. Different algorithms improve
the indistinguishability of protection targets by selecting
different aggregation criteria. Among them, anonymous tra-
jectory sets are generated according to specific generaliza-
tion patterns, including partition-based generalization [40],
hierarchy-based generalization [41] and spatial generaliza-
tion [42]. To achieve a better generalization effect, a quasi-
identifier (QIDs) mechanism [43] using the timestamp as a
quasi-identifier and a local extension mechanism [13] were
proposed. Nergiz et al. [38] proposed a data compression
technique based on the attacker’s background knowledge
to model a set of trajectory ions in the trajectory dataset.
However, existing opinions indicate that the design of tra-
jectory anonymity methods is highly dependent on back-
ground knowledge, which shows vulnerability to attackers’
background knowledge. Pellungrini et al. [44] measured the
risk of GPS data privacy leakage based on the background
knowledge of the attack and proposed a privacy quantification
method based on background knowledge.

Differential privacy (DP) [21], [22] is a concept of privacy
proposed to solve the problem of privacy disclosure in sta-
tistical databases. It provides a strict and quantifiable privacy
protectionmethodwhich is independent of attack background
knowledge. In recent years, a large number of trajectory data
publishing methods based on differential privacy technology
have been proposed, which can be classified into two different
types of trajectory data publishing. One of the types publishes
trajectory data recorded by position [23]–[26]. This type of
research makes use of the geographical indistinguishability
and the expected inference of the next position to design
the location confusion mechanism to satisfy the location pri-
vacy, which provides a reasonable privacy protection solution
for LBS. However, location privacy differs from trajectory
publishing in the following aspects. First, some location pri-
vacy does not consider the sequential nature of trajectory
data. Studies have shown that only interfering with a single
instantaneous location of a mobile user is still vulnerable to
tracking and inference attacks [26]. Second, many location
privacy works convert the original location into a location
set or hidden area, and so this information is not easily used by
trajectory mining applications that take the original location
tracking as input. Finally, location privacy conceals the fact
that users participate in the trajectory database, and privacy
protected data publishing algorithms should provide traces of
users’ participation in the database.

Another type publishes datasets with different trajectories
as records. The core of the differential privacy algorithm is

to publish synthetic trajectory datasets based on the Laplace
mechanism or exponential mechanism [27], [28] or to
publish trajectory statistics [29]–[34]. Among them, some
researchers aim to release the approximated trajectory of a
real trajectory, that is, the synthetic trajectory, and release
approximate trajectory data satisfying differential privacy to
protect privacy, but the loss of the approximate trajectory
in geographical location is irreversible, and the synthetic
trajectory cannot retain the location information of the real
trajectory, so the applicability of data analysis based on
location statistical information is low. Different from pub-
lishing synthetic trajectories, publishing statistical trajectory
data preserves the geographic location information of the
trajectory to the greatest extent. This technology protects pri-
vacy by adding noise to the statistical trajectory information.
At present, the most widely used method to achieve differen-
tial privacy is the Laplacian mechanism [27]–[29], [31]–[34],
which implements the privacy protection of trajectory data by
adding random noise sampled in the Laplacian distribution to
the trajectory count.

Chen et al. [29] grouped sequences with the same prefix
into the same branch and proposed a trajectory counting
and noise algorithm based on a prefix tree structure. This
is the first work that uses differential privacy technology
to publish a large number of position sequences. Although
their disinfection algorithm only retains counting queries and
frequent item pattern mining, the data receiver can perform
other data mining tasks on the disinfected output dataset.
Chen et al. extended this work using the n-gram model so
that the sequences stored in the tree can be of different
lengths, and constructed a synthetic dataset based on Markov
assumptions [30]. He et al. took advantage of the novelty
of the hierarchical reference system and developed a tra-
jectory publishing system DPT for privacy protection using
the position discretization of the hierarchical organizational
grid [31]. Shao et al. published a trajectory with a weak
differential privacy protection concept by injecting noise into
the trajectory position [32]. Hua et al. [33] reconstructed
the trajectory by defining the utility function to achieve the
minimum geometric distance, and then released the trajectory
count with noise. n-gram and DPT are considered to be more
advanced trajectory release technologies based on differential
privacy. On this basis, Al-Hussaini et al. studied the privacy
protection of passenger trajectory information disclosure and
proposed the Safepath [34] algorithm to publish a differential
privacy conversion trajectory. The algorithm modeled the
trajectory as a noisy prefix tree to minimize the impact of
data utility. This kind of research [29]–[31], [34] provides
a reasonable hierarchical structure to reconstruct trajectories
by adding noise to frequent prefixes or n-grams. This method
effectively reduces the output domain and provides high prac-
tical value for frequency pattern mining in the global domain.
Considering that the main application scenario of trajectory
data is based on frequent pattern mining, the released noise
count is more suitable for the application of trajectory data
mining.
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However, these methods present certain limitations. First,
the research implicitly assumes that the original trajectory to
be published contains a common prefix or n-gram. Second,
the study assumes that the location comes from a small,
discrete domain, such as hundreds of subway stations and
bus stops [29], [30], [34]. In today’s GPS driven mobile
system, positions are collected in the form of (longitude,
latitude) pairs at any location. Third, it does not consider
the application value of repetitive personal trajectories within
the same time segment, nor does it consider the issue of
individual privacy protection due to diversity, repetition, and
relevance.

The above research shows that the design of anonymity
mechanisms generally assumes the background knowledge
that the attacker may have, and selects the aggregation stan-
dard under this assumption, so that the technology exhibits
the vulnerability to background knowledge. The advantage
of differential privacy protection technology is that it is
independent of the background knowledge of the attack,
and it provides a strict and quantifiable privacy protection
method. However, in the current differential privacy mech-
anism, the potential secret is declared as a trajectory or tra-
jectory count, and the true count and the noise count declared
as the trajectory or the real and reconstructed trajectory are
indistinguishable. The level of privacy protection remains
at the trajectory level instead of the individual level, and
the protection object of interference with global statistical
data is not an individual, but a trajectory of the individual.
Owing to the ignorance of the user dimension, the datamining
and application of individual trajectories is limited, and the
research on the relevance and utility optimization of personal
trajectory data release is insufficient.

B. DIFFERENTIAL PRIVACY OF CORRELATED
DATA PUBLISHING
Differential privacy provides a rigorousmathematical method
of defining indiscernibility to protect privacy, ensuring that
adding or removing any single record does not affect the
results of the analysis. However, the recent research [45]–[47]
shows that differential privacy is vulnerable when multiple
datasets are correlated, though it provides a strong privacy
guarantee with respect to the independent datasets.

Kifer and Machanavajjhala [45] first raised the important
issue that the strong correlations make the sensitive data more
readily distinguished from output. To remedy this defect,
Kifer and Machanavajjhala [36] utilized differential privacy
and defined a new privacy framework named Pufferfish,
which considers the correlated data. To maximize the utility
under privacy constraints, He et al. [47] proposed a new
definition of Blowfish Privacy to tune privacy-utility trade-
offs. Chen et al. [48] demonstrated that differential privacy
still provides a privacy guarantee for the correlated data and
requires some adjustment.

Correlation is easy to define and measure when two
different datasets contain an identical record about some
user. However, it is more complex to measure the indirect

correlation, which is defined as two different records about
some user or his correlated users. For instance, information
streams of some user’s activity, e.g., GPS records and social
network records, are correlated with each other. Kifer and
Machanavajjhala [45] have shown that the privacy of corre-
lated individuals may be compromised when their records are
correlated.

To measure the privacy of the records with indirect corre-
lation, substantial work has been conducted. Zhu et al. [49]
utilized a correlated degree matrix to present the relation-
ships between correlated datasets. In this case, the sensitivity
of a query is changed into correlated sensitivity, which is
the maximum among record sensitivities. Yang et al. [50]
proposed Bayesian differential privacy leakage (BDPL) for
correlated datasets. The idea is to utilize a Bayesian approach
to analyze an uncertain query, accompanied with some given
and unknown tuples.

Many state-of-the-art algorithms quantifying DP under
temporal correlation have been proposed [11], [51]–[53].
Song et al. [11] present a detailed study about how to apply
Pufferfish to achieve privacy and build up the robustness
properties of Pufferfish against adversarial beliefs. They pro-
pose a mechanism called Markov Quilt to protect privacy for
correlated data. Cao et al. [51], [52] analyze the privacy leak-
age of a DPmechanism under temporal correlation that can be
modeled usingMarkov Chain and call the unexpected privacy
loss temporal privacy leakage (TPL). They design data releas-
ing mechanisms that convert any existing DP mechanism
into effective one against TPL. Bozkir et al. [53] propose a
novel transform-coding based differential privacymechanism
to further adapt it to the statistics of eye movement feature
data by comparing various low-complexity methods, which
provides the best utility-privacy trade-off in the eye tracking
literature.

The proposedMarkovmodels and Bayesian Network (BN)
provide a probabilistic way for correlation measurement.
Although probabilistic method is possible to model both user-
user correlation (when the nodes in the model are individuals)
and temporal correlation (when the nodes in the model are
individual data at different time points), but the individual
data is limited to a single data sequence, therefore it is not
suitable for the setting of the context in our work, in which
each user generates many trajectories. At the same time,
aiming at mining the regularity and aggregation of personal
knowledge, we believe that statistics of individual’ trajectory
has great significance. So before private operation, with-
out considering the certain location in time we remove the
timestamp of the position point within the trajectory. And
another weakness is that the measurement of probabilistic
correlation model between datasets is static, not dynamic.
Even if some dataset adjusts its privacy level, the static matrix
does not change the privacy relationship. Following the pre-
vious works, Wu et al. [54] provide their own definition of
correlated differential privacy and provide a dynamic way to
measure the correlation of datasets. However, it is not suitable
for our case, in which the sub dataset of individual datasets
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pertains to a specific user, and the correlation defined between
users by sharing one or more same records.

As shown in the existing research, the privacy level of
some datasets is influenced not only by their own privacy
parameters but also by their neighboring datasets when they
are correlated with each other. We need a more delicate
describing and dynamic standard for measuring the complex
correlated data.

C. UTILITY OPTIMIZATION
One of the fundamental challenges of privacy-preserved
data publishing is utility optimization, since privacy-
preserved mechanisms inevitably cause the utility loss of
data [55]–[57].

For trajectory data publishing, the trajectory anonymity
methods adopt various data utility metrics for different trajec-
tory data mining tasks, aiming at preserving both instances
of location-time doublets and frequent sequences in a tra-
jectory database. Chen et al. [13] proposed a local suppres-
sion method which eliminates the exact instances that cause
privacy breaches without penalizing others. Thus, local sup-
pression much more effectively preserves data utility when
compared to global suppression.

The existing differential privacy methods of solving the
trade-off problem between utility and privacy are generally
divided into two categories. The first category is using the
exponential mechanism [58], [59], in which the utility func-
tion is defined to assign higher scores with the exponentially
greater probability of being selected to an output so that the
final output is close to the optimum utility. Li et al. [60]
proposed a differential privacy trajectory publishing method-
ology using the utility function to merge locations generating
closer trajectory partitions that effectively reduces the trajec-
tory information loss after generalization. The second cate-
gory is choosing the optimal privacy parameter to maximize
the utility. The differential privacy trajectory data publica-
tion method proposed by Chen et al. [30] used the inherent
constraints of a prefix tree to conduct constrained inferences
to select privacy parameters, which leads to better utility.
However, they only consider the privacy-utility trade-off of
a single dataset without the privacy influence of the other
datasets.

III. PROBLEM DEFINITION
In this section, we first focus on a set of assumptions which
indicate how the data were generated, how the data are
correlated, and what potential attacks are possible in actual
scenarios. We describe evolution scenarios by giving the
definition of the individual trajectory dataset, the definition
of individual privacy risk derived from actual scenarios, and
the definition of risk-aware correlated individuals. Aiming
at protecting each individual, we then describe the privacy
requirement for making discriminative pairs indistinguish-
able, along with the utility requirement about losing less
individual information. We summarize the privacy issue of
individual trajectory data published in the problem statement.

A. INDIVIDUAL TRAJECTORY DATASET
The individual trajectory dataset contains multiple users’
trajectories during observation. Different from the traditional
trajectory dataset, the ITD includes one user dimension.
Definition 1 (Trajectory): A trajectory Tij = (l1, t1) →

(l2, t2) → · · · → (l|T |, t|T |) is a sequence of location-time
pairs of length |T |. U is the universe of users in the trajectory
dataset, ∀ui ∈ U is the ith user of U, where i = 1, . . ., n and
j is the jth trajectory of ui.
In the trajectory Tij, ∀(lk , tk ) states in which ui appears at

location lk at time tk , where 1 ≤ k ≤ |T |, L is the universe
location space ∀lk ∈ L, a spatial point denoted by latitude
and longitude coordinates.
Length |T | is a meaningful short time period during obser-

vation, such as one day in a year. For ∀k ∈ |T |, the obser-
vation interval is the time span between adjacent observation
points, denoted as |tk − t(k+1)|. There exists the situation that
in a time period which is n times the observation interval,
a user remains at a location without any movement. In com-
parison with the length |T |, the observation time period is
quite a long time period. In this sense, taking no account of
the difference of time intervals, we only focus on the mobility
of an individual, and the trajectories in different meaningful
short periods might be totally identical.
Definition 2 (Individual Trajectory Dataset ): A trajec-

tory dataset D = {D1,D2, · · · ,Dn} consists of a group of
datasets, each of which contains all trajectories generated by
a single user in the observation time period, where Di is a
subtrajectory dataset about ui. If a trajectory dataset demon-
strates the following characteristics, it is defined as ITD:
Multiplicity In the individual trajectory dataset, each indi-

vidual generates k trajectories (k≥0) in the observation
time period.

Repeatability In the individual trajectory dataset, each indi-
vidual generates k trajectories in the observation time
period, many of which are totally identical with each
other. The repeatability of an individual’s trajectory
represents behavior regularity and a mobility pattern.

Correlation By sharing m identical trajectories
(k ≥ m ≥ 0), individuals are correlated. The level of
the correlation is measured by the numbers of the same
trajectories. The more similar the patterns of the group
individuals, the stronger correlations they have.

B. INDIVIDUAL PRIVACY RISK
Empirically, for any ITD, if a trajectory Tij frequently appears
in Di, it will reveal more behavioral habits of ui. In con-
trast, relatively less is revealed if the same pattern frequently
appears in the whole ITD. If the appearance of Tij is unique
in D, this indicates that the adversaries have a significant
probability of identifying the individual ui from one attack
trajectory Tij. Therefore, the following assumption is made
in this work.
Assumption 1: The privacy threat of individuals in an ITD

is derived from the number of trajectories generated by
individuals.
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Under the assumption, the difference of the time interval
effect on the trajectory data can be ignored, and a trajectory
denoted by location sequences in different time intervals may
be completely the same; therefore, the numbers of the same
trajectory can be counted.
Definition 3 (Count of Trajectory): The number of

appearances of trajectory Tik in Di is denoted as TCik , where
Ti is the set of different trajectories generated by ui, ui ∈ U,
i = 1, · · · , n, and the k th different trajectory of ui denoted as
Tik , ∀Tik ∈ Ti, k ≤ j. Here, j is the total number of multiple
trajectories of ui, many of which might be repetitive.
Considering the actual scenarios, we propose a flexible

framework to measure the individual privacy risk, which is
given as follows.
Definition 4 (Individual Privacy Risk of ITD): The pri-

vacy risk (or risk of reidentification) of an individual ui
denoted as vi is the reidentification risk from all of the
different trajectories of ui. It is the sum of the reidentification
probability of Tik , where k = 1, · · · , l and l is the number of
different trajectories of ui in the observation time period:

vi =
l∑

k=1

vik =
l∑

k=1

PrD(ui
∣∣Tik ). (1)

In formula 1, PrD(ui
∣∣ Tik ), i.e., vik is the reidentification

probability of Tik .

Definition 5 (Individual Trajectory Privacy Risk): The
individual trajectory privacy risk of Tik is the reidentification
probability of Tik , denoted as PrD(ui

∣∣Tik ), i.e., vik . It is the
probability of the specific trajectory Tik being re-identified
in an ITD, and the value is the ratio of the counts of Tik
appearing in Di and D, which can be calculated as follows:

vik = PrD(ui
∣∣Tik )

=
TCik∑

j=−iMatch(Dj
∣∣Tik )+ TCik ; (2)

Match(Dj
∣∣Tik ) = {true Tik = Tjl for ∀Tjl ∈ Tj

false otherwise
. (3)

The number of appearances of Tik in Di is the count of
the trajectory, i.e., TC ik , which is described in Definition 3;
the number of appearances of Tik in D can be divided into
two parts: the counts of the trajectory in Di and D−i, where
D−i = D \ {i}.

The count of the specific trajectory inDi can be obtained by
searching the same trajectory for all users inD−i according to
the followingmatching function shown in formula 3, and then
summing the numbers of the matching results. According
to the risk measurement of Definition 4 and Definition 5,
it is intuitive to reach the same conclusion as Assumption
1: that the individual trajectory privacy risk is monotonically
increasing with the number of appearances of Tik in Di,
i.e., TC ik ; it is degrading with the number of appearances of
the same trajectory in D−i.
Definition 6 (Individual Riskiest Trajectory): The individ-

ual riskiest trajectory is a trajectory which takes the

maximum value of individual trajectory privacy risk in Ti,
denoted as Trisk−i.
Definition 7 (Risk-aware Correlated Individuals): For
∀ui, uj ∈ U, if ∃Tij ∈ Tj makesMatch(Dj

∣∣Tik ) = true, then ui
and uj are risk-aware correlated individuals; otherwise, they
are risk-aware independent.

C. PRIVACY REQUIREMENT
To demonstrate a well-defined privacy requirement, first,
we discuss a privacy-preserved data publication framework in
this section, which is a series of operations of the differential
privacy mechanism; we then illustrate the specific privacy
requirements of ITD publishing in detail and provide the
related definitions of the privacy protection for individuals.

A privacy-preserved data publication framework is a pri-
vacy protection framework which includes a series of opera-
tions of differential privacy mechanism design for satisfying
a specific privacy requirement:
• A setting of response or publication from the data
curator between the users and the database. Generally,
the setting might be interactive or noninteractive.

• An operation on the raw dataset to create synthetic data
for the purpose of generating two discriminative pairs
to protect potential secrets, such as suppression: that is,
global sensitivity.

• Amethodology of making the discriminative pairs indis-
tinguishable. For the differential privacy methodologies,
the privacy parameter gives its privacy criterion to mea-
sure the indistinguishability.

• The mechanism for private perturbation of data. If the
data are correlated, the correlations of data influencing
privacy are considered. A general perturbation algorithm
is given for utility optimization.

From the discussion in Section I mentioned above, the ulti-
mate goal is providing a privacy guarantee for each individual
in the ITD, and the potential secrets should be the set of all
possible counts of the trajectories for each individual. There-
fore, the privacy requirements need to consider the following
operations.

In the ITD publishing in our work, we create a noninter-
active setting by assuming that the data mining tasks would
be fixed before publishing to the specific user. The interac-
tive setting is more flexible than the noninteractive setting;
however, the number of queries of the interactive setting is
limited because excessive queries lead to a large amount of
noise. Due to the special characteristics of ITD, we sup-
press some trajectories to reduce the disclosure probability
of individuals: that is, the sensitivity of the DP mechanism.
We should obtain a group of differential privacy parameters
making the discriminative pairs indistinguishable and provide
a rigorous undistinguished upper bound under the least-cost
suppression, providing a strong guarantee for each individual.
However, it is known that the same trajectories followed by
different users cause correlation with each other. We should
solve the problem that one user obtains a stronger guarantee,
which causes the global utility to decline. Therefore, we
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should design the method to generate a group of optimal DP
parameters.

To illustrate the specific privacy requirements of ITD pub-
lishing, we provide the related definitions as follows.
Definition 8 (Differential Privacy): A random mechanism

M satisfies ε-differential privacy if

DP(M ) = sup
D1,D2,S

log
Pr
[
r ∈ S

∣∣D1
]

Pr
[
r ∈ S

∣∣D2
] ≤ ε (4)

for any datasets D1 and D2 differing in at most one record,
and for any possible sanitized dataset r ∈ Range(M ).
Global Sensitivity: For any function f : Di → Rd , for all

D1 and D2 differing in at most one record, the sensitivity of
f is

1f = max
D1,D2

∥∥f (D1)− f (D2)
∥∥
1. (5)

Definition 9 (Mechanism): Let D be a database, where a
randomized function M (D) is a (randomized) perturbation
mechanism on D, if the output r = M (D) follows a condi-
tional distribution Pr(r ∈ S

∣∣D).
Definition 10 (Laplace Mechanism): By adding Laplace

noise to the output of a function to achieve differential pri-
vacy, the Laplace mechanism which takes a database D,
a function f , and the privacy budget ε as inputs is designed for
those functions whose outputs are real. For any function f :
Di → Rd , the following mechanism provides ε-differential
privacy, in which ε = 1/λ.

M (D) = f (D)+ Laplace(
1f
ε

). (6)

Specifically, the Laplace noise is sampled from the Laplace
distribution, denoted as Laplace(λ) with the probability den-
sity function:

Pr(x
∣∣λ) = e

−|x|
λ , (7)

which has mean zero and standard deviation
√
2λ, and λ is

the scale parameter determined by sensitivity1f and privacy
budget ε, i.e., λ = 1f /ε.
Scale parameter λ determines the curve of the distribution,

where a large λ flattens the curve and leads to significant
noise. When the global sensitivity is fixed (1f = 1, with one
trajectory specified for one individual), the indistinguisha-
bility is determined by the privacy parameter, such as ε in
the Laplace mechanism. Privacy parameter ε is the upper
bound of the indistinguishability, which measures the privacy
leakage; also, as a privacy budget, it determines the curve
of the distribution. Decreasing ε will flatten the Laplace
distribution curve and cause substantial noise. Given the fixed
privacy budget ε, a large 1f will flatten the curve and again
lead to substantial noise. Therefore, the individual protection
level and utility for analytics are decided by the sensitivity
1f and privacy parameter ε.
Through the discussion in Section III, it is easy to infer

that the individuals are risk-aware correlated in an ITD. There
is an urgent need for accurate measurement of the correla-
tion in terms of privacy to compute the real privacy level

of an ITD. To measure the privacy of the record with the
complex correlation of two datasets, many kinds of literature
have studied [50], [51] utilizing the Bayesian and dynamic
methods to analyze the correlations of the datasets which
share one ormore records of some user or his correlated users.
However, they are not appropriate for our case, in which the
two datasets correspond to different users sharing one ormore
of the same records.

Here, we define correlated individual differential privacy
leakage to measure correlated privacy preservation of an ITD
as follows:
Definition 11 (Correlated Individual Differential Privacy

Leakage): Suppose that D = D1,D2, . . . ,Dn is an ITD,
in any subdataset of which all of the records are about the
same user. Different subdatasets may include one or more of
the same items. Datasets D1

i and D
2
i (1 ≤ i ≤ n) generated

from Di differ by at most one record. A correlated privacy
mechanism M is a randomized function on D, and the range
is S. The correlated individual differential privacy leakage of
Mi∈n is

CIDPAi (M ) = sup
D1
i ,D

2
i ,S,D−i

log
Pr
[
M(D1

i ) ∈ S|D−i]
]

Pr
[
M(D2

i ) ∈ S|D−i]
] , (8)

in which D−i = D \ {i}.
For ∀Di, CIDPAi (M ) measures the privacy leakage of the

correlated individual datasets D−i, since removing or adding
at most one item in an objective individual substantially leads
to the privacy leakage of correlated individuals.

As a result, a privacy mechanism M yields ε-correlated
differential privacy if and only if

|CIDPAi (M )| ≤ ε. (9)

D. ANALYTIC REQUIREMENT
Since we aim at privacy-preserved ITD publishing, which
allows the adoption of various forms of trajectory data min-
ing, especially the analytics for individuals, we perform a
general trajectory mining tasks, i.e., frequent sequential pat-
tern mining, and measure the preserved framework utility.
The set of Top-K frequent sequential patterns is a general
measure of both trajectory anonymity and differential privacy
methodology [13], [29].
Definition 12 (Top-K Frequent Sequential Patterns):

Given a positive number K, the set of Top-K frequent sequen-
tial patterns on the raw dataset D and sanitized dataset D̃
are denoted as FK (D) and FK (D̃); also, individual Top-K
frequent sequential patterns are denoted as FK (Di) and
FK (D̃i) for ∀Di ∈ D.
We measure preserved utility in terms of true positive

and false positive by the ratio of true positive and K, since
|FK (D)| = |FK (D̃)| = K . True positive is the number
of frequent sequential patterns in FK (D) that are correctly
identified in FK (D̃), i.e., |FK (D) ∩ FK (D̃)|. False positive is
the number of infrequent sequential patterns in D that are
mistakenly included in FK (D̃).
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E. PROBLEM STATEMENT
For satisfying the privacy requirement and analytic
requirement, we propose IDF-OPT. We consider the least-
cost sensitivity of each individual; we set noninteractive cura-
tor publication; we design a risk function and utility function
to measure privacy preserved level and utility preserved level,
proposing the Individual DF-optimization algorithm to obtain
the Pareto optimization solution; we propose the correlated
individuals differential privacy leakage model, measuring
the correlated individuals differential privacy leakage; and
design sanitization algorithm adding noises for statistical ITD
publishing.

IV. METHODOLOGY
In this section, we demonstrate the detail of proposed
IDF-OPT. Firstly, we introduce the sketch of our solution.
We then describe the details of our methodology, including
definitions, algorithms, and the example.

A. SKETCH OF IDF-OPT
Before delineating the details IDF-OPT, a sketch is presented.
A system architecture of ITD-OPT is obviously represented
in Fig.2; as a noninteractive curator publication, it is a series
of operations based on a group of theorems and algorithms.
It decides a group of Pareto privacy parameters ε∗i and pub-
lishes the sanitization data with high utility and low privacy
risk for data analytics.

FIGURE 2. A system architecture of risk-aware ITD-OPT.

As shown in Fig.3, it is the sketch of IDF-OPT, consists of
the following important stages:
1) Calculation

Calculate the individual privacy risk for each ui ∈ U ,
i = 1, . . . , n, and for each Tik ∈ Ti.

2) Suppression
If the trajectory privacy risk is greater than the threshold
1/k , add it into the set of risk trajectories denoted as
Ri, and label the individual riskiest trajectory Trisk−i in
each round. For each individual in each round, suppress
Trisk−i until the reidentification probability of the trajec-
tory is under the threshold, then return 1fi.

FIGURE 3. Sketch of IDF-OPT.

3) Individual Correlation Computation
For given D = {D1,D2, . . . ,Dn}, whose subdatasets
are labeled with Trisk−i, search the risk-aware correlated
individuals and compute the correlated individual differ-
ential privacy leakage CIDPAi∈n (M ).

4) Individual DF-optimization
By giving a group an initial εi, substitute each εi and
CIDPAi (M ) into the objective functions, i.e., risk func-
tion and utility function. Generate a set of Pareto effi-
cient parameters ε∗i via the individual DF-optimization
algorithm. Return to step II, then label the next riskiest
trajectory in Ri as Trisk−i until all of the trajectories in Ri
are under the threshold

5) Sanitization
Sanitize Di for each ui ∈ U by adding Laplace noises
which are drawn from the Laplace distribution with
Pareto efficient parameters ε∗i .

B. INDIVIDUAL RISK FUNCTION AND UTILITY FUNCTION
For the purpose of meeting the privacy requirement and the
utility requirement, we define the individual risk function
and utility function in this section to measure the privacy
preserved level and utility level.
For ∀Di ∈ D, the designed risk function r : Di × εi → R

is a measurement of the individual privacy risk of a sanitized
ITD, which needs to return a risk value under a specific differ-
ential privacy mechanism for each εi. The value of risk coef-
ficient εi identifies the risk variation of each individual under
the specific privacy preservation mechanism. Interpretively,
the risk coefficient εi is proportional to privacy budget εi and
inversely proportional to sensitivity1fi. Higher εi leads to an
elevated upper bound, leading to more information leakage,
which is accompanied by higher risk to the individual. The
sensitivity 1fi is the suppression value to TCriski : normally,
it is the lower bound to achieve the reidentification threshold.
Therefore, we designed risk function as shown.
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Definition 13 (Individual Risk Function): The individual
risk function indicates the individual privacy-preserved level
of the mechanism Mi, which is given as follows:

R(Di,Mi) = vi · εi, (10)

where vi is the privacy value of ui and vi > 0: it is a constant
derived from Di.

For every individual, the risk value of privacy before the
mechanism of differential privacy is vi, i.e., R(Di) = vi.
Under εi-differential privacy, the risk value should be less
then vi, which gives a privacy level constraint for each indi-
vidual:

0 < εi ≤ 1 (11)

As discussed in Section III, the individuals are risk-aware
correlated, and we also define the correlated individual dif-
ferential privacy leakage to measure the correlated privacy
preservation of multiple individuals. Considering the corre-
lated privacy leakage under mechanism Mi and formula 10,
the individual risk function is given as shown:

R(ui) = vi · CIDPAi (Mi) (12)

Therefore, the risk variation of each individual under the
specific privacy preserved mechanism is indicated by the
differential privacy protection level of a group of correlated
individuals. Furthermore, the constraint of correlated individ-
ual differential privacy leakage is:

εi ≤ CIDPAi (Mi) ≤ 1 (13)

The trade-off problem between privacy and utility is an
inherent problem of the privacy preserved publication frame-
work. To preserve the utility achieving the analytic require-
ment, existing research designs the utility function tomeasure
utility. Under the Laplace mechanism, the utility is measured
by noise, and we therefore design the noise function to mini-
mize the magnitude of the global noise.
Definition 14 (Noise Function): The noise function, indi-

cating the magnitude of the global noise of an ITD, measures
the utility of the data for analytics, which is given as follows:

N (Mi) =
n∑
i=1

noisei; (14)

noisei = λi =
1fi
εi
. (15)

In formula 14, the scale parameter λi determines the dis-
tribution curve of each respective individual in the mecha-
nism M : a large λi flattens the curve and leads to noise of
large magnitude.

C. INDIVIDUAL CORRELATION LEAKAGE MODEL
In this section, we propose an individual correlation leakage
model which describes the correlated differential privacy
leakage between any subsetDi of an ITD and all the neighbors
ofDi, i.e.,D−i.Di andD−i are indirectly correlated with each
other, since they have the same records of different users.

TABLE 2. Example of suppression on ITD and risk-aware correlations.

This is similar, but different from other indirect correlations.
Therefore, we define the privacy leakage of correlated indi-
viduals for the ITD scenario inDefinition 11. Then, we design
the individual correlation leakage model to describe in detail
the complex and dynamic influences of correlated individual
privacy leakage in an ITD; this is a weighted sum of the
privacy leakage of Di. It is improved by the general models
describing the dataset correlation, such as Bayesian Differen-
tial Privacy (BDPL).

Bayesian differential privacy provides a general model to
describe the correlation of datasets. Let G(D,L) be a Gaus-
sian correlation model, in which L is a Laplace matrix of
G(D,L), i.e.,

L =


w1 −w12 . . . −w1n
−w12 w2 . . . −w2n
...

...
. . .

...

−w1n −w2n . . . wn

 . (16)

We present in Table 2 results obtained from analyzing
four users’ strong and weak correlations in the ITD shown
in Table 1, where TCik is trajectory count and the Label rep-
resents the marked individual riskiest trajectory, i.e., Trisk−i,
where trajectory suppression has beenmarked in red. Accord-
ing to the individual riskiest trajectory marked by each user,
its strong and weak risk-aware correlated individuals can be
found and recorded as Correlation. By analyzing the differ-
ential privacy definition, individuals who suppress the same
trajectory demonstrate strong correlation with each other,
such as u1 marked as strong with 4; an individual’s suppressed
trajectory is another user’s trajectory, demonstrating that the
user has a weak correlation with another user, such as u2
marked as weak with 1.
We represent in Fig.4(a) the above individual user cor-

relation description. With a bilateral influence, the strong
correlation is marked as S, and the correlation coefficient
is 1; the weak correlation is marked as W, its correlation
has a unilateral influence, and the correlation coefficient is
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FIGURE 4. Description of individual correlations.

θ (0 < θ < 1/(n − 1)); the correlation depicted by BDLP is
shown in Fig.4(b).

Although many general models such as BDPLAi (M ) pro-
vide a general standard to measure the differential privacy
leakage for the correlated datasets, unfortunately, a more del-
icate describing and dynamic standard is required to measure
the complex correlated data for the following reasons:

• First, BDPLAi (M ) is the upper bound of the privacy
leakage, because not all members in D0 are the cor-
related neighbors of Di. The real value of correlation
leakage should be less than the upper bound due to
eliminating the nonneighbor’s effect. It is easy to reach
this conclusion and prove Proposition 1.

Proposition 1: For any differential privacy mecha-
nismM, themeasurement of correlated individual differ-
ential leakage is less than Bayesian differential privacy
leakage.

CIDPAi (M ) ≤ BDPLAi (M ) (17)
• Second, the correlation measurements should be
dynamic values rather than static values. The different
neighbors’ privacy protection levels cause the variation
of the values. The value of CIDPAi (M ) is decided by a
group of variables, i.e., the correlated neighbors’ and its
own privacy parameters.

• Third, in the Gaussian correlation model, the value
of weight ∀wij ∈ L which represents the correlation
between the tuples i and j is either 0 or 1. Therefore, they
can only describe the adjacent correlation, but not the
weighted correlation. It is necessary to design a correla-
tion model in which the large correlation wij means that
Dj has a large effect on the mean of D0, where Dj ∈ D0,
Dj and Di are correlated.

• Finally, the Gaussian correlation model treats the corre-
lations as a nondirected graph. However, in some special
cases, the effect on the risk of two individuals on an edge
is not always two-way.

For the reasons above, we proposed an individual correla-
tion leakage model based on the Bayesian differential privacy
leakage.
Definition 15 (Individual Correlation Leakage Model):

The individual correlation leakage model is a general model
used to describe the individual correlation in an ITD

CIDPAi∈n (M ) = L × R, (18)

in which R is an individual weighted correlation matrix and L
is a Laplacematrix, which is dynamically decided by adjacent
matrix L = (wij) and the individual weighted correlation
matrix R, which provides a scale on the L.
Definition 16 (Individual Weighted Correlation Matrix):

Let individual weighted correlation matrix R be an n × n
matrix which describes the scale of influence on L. Each
row represents the protection level of a specific individual
dataset, and each column represents the directed influence of
neighbors to each individual.

R =


ε11 −ε12 . . . −ε1n
−ε12 ε22 . . . −ε2n
...

...
. . .

...

−ε1n −ε2n . . . εnn

 (19)

Note: the first index of element εij is the differential privacy
level of Di, and the second index is the weighted directed
influence on Dj.

We describe a group setting for some specific situations.
• For the one-way edge in L which gives the directed
influence, the other side will be set to 0.

• According to the vertex degree, the scale will be repet-
itively computed wi times. The scale of diag(R) should
be divided by diag(L).

• A set of weight θ = {θ1, θ2, . . . , θn} on an edge rep-
resents the coefficients on the scale. For ∀θj ∈ θ ,
it represents the same level of influence on the scale.

Obviously, our method provides a more delicate descrip-
tion for the complex correlated data and is appropriate for
describing the risk-aware correlations drawn from the appli-
cation scenario. According to the Definition 15, 16, for the
correlation described in Figure 4(a), the CIDP is described as
follows:

L =


2 −1 0 −1
−1 2 −1 0
0 −1 1 0
−1 0 0 1



R =



ε1

w1
0 −ε1 −ε1

−θε2
ε2

w2
0 −ε2

−ε3 −θε3
ε3

w3
−ε3

−ε4 −ε4 −ε4
ε4

w4


(20)

We can calculate correlated individual differential privacy
leakage by

CIDPAi∈n (M ) =
n∑
j=1

wij × εji. (21)

Algorithm 1 presents the details of searching the risk-aware
correlated individuals for a specific individual and com-
puting the correlated individual differential privacy leakage
CIDPAi∈n (M ). For each individual in an ITD, its candidate set
U−i is generated. For every member in U−i, if they share the
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ALGORITHM 1 Individual Correlation Leakage Model
Input: Individual trajectory dataset D = {D1,D2, . . . ,Dn}

with labeled Trisk−i, weak correlation coefficient θ ,
i ∈ U set a group of initial privacy parameters εi

Output: CIDPAi∈n (M )
for ui ∈ U do

Generate a candidate set U−i,
wi = 0; wj = 0
for ∀j = −i do

if Trisk−i = Trisk−j; // specifies that ui
and uj are strongly correlated with
each other
then

wij = wji = −1; wi = wi + |wij|
εij = −εi; εji = −εj;

else
if Trisk−i = Tjk , ∀Tjk ∈ Tj ; // specifies
that ui is weakly correlated with
uj
then

wij = wji = −1
wi = wi + |wij|; wj = wj + |wji|
εij = −θεi; εji = 0;

else
wij = wji = 0
εij = εi; εji = εj

end
end

end
end
εii =

εi
wi

CIDPAi∈n (M ) =
∑n

j=1 wij × εji
Return CIDPAi∈n (M )

same riskiest trajectory, then they are strongly related with
each other; else, if the riskiest trajectory of ui is one of the
trajectories uj, then ui is weakly related with uj, which means
that there is an edge from ui to uj; else, they are risk-aware
independent.

D. INDIVIDUAL DF-OPTIMIZATION ALGORITHM
For publishing the sanitized ITD, one of the most important
stages is deciding appropriate optimal privacy parameters
to strike a wonderful balance between privacy and utility.
However, different from the traditional case, in the ITD the
individual’s subdataset is risk-aware correlated, as shown in
the above sections. When we focus on the selection of the
one individual privacy parameter, we need to consider the pri-
vacy parameter of the correlated neighbors, since someone’s
dataset privacy guarantee depends not only on his own pri-
vacy parameter; we also need to consider the effect of privacy
parameters on the global utility. To ensure that the global indi-
viduals achieve privacy and utility optimization, we evolve
the problem into a multiobjective optimization problem and
design the individual DF-optimization algorithm to obtain a
group of optimal parameters of correlated individuals.

The Pareto optimal is a well-suited multiobjective opti-
mization solution to discuss this case. It is a state of global
utility allocation in which it is impossible to reallocate the

privacy parameters to make any one individual privacy guar-
antee better off without making global utility worse.

In Pareto optimization, the central concept is called the
nondominated solution. This solution must satisfy the fol-
lowing two conditions: (i) there is no other solution that
is superior, at least in one objective function; (ii) it is
equal or superior with respect to other objective function
values. Usually, the solution is not unique and consists of a
set of acceptable optimal solutions (Pareto effective). From
the point of view of measurement risks and utility, these cri-
teria are incompatible and can be grouped into two different
categories: objective functions and constraints (restrictions).

As a Pareto optimal multiobjective problem, we propose
the following form:
Objective Function

min
i

[
R(ui),N(M )

]
(22)

Constraints

0 < εi ≤ 1 (23)

εi < CIDPAi (M ) ≤ 1 (24)

We design an individual DF-optimization algorithm which
sets initial privacy parameters εi as the input and com-
putes CIDPAi∈n (M ) many times by calling Algorithm 1,
and returns a group of Pareto efficient parameters ε∗i ;
the details of the individual DF-optimization algorithm are
shown in Algorithm 2.

In the individual DF-optimization algorithm, the initial
privacy parameter is a very small value which results in sub-
stantial global noise. According to Proposition 2, it searches
a group of Pareto efficient parameters ε∗i effectively by
giving the step parameter β. The step parameter β is the
varying granularity, since ε∗i is a continuous variable in the
interval (0, 1]. By adding step parameter β and computing
CIDPAi∈n (M ), it reduces the global noise until the calculation
CIDPAi∈n (Mi) exceeds the upper bound.

For our program design, we make the following com-
promises which require the participation of the decision
maker: (i) The ultimate goal of a multiobjective optimiza-
tion algorithm is to maximize the global utility under the
privacy-protected mechanism, which suppresses the riskiest
trajectory for each individual and ensures the risk to be under
the threshold. Therefore, the mechanism provides the strong
privacy guarantee by suppression, and the differential privacy
ensures the indistinguishability. (ii) Based on the premise of
maximizing the global utility, the algorithm makes a best
effort to achieve the minimum indistinguishability: that is,
the lowest indistinguishable upper bound of the raw dataset
and noisy dataset.

The individual DF-optimization algorithm should improve
the minimum global noise; at the same noise level, the algo-
rithm should improve to the minimum risk of each individual
until CIDPAi∈n (Mi) exceeds the upper bound.

By following the above compromises, we can ignore many
solutions to the multiobjective optimization problem and
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ALGORITHM 2 Individual DF-Optimization Algorithm
Input: ITD with Trisk−i, ui ∈ U set initial privacy parameters

εi, Set step parameter β
Output: Pareto efficient parameters ε∗i
for ui ∈ U do

Computing CIDPAi∈n (M ) with initial εi
ε∗i = εi

end
for ui ∈ U do

if CIDPAi (Mi) == 0 or CIDPAi (Mi) == εi then
Continue

else
if CIDPAi (Mi) > ε∗i and CIDPAi (Mi) ≤ 1 then

do
ε∗i = ε

∗
i + β

ε∗j = ε
∗
j + β ; // uj is correlated

with ui,∀j ∈ −i
Computing CIDPAi∈n (Mi)

while CIDPAi (Mi) ≤ 1;
else

if CIDPAi (Mi) > 1 then
do

ε∗i = ε
∗
i − β

ε∗j = ε
∗
j − β ; // uj is

correlated with ui,∀j ∈ −i
Computing CIDPAi∈n (Mi)

while CIDPAi (Mi) > 1;
end

end
end

end
Return ε∗i∈n

involve the exact method in the decision process. Analyzing
the noise function N (M ) =

∑n
i=1 noisei =

∑n
i=1 1/εi,

we can obtain Proposition 2.
Proposition 2: To achieve the maximum global utility, that

is the minimum sum of the noise of individuals, the best
solution is to divide equally given a certain amount of privacy
budget.
Letting:

∑n
i=1 εi = α, α > 0, we have ε∗ =

min
∑n

i=1 1/εi, ε
∗

1 = ε
∗

2 = · · · = ε
∗
n = α/n.

E. SANITIZATION ALGORITHM
For the purpose of publishing sanitized data, we design the
sanitization algorithm combining the four steps of IDF-OPT.
The overview of the sanitization algorithm is given in
Algorithm 3. For a given raw individual trajectory dataset
ITD with TCrisk−i, a group of Pareto efficient parameters ε∗i ,
and risk threshold 1 / k , it returns a sanitized dataset ITD.

The process of sanitization is improved by several rounds,
each of which suppresses the riskiest trajectory for an indi-
vidual. The number of rounds is decided by the number of
elements in the risk trajectory set. In the first round, the pro-
cess deals with the first riskiest trajectory for individuals;
for the second round, it deals with the second riskiest tra-
jectory; this continues all the way to the end. In the saniti-
zation process, we add noise to the counts of the trajectories
for each individual in each round using the training Pareto

ALGORITHM 3 Sanitization Algorithm

Input: Pareto efficient parameter ε∗i , risk threshold p, ITD
with TCrisk−i

Output: Sanitized ITD
for ui ∈ U do

Computing vik = PrD(ui
∣∣Tik ) and TCik

if vik ≥ p then
Put Tik into Ri

end
end
do

for ui ∈ U do
if Ri 6= ∅ then

Labeling riskiest Tik as Trisk−i
end

end
Computing ε∗i using Algorithm 2
c = TCrisk−i
do

c = c− 1
while risk of Trisk−i with count c ≤ p;
1fi = TCrisk−i − c
for ∀Trisk−i ∈ Ri do

NCik = TCik + Laplace(1fi
ε∗i

)
Removing Trisk−i from Ri

end
while ∃Ri 6= ∅;Ri ∈ {R}n;
Return Sanitized ITD

optimal parameter, since the discriminative pairs are counts
of trajectories in raw and sanitized ITD and make them indis-
tinguishable. We can thus control the overall noise effectively
and obtain the strong guarantee for each individual.

The continued example is shown in Tables 3-4: we set the
risk threshold p = 1/k = 0.5 for k = 2. In the first round,
as shown in Table 3, we suppress 1 → 3 → 5 for u1;
3 → 5 → 7 for u2; 1 → 3 for u3 and 1 → 3 → 5
for u4. Each one suppresses the true counts of the riskiest
trajectory to keep the risk below the threshold; then, for u1,
u2 and u4, all of the trajectories are under the threshold. After
suppression, we add Laplace noise drawn from Lap(1/ε∗i )
to the counts of the trajectories, and the parameters denoted
as ε∗i are obtained from Algorithm 2, i.e., the individual
DF-optimization algorithm. However, for u3, the risk value
of the trajectory 5 → 7 is still higher than the threshold.
In the second round, as shown in Table 4, we suppress the
true count of riskiest trajectory 5 → 7 for user 3, then add
Lap(1/ε∗∗3 ) to the true counts of u3’ trajectories.

V. EXPERIMENT EVALUATION
In this section, we examine the performance of IDF-OPT in
terms of individual information loss and global utility mea-
sure. To meet the analytic requirement, we perform frequent
sequential pattern mining, i.e., Top-K, for both individuals
and the global users to measure the individual informa-
tion loss and global utility decline due to the suppression
and noisy operation. Comprehensive experiments based on
actual trajectory publishing benchmarks are comparable with
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TABLE 3. Continuous example of suppression and sanitization ITD (first round).

TABLE 4. Continuous example of suppression and sanitization ITD (Second Round).

previous works with respect to bothmethod of anonymization
and DP.

Three groups of experiments are performed to verify the
validity of IDF-OPT, two of which study the comparison
of changes of individual information loss extent between
classical methods and our methods when different parameters
change, while the other studies the comparison of global util-
ity between different methods. We verify the loss of personal
information and the change of utility caused by the change of
two parameters, risk threshold p value and K most frequent
pattern, and compare the results with the classical algorithms.

First, since the sensitivity of the differential privacy mech-
anism we designed depends on the suppression level of an
individual’s riskiest trajectory, noise is added to trajectories
to satisfy differential privacy. Therefore, by setting the same
anonymization threshold, the classical algorithms will retain
the same privacy preserved level as our method, and the
experimental results show that our method achieves reduced
information loss for individuals. In addition to the classical
algorithm k-anonymity, (K ,C)L is also known as local sup-
pression. It achieves a tailored privacy model for trajectory
data anonymization; in comparison with the previous works
in the literature, the proposed local suppression method can

significantly improve the data utility in the case of anony-
mous trajectory data. Therefore, we compare individual infor-
mation loss changes with risk threshold p values between
the classical anonymity mechanism algorithm k-anonymity,
(K ,C)L [13], and our approach at the same suppression
level to study the impact of suppression level on individual
information loss. Since the change of suppression level is not
a significant parameter of influence of the classical DP algo-
rithms, we do not compare it with the classical DP algorithms
when the risk threshold p changes. We also did not examine
the effect of the change in the risk threshold p in the global
case.

Second, we study how individual and global utility change
with K frequent items, and we compare our method with
the classical methods (K ,C)L , n-gram [30] and DPT [31].
n-gram and DPT are considered to be the relatively most
advanced trajectory publishing technologies based on dif-
ferential privacy. They reconstruct trajectories by defining a
reasonable hierarchical structure and adding noise to frequent
prefixes or n-grams, which effectively reduces the output
domain, providing high practical value for frequent pattern
mining in the global domain. We compare our method with
(K ,C)L , DPT and n-gram with respect to the individual and

7434 VOLUME 9, 2021



J. Zhao et al.: Risk-Aware Individual Trajectory Data Publishing With DP

global utility decline by setting the general privacy criterion
measures for the DPmechanism and anonymity and study the
effects of varying K upon the methods.

A. D4D DATASET
Since none of the previous works can preserve the user
dimension for data analysis, such as individuals’ frequent
patterns, we cannot directly compare our method with them
using the same trajectory dataset. Therefore, we carry out the
experiments using the spatiotemporal data, including users’
dimension. The D4D-Senegal challenge includes open inno-
vation data from Orange’s mobile phone users in Senegal.
D4D contains 300,000 randomly selected users’ trajectories
at the site level for one year on a rolling 2-week basis.
We generate 3,000 users and capture the daily trajectories for
each individual during two weeks in January 2013. Because
the area of users’ activities is too large in D4D, such that
one group of users has no intersection of activities with other
groups, it is meaningless for hiding users and reducing risks.
Therefore, the rule of capturing is that the users must be active
in the same area. We randomly select 300 users from the
capturing dataset. We also preserve the users’ dimension for
further analytics: therefore, this is referred to as ITD in our
work.

B. INDIVIDUAL INFORMATION LOSS
To verify the efficiency of the proposed method with respect
to personal information loss, we first evaluate in terms of indi-
vidual information loss by varying the risk threshold p value
for the anonymization threshold 1/k for both k-anonymity
and (K ,C)L . According to the scale of the dataset, the selec-
tion of parameters for the contrast method (K ,C)L is L = 3,
C = 60%. The following parameters are used for all users,
respectively: p from 0 to 1 for K = 5 and K = 10
performed on classical k-anonymity, (K ,C)L and IDF-OPT.
During the 2-week observation, each individual generates no
more than 20 trajectories per day, and therefore 1/p is set
from 1 to 5.

We randomly select 4 users, and the experimental results
are shown in Fig.5 and Fig.6. As shown in the results,
IDF-OPT performs significantly better than the existing sup-
pression method at the same level of anonymity for every
selected user. In particular, by calculation it achieves 51.8%
and 59.3% improvement on average for 300 users and all 1/p
values with K = 5 and K = 10 most frequent patterns,
respectively.

To further verify the effectiveness of the proposed method,
we compare the proposed method with (K ,C)L , DPT and
n-gram for further study of the effectiveness of our method
in preserving the K most frequent patterns. According to
the scale of the dataset, the selection of parameters for the
contrast method is noisy prefix tree height h = 5, privacy
budget ε = 1.0 for n-gram and n = 5 for DPT.
We also randomly select 4 users, and the experimental

results are shown in Fig.7. By varying K and setting p = 0.3,
we show the comparison between the classical (K ,C)L , DPT,

FIGURE 5. Individual information loss vs. k-anonymity and (K , C)L
(K = 5).

FIGURE 6. Individual information loss vs. k-anonymity and (K , C)L
(K = 10).

FIGURE 7. Individual information loss vs. (K , C)L, DPT and n-gram
(p = 0.3).

n-gram and IDF-OPT for individuals: our method was able to
retain more information for each individual.

Through the analysis of the results, we believe that the
local suppression mechanism will cause a large amount of
information loss and reduce the data utility of individuals
when it performs suppression operations on individual
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repeated trajectories. Compared with the existing differential
privacy protection technology, the advantage of our method
lies in considering the correlation problem of different users
repeating the same trajectory and relaxing sensitivity to con-
serve privacy budget. In our work, the correlation between
different users is dynamically measured through the indi-
vidual correlation model. The multiobjective optimization
model is designed to solve for the optimal privacy protection
parameters of different users, adding less noise to improve
data utility.

C. UTILITY MEASURE
In addition to individual information loss for specific individ-
uals, the data utility is measured for global users by perform-
ing Top-K frequent pattern mining for raw ITD and sanitized
ITD. We examine the impact of utility loss of global users
on K and compare the ratio of the true positive with classical
methods. By varying K and setting p = 0.5 and p = 0.25,
the experiment shows the comparison between (K ,C)L , DPT,
n-gram and IDF-OPT for global users. For the global users,
there are more than 3,000 trajectories generated by 300 users
during observation, and therefore K is set to a larger value
than those of individuals: the value ofK is varied from 5 to 35.

FIGURE 8. Utility loss vs. (K , C)L, DPT and n-gram (p = 0.5, p = 0.25).

As shown in Fig.8, for both p = 0.5 and p = 0.25,
IDF-OPT performs better than classical methods. The exper-
iments also show that the utility loss is sensitive to the values
of K and p. When either K or p become larger, the utility loss
is minimized.

Experimental results show that the proposed method not
onlymaintains good performance in terms of individual infor-
mation loss but also in terms of global data utility. This is
because the ultimate goal of a multiobjective optimization
algorithm is to maximize the global utility under the privacy-
protectedmechanism,which suppresses the riskiest trajectory
for each individual to decrease the risk to below the threshold.
Therefore, the method provides an effective way to improve
the minimum global noise.

VI. CONCLUSION
In this article, we summarize the challenges of privacy
preserved individual trajectory data publishing to solve
the problems of the existing trajectory data publishing in
both application and technology. We design the risk-aware
IDF-optimization method to reduce the risk of personal pri-
vacy disclosure while retaining the statistical characteristics
of data for data analysis and its application. In the frame-
work, we define individual risk to quantify privacy and the

measurement of correlated individual privacy risk. By extend-
ing the scope of research from the trajectory protection level
to the level of individual privacy protection, we provide suf-
ficient privacy protection for individuals. At last, we include
the risk function and noise function in the Pareto optimization
problem for achieving data utility optimization. In our work,
we perform a large number of experiments based on the actual
trajectory publishing case of D4D, demonstrating that this
method maintains high practicability in the task of trajectory
data mining and that its performance is better than those of
the existing privacy protection methods.
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