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ABSTRACT Agriculture plays a vital role in the economic growth of any country. With the increase of
population, frequent changes in climatic conditions and limited resources, it becomes a challenging task to
fulfil the food requirement of the present population. Precision agriculture also known as smart farming have
emerged as an innovative tool to address current challenges in agricultural sustainability. Themechanism that
drives this cutting edge technology is machine learning (ML). It gives the machine ability to learn without
being explicitly programmed. ML together with IoT (Internet of Things) enabled farm machinery are key
components of the next agriculture revolution. In this article, authors present a systematic review of ML
applications in the field of agriculture. The areas that are focused are prediction of soil parameters such as
organic carbon and moisture content, crop yield prediction, disease and weed detection in crops and species
detection. ML with computer vision are reviewed for the classification of a different set of crop images
in order to monitor the crop quality and yield assessment. This approach can be integrated for enhanced
livestock production by predicting fertility patterns, diagnosing eating disorders, cattle behaviour based on
ML models using data collected by collar sensors, etc. Intelligent irrigation which includes drip irrigation
and intelligent harvesting techniques are also reviewed that reduces human labour to a great extent. This
article demonstrates how knowledge-based agriculture can improve the sustainable productivity and quality
of the product.

INDEX TERMS Agricultural engineering, machine learning, intelligent irrigation, IoT, prediction.

NOMENCLATURE
AI Artificial Intelligence
ML Machine Learning
DL Deep Learning
IoT Internet of Things
GPS Global Positioning System
UAV Unmanned Aerial Vehicle
ASC Agriculture Supply Chain
NLP Natural Language Processing
SI Swarm Intelligence
ANN Artificial Neural Network
NN Neural Network
kNN K-Nearest Neighbour
SVM Support Vector Machines
RNN Recurrent Neural Network
ELM Extreme Learning Machines
RELM Regularized Extreme Learning Machine
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XGBoost Extreme Gradient Boosting
MLP Multi-Layer Perceptron
CNN Convolutional Neural Network
PCA Principal Component Analysis
RBFN Radial Basis Function Network
RF Random Forest
GBM Gradient Boosting Model
SVR Support Vector Regression
BPNN Back Propagation Neural Network
LS-SVM Least square support vector machine
GRNN Generalized Regression Neural Networks
RELM Residual Maximum Likelihood
DBN Deep Belief Network
RT Regression Tree
MLR Multiple Linear Regression
LASSO Least Absolute Shrinkage and Selection

Operator Regression
RIDGE Ridge Regression
SNN Shallow Neural Network
GCN Graph Convolutional Network
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GEP Gene Expressions Programming
RCNN Regions-CNN
GA Genetic Algorithm
PSO Particle Swarm Optimization
PLSR Partial Least Square Regression
ANFIS Adaptive Neuro Fuzzy Inference System
TCN Temporal Convolution Network
SCC Somatic Cell Count
OPF Optimum-Path Forest
BVDV Bovine Viral Diarrhea Virus
MC Moisture Content
SOC Soil Organic Carbon
TN Total Nitrogen
SOM Soil Organic Matter
NDVI Normalized Difference Vegetation Index
CEC Cation Exchange Capacity
ETc Estimation of evapotranspiration
SOM Soil Organic Matter
LAI Leaf-Area Index
RGB Red Green Blue
DW Accumulated Dry Weight
VRI Variable Rate Irrigation
ET Evapo-Transpiration
EC Electrical Conductivity
SCM Sub-Clinical Mastitis
SI Scatter Index
AWM Attribute Weighting Model
AUC Area Under the Curve
R Correlation Coefficient
R2 Coefficient of Determination
MSPE Mean Squared Prediction Error
MAPE Mean Absolute Percentage Error
MAE Mean Absolute Error
RMSE Root Mean Square Error
RRMSE Relative Root Mean Square Error
RPD Residual Prediction Deviation
ROC Receiver Operating Characteristic
RMSD Root Mean Square Difference
NS Nash–Sutcliffe coefficient
WSN Wireless Sensor Network
GWO Grey Wolf Optimization
SPI Serial Peripheral Interface
I2C Inter-Integrated Circuit
UART Universal Asynchronous Receiver

Transmitter
USB Universal Serial Bus
BLE Bluetooth Low Energy

I. INTRODUCTION
The population of the world will increase to 9.1 billion
approximately thirty-four percent as of today by the end
of 2050. Food requirement will increase by 70 percent and
due to rapid urbanization, land availability for agriculture
will decrease drastically in the coming years. India will
be the most populated country by 2050 and presently it
is already lagging the domestic food production. The main

reason for reduced food production is the lack of planning,
unpredictable weather conditions, improper harvesting and
irrigation techniques and livestock mismanagement. In the
last few years, nature has experienced a drastic change in
weather conditions due to global warming. The average tem-
perature of the earth has been increased due to which there is
uncertainty in climatic conditions. Frequent droughts, heavy
rainfall are the biggest challenge for poor farmers. According
to the government of India annual economic survey, adverse
climatic conditions, reduce the farmer’s income by 20-25%.

Precision agriculture [1], [2] is one of the solutions to
ensure food security for the entire world [3]. Precision agri-
culture also abbreviated as digital agriculture is a technology-
enabled data-driven sustainable farm management system.
It is basically the adoption of modern information tech-
nologies, software tools, and smart embedded devices for
decision support in agriculture [4] as shown in figure 1.
Mechanized agriculture and the green revolution are the two
key components of the first and second agriculture revolution.
Precision farming is an important part of the third agriculture
revolution [5].

FIGURE 1. Precision agriculture.

John Deere introduced this technology in 1990 for the
sowing of seeds and spraying of fertilizers using global posi-
tioning system (GPS) controlled tractors. The main focus
of precision farming is to reduce the production cost and
environmental effects to increase the farm’s profitability.
Digital technologies such as IoT [6], AI, data analytics, cloud
computing, and block-chain technology play a key role in
precision agriculture. In precision farming, IoT based smart
sensors are deployed in the agriculture land for collecting
data related to soil nutrients, fertilizers, and water require-
ments as well as for analysing the crop growth. Autonomous
and semi-autonomous devices such as an unmanned aerial
vehicle (UAV) [7] and robots are used for identifying weed
and disease in the plants using computer vision techniques.
Satellite images are also used in precision agriculture for
monitoring the field and identifying the diseases in the
plants. The data obtained from the deployed sensors [8] are
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processed and analyzed using ML algorithms to make farm-
ing practice more controlled and optimized. ML algorithms
are also used for weather and rainfall prediction based on
the data obtained from sensors, climatic records, and satellite
images. This could save the lives of thousands of farmers
who commit suicide because of crop loss due to uncertainty
in weather conditions. Smart livestock management is an
important component of precision agriculture. It helps in
monitoring the health, welfare, productivity, and reproduction
of animals throughout their life cycle. Sensors and cameras
monitor animal’s health and computer vision techniques help
in making intelligent decisions such as stopping the commu-
nal spread of diseases. Autonomous tractors and automated
irrigation systems provide modern farming solutions to farm-
ers. The widespread utilization of precision farming across
the world is due to the presence of innovative machine and
deep learning (DL) algorithms, high-speed internet access,
and efficient computational devices. In [10] authors have dis-
cussed applications of ML for sustainable agriculture supply
chain (ASC) performance. Authors have presented a unique
ML-ASC framework that can guide researchers and agri-
culture practitioners to understand the role and importance
of digital technologies in the agriculture industry. In [11]
authors reviewed different ML applications in agriculture and
discussed how digital technologies will benefit the agricul-
ture industry. In this paper, the authors have presented a
comprehensive review of the ML application for precision
agriculture. This review article will provide an insight into the
research community about the adoption of digital practices
in the agriculture management system. It is anticipated that
government agencies will frame policies to promote precision
farming across the world. The main contribution of the article
is outlined as follows:
• Applications of artificial intelligence and IoT in preci-
sion agriculture are discussed along with their practical
implications.

• Foundation of ML and DL algorithms which find their
application in precision agriculture has been discussed.

• Performance comparison for variousML,DL algorithms
in precision farming has been carried out based on the
state-of-art literature.

• Assessment of artificial intelligence techniques in preci-
sion agriculture is outlined along with its statistical and
performance analysis.

• Comparison of performance parameters of sensors used
in IoT applications in precision agriculture is presented.

• Integration of wireless sensor network (WSN) with
IoT and artificial intelligence in precision agriculture is
discussed.

• Challenges and future trends of artificial intelligence in
precision farming are briefly outlined.

Table 1 highlights the major differences of this review
article with other articles published in this field. The paper
is organized as follows. Section 2 presents the impact of
artificial intelligence (AI) and IoT in the field of agricul-
ture. Section 3 briefly elucidate ML algorithms. In section 4

different ML applications in precision farming are briefly
reviewed. Section 5 presents the IoT application in pre-
cision agriculture. Section 6 evaluates and access the
knowledge-based agriculture system. Section 7 outlines the
challenges and limitation of AI in precision agriculture.
Section 8 presents the future trends of AI in precision agri-
culture. Section 9 provides conclusive remarks to summarize
the paper.

II. IMPACT OF ARTIFICIAL INTELLIGENCE AND IoT IN
AGRICULTURE
The term AI was first coined in the Dartmouth conference
in the year 1956 by John McCarthy and he defined it as a
science and engineering of making intelligent machines or
more specifically intelligent computer programs. AI technol-
ogy provides computational intelligence to machines so that
they can learn, understand and react according to the situ-
ation. ML, DL, natural language processing (NLP), swarm
intelligence (SI), expert systems, fuzzy logic, and computer
vision are the subfields of AI as shown in figure 2. This
field finds endless applications across different sectors of
human life. Intelligent AI programs are widely explored in
health-care, agriculture, finance, robotics, e-commerce and
the automation industry. Samsung, Apple, and other elec-
tronics giant companies announced that they will be utiliz-
ing this technology in every device they will manufacture
in the near future. IoT is another emerging technology in
which smart sensors, devices are interconnected through the
internet. These smart sensors can be utilized to gather data
across different disciplines such as solar plants, agriculture
fields, disaster-prone areas, manufacturing industry for effi-
cient resource utilization. With the increase in population
over the year’s demand for agriculture products is increasing
day by day. However, with limited land availability for farm-
ing and reduce interest among the young generation to adopt

FIGURE 2. Artificial intelligence techniques.
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TABLE 1. Key differences of the article with published articles.

farming as their profession, it has become a challenging task
for the agriculture industry to satisfy the food requirement of
millions of people. Now, the agriculture industry is widely
adopting smart technologies like IoT and AI to efficiently
cultivate organic products in limited land areas as well as to
overcome the traditional challenges of farmers.

IoT based smart farming system is built for monitoring soil
nutrients and soil moisture using sensors. ML algorithms are
explored for determining the optimum amount of fertilizers
required for soils before the sowing of crops.

Drones are revolutionizing the agriculture industry. These
drones are cameras enabled and are used for different appli-
cations such as field and crop monitoring, spraying of pesti-
cides, and drip irrigation. The images captured by the drones

over the entire lifecycle of crops can be examined using
DL and computer vision algorithms for disease and weed
identification. Thereafter, these drones are used for spraying
pesticides over the weeds and infected crops. Over the years
uncertainty inweather conditions is themain concern of farm-
ers. Drip irrigation using drones is an efficient AI-empowered
irrigation system which is basically trained on weather pat-
tern and can effectively reduce the water problems of farmers.

AI-enabled robots can be used for harvesting the crops at
a much faster pace and in large volumes. Robots can reduce
human labour to a large extent and can be used along with
drones for monitoring the field. Livestock management is
another major concern for farmers. IoT based sensors can
be deployed in the field for health monitoring of cattle. This
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information can be utilized for protecting the bunch of cattle
from diseased cattle.

NLP based virtual assistant applications like chatbots can
update the farmers with the latest advancement in technolo-
gies for agriculture. Farmers can finds solutions for their
problems and incorporate the latest technology in their farm-
ing for improving their field productivity. Thus, AI and IoT
are the two major technologies that will play a vital role in
the agriculture industry.

III. MACHINE LEARNING ALGORITHMS
ML is the subfield of computer science that gives computers
the ability to learn without being explicitly programmed.
(Arthur Samuel, 1959) [12]. Alan Turing in the year 1950 pro-
posed the concept of learning machines and wrote a research
article ‘‘The Turing Test for Machine Intelligence’’ [13].
He performed a test and examined the machine’s abil-
ity to demonstrate intelligent behaviour similar to humans.
Amachine or intelligent computer program learns and extract
knowledge from the data, builds a framework for making
predictions or intelligent decisions. Thus, the ML process is
divided into three key parts, i.e. data input, model building,
and generalization as shown in figure 3. Generalization is the
process for predicting the output for the inputs with which
the algorithm has not been trained before. ML algorithms
are mainly used to solve complex problems where human
expertise fails such as weather prediction, spam filtering,
disease identification in plants, pattern recognition.

Today, due to the availability of innovative algorithms
and large data sets through internet resources industries and
research communities are widely using ML algorithms for
solving a diverse set of problems. DL is the subfield of the
family of ML algorithms which is trained from large sets and
uses an artificial neural network (ANN) to make intelligent
decisions.

ML algorithms are categorized as supervised learning,
unsupervised learning, and reinforcement learning as shown
in figure 4. Supervised learning as the name suggests is
learning with the supervisor or teacher. This set of algo-
rithms works with labeled data-set which means correspond-
ing to each input there are outputs. The algorithm builds
an input-output relationship with this labeled data set and
thereafter generalize or predicts outputs for unseen inputs.
Supervised learning algorithms used for predicting the cate-
gorical value are known as classification algorithms and the
algorithms that are used for predicting the numerical value are
known as regression algorithms. Unsupervised learning algo-
rithms works with unlabelled data and discovers unknown
objects by grouping similar objects. The goal of an unsuper-
vised learning algorithm is to extract hidden knowledge from
the training data set thus this approach is difficult to imple-
ment than supervised learning algorithms. Reinforcement
learning is another approach that learns from the environment
through reward and punishment. AlphaGo, a chess-playing
game developed by DeepMind utilized reinforcement

FIGURE 3. A Machine learning process.

learning for defeating the world’s best chess-playing
computer program.

In this paper the performance of different ML algorithms
are analysed and discussed in the field of agriculture.
Table 2 presents different types of supervised, unsupervised
and reinforcement learning algorithms utilized for soil and
weather prediction, disease and weed identification, intelli-
gent irrigation and harvesting techniques as well as livestock
management.

IV. MACHINE LEARNING APPLICATIONS IN PRECISION
AGRICULTURE
In many countries, the farmers rely on the traditional ways of
farming which is based on the reliability of the suggestions
from the elderly and their experience. This method leaves
farmers at the mercy of random climatic conditions which
are already getting random due to global warming and uneven
rainfall patterns. The manual spraying method for pesticides
led to improper usage of resources and harms the environ-
ment. AI and IoT enabled precision agriculture removes the
randomness and assist new age farmer to optimize every step
of the farming process. Figure 5 (a) and (b) presents a pictorial
view of traditional agriculture and technology enabled farm
management system.

Gaitán [14] provided a systematic study of the impact of
extreme weather events, such as hail events, cold waves, heat
waves, and their impact on agricultural practices. The author
reported floods, droughts, frost, hail, heatwaves, and pest
outbreaks are impacted by climatic conditions.

The AI systems are applicable in each farming operation
as depicted in figure 4 and some of them even extend beyond
the conventionally recognized steps. In this section we will
discuss the state of art techniques proposed/implemented by
various researchers and practitioners worldwide.

A. SOIL PROPERTIES AND WEATHER PREDICTION
Prediction of soil properties is the first and the most
crucial step which influences the selection of crop, land
preparation, selection of seed, crop yield, and selection of
fertilizers/manure. The soil properties are directly related to
the geographic and climatic conditions of the land in use
and hence is an important factor to take into consideration.
The soil properties prediction mostly consists of predicting
nutrients in the soil, soil surface humidity, weather condi-
tions during the lifecycle of the crop. Human activities have
highly affected the properties of soil and hence our ability
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FIGURE 4. Categorization of machine learning algorithms.

to cultivate the crops [15]. In general, there are 17 essential
elements as listed in table 3 which play an important role
in plant growth [16]. The growth of crops depends on the
nutrients available in a particular soil. The soil nutrients are
mostlymonitored by electric and electromagnetic sensors [8].
Depending on the nutrients farmers make informed deci-
sions as to which crop is optimal for the land. However,
the nutrients can be added through fertilizers, manure, etc.
but with an additional cost. Some of them may also damage
the environment and have an adverse effect on the soil cycle.

A scientific analysis of soil nutrients, soil moisture, pH is
important for determining the soil properties. Acar et al. [17]
employed an extreme learning machine (ELM) based regres-
sion model for prediction of soil surface humidity. The
author selected two terrains having area 4 KM2 and
16 KM2 located in Dicle university campus for experimen-
tal analysis. The real-time field data was extracted using
polarimetric Radarsat-2 data, which was pre-processed using
the SNAP toolbox [18] and features were added with the
help of local measurements by separating the field into
square grids. Once the pre-processing and feature extrac-
tion is done the data is passed to ELM based regression
model to predict the soil surface humidity. The algorithm was
tested with 5 different kernel functions and the prediction
was validated using leave-one-out cross-validation technique.
The experimental results confirmed the lowest root mean
square error (RMSE) of 2.19% when using ‘sine’ kernel
function.

Wang et al. [19] deployed soft sensors based on ELM
for the measurement of nutrient solution composition in the
soilless cultivation method. The soilless cultivation method
is an emerging planting method. It is imperative to moni-
tor the pH value, temperature and concentration changes in
nutrient solution composition as the performance of soilless
cultivation is highly dependent on these parameters. The
significant variables in a nutrient solution cannot bemeasured
directly hence these are determined with the help of auxiliary
variables. The authors utilized conductivity, pH value, flow
rate, and temperature measurements for auxiliary measure-
ments. These auxiliary measurements are fed to a deep belief
network-based ELM which predicts the values of significant
variables. For experimental analysis, the authors deployed the
model to measure the concentration of SO2−

4 , and H2PO
−

4 in
a nutrient solution. The authors reported an average RMSE
of 1.2414 for predictions in SO2−

4 and RMSE of 0.8892 for
prediction ofH2PO

−

4 . Park et al. [20] utilized ML algorithms
to predict the soil moisture using data from MODIS. The
authors downscaled the AMSR2 soil moisture to 1KM using
random forest (RF) and Cubist algorithms. An ensemble
of these algorithms was used to obtain soil moisture data.
The results obtained through the ML methods were com-
pared with the statistical ordinary least squares technique.
The ML model exhibited a R2 (coefficient of determination)
of 0.96 and an RMSE of 0.06, whereas a R2 of 0.47 and a
RMSE of 0.16 was associated with the statistical ordinary
least squares.
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TABLE 2. Machine learning algorithms.

TABLE 3. Essential plant nutrients [2].

Reda et al. [21] explored ML algorithms to estimate soil
organic carbon (SOC) and total nitrogen (TN) in soil samples

collected from four agricultural lands of Moroccan. Data
set of near-infrared spectroscopy is utilized in comparison
to traditional chemical methods as this technique reduces
the computation time and resource utilization. The ensemble
learning modeling algorithm presents the best performance
among other regression models and back-propagation neu-
ral networks (BPNN) algorithm. The proposed algorithm
presents R2 of 0.96, RMSE of 1.92, performance to devia-
tion (RPD) of 4.87 for SOC and R2 of 0.94 and RMSE of
0.57, RPD of 4.91 for TN prediction. Morellos et al. [22]
also utilized visible and infrared spectroscopy to determine
TN, SOC, and moisture content (MC) in the arable field in
Premslin Germany. Spectroscopy dataset is used for build-
ing the predictive ML model for estimating all three soil
properties. Least square support vector machine (LS-SVM)
and cubist ML algorithms outperform principal component
regression and partial least square regression multivariate
methods in terms of RMSE and residual prediction deviation
(RPD). LS-SVM best predict SOC and MC with RMSE
of 0.062 and 0.457, RPD of 2.24, and 2.20. Cubist best
predicts for TN with RMSE of 0.071 and RPD of 1.96.
Andrade et al. [23] build ordinary least square regression, RF,
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FIGURE 5. (a) Traditional agriculture cycle (b) Precision agriculture cycle.

cubist regression, XGboost prediction model for determin-
ing soil properties from portable X-ray fluorescence (pXRF)
spectrometry dataset in Brazilian coastal plains. Three soil
properties total nitrogen, soil organic matter (SOM), cation
exchange capacity (CEC) were analyzed using RF, ordi-
nary least squares regression (OLS), cubist regression (CR),
XGBoost (XGB). RF algorithm gives the best performance
with R2 of 0.50 for TN, R2 0.75 for CEC and 0.56 for SOM.
Deiss et al. [24] estimated the soil properties (clay, sand,
pH, SOC) in northern Tanzania and USA Midwest from the
spectroscopy dataset using ML algorithms. THE tuned SVM
model outperforms the partial least square (PLS) regression
model in terms of predicting all the soil parameters.

Mahmoudzadeh et al. [25] explored the ML algorithm to
predict SOC in the Kurdistan province of Iran. The simulation
results suggest that RF accurately predicts SOC with R2

of 0.60 and RMSE of 0.35% in comparison to SVM, kNN,

Cubist, and Extreme Gradient Boosting (XGBoost) ML algo-
rithm. The study also suggests that air temperature, annual
rainfall, valley depth, texture of terrain surface are some of
the important factors that influence SOC spread over the
Kurdistan region. Veres et al. [26] explored DL architecture
such as CNN for predicting the soil properties from the
infra-red spectroscopy dataset. Benke et al. [27] predict soil
electrical conductivity (EC) and SOC in different regional
locations of Victoria, Australia using pedotransfer function
(PTF) based on ML algorithm. PTF basically converts soil
measurement into soil properties and provides inputs for ML
simulation algorithms. In the proposed approach PTF use
Generalised Linear Mixed Effects Model (GLMM) model
and Residual Maximum Likelihood (REML) to predict‘ the
soil properties. Traditional approaches to soil properties and
crop yield prediction require time-consuming field surveys
and the deployment of expensive sensors. Khanal et al. [28]
proposed an alternative approach in which the dataset for
the prediction of soil properties and crop yield is generated
using remotely sensed aerial images of agricultural land.
Five soil properties, viz. pH value, magnesium (Mg), potas-
sium (K), SOM, CEC, and crop yield were predicted using
RF, SVM, Cubist, NN, Gradient Boosting Model (GBM)ML
algorithms. NN presents the highest prediction accuracy for
SOM having R2 of 0.64, RMSE of 0.44 and CEC having
R2 of 0.67, RMSE of 2.35; SVM best predicts K having R2

of 0.21, RMSE of 0.49 and Mg having R2 of 0.22, RMSE
of 4.57; and GBM best predicts pH having R2 of 0.15,
RMSE of 0.62. RF outperforms other algorithms in terms of
crop yield prediction and presents higher accuracy having R2

of 0.53 and RMSE of 0.97. Labrador et al. [29] estimate cal-
cium and Mg content in soil using generalized regression NN
and genetic algorithm (GA). The digital elevation model and
satellite images were used as input to the prediction model for
estimating the soil properties. Chlingaryan et al. [30] dis-
cussed different ML approaches used in precision agriculture
for accurate crop yield prediction and soil nitrogen estimation
over the last fifteen years.

Ju-Young et al. [31] investigated a seasonal climatic fore-
casting model using regularized ELM to predict day-wise
mean air temperature at field level for a period of 90 days. The
authors selected data from Korea Metrological Administra-
tion using the Met GloSea5GC2 model [32]. The authors fed
240 days of forecast data and hindcast data from the ensemble
based model to the RELM algorithm. The algorithm perfor-
mance was evaluated by measuring: RMSE, mean absolute
error (MAE) the model prediction vs the actual values. The
authors achieved an RMSE in the range of 1.02 to 3.35 which
outperformed the meteorological data which has an RMSE
range of 1.61 to 3.37.

Soil moisture content is an important parameter to
acknowledge in the agriculture industry as it addresses pre-
cise irrigation scheduling. Stamenkovic et al. [33] build a
support vector regression (SVR) prediction model to pre-
dict soil moisture content from remotely sensed hyper-
spectral images. Song et al. [34] proposed a macroscopic
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cellular automata (MCA) model and combined its deep
belief network (DBN) to predict soil moisture content over
a cornfield in northwest china. The simulation results of
DBN-MCA outperforms the multi-layer perceptron (MLP)-
MCA in terms of RMSE. Acheing [35] explored the SVR
model (i.e. RBF), ANN, DNN for simulating soil water
retention curve (SWRC) curve of loamy sand. Dataset of
loamy sand subjected to wetting and drying condition is
collected using a reflectometer and tensiometer. RBF based
SVR model best predicts SWRC under both wet and dry
conditions. Feng et al. [36] estimate soil temperature at
various soil depths of Loess Plateau of China. Four different
ML algorithms ELM, generalized regression neural networks
(GRNN), backpropagation neural networks (BPNN), and
RF were investigated for predicting the soil temperature.
ML algorithms were trained with air temperature, wind
speed, relative humidity, and vapour pressure and solar radi-
ation as input parameters and the simulations show that ELM
outperforms other ML algorithms in terms of RMSE, MAE,
Nash–Sutcliffe coefficient (NS) and concordance correlation
coefficient. Mohammadi et al. [37] explored ELM for pre-
dicting daily dew point temperature in different parts of Iran.
This part of the world experience different climatic conditions
throughout the year. The proposed model accurately predicts
dew point temperature than SVM and ANN algorithms.
Zhu et al. [38] accurately predict daily evapotranspiration
in Northwest China using hybrid particle swarm optimiza-
tion (PSO)-ELM model to optimize crop water requirement
in agriculture. Alizamir et al. [39] accurately predicts soil
temperature at different depths of 5, 10, 50 and 100 cm
using ELM, ANN, classification and regression trees, group
method of data handling using dataset obtained from Mersin
station operated by TurkishMeteorological Service. The sim-
ulation results suggest that soil temperature can be estimated
easily using air temperature upto depth of 50 cm while for
depth of 100 cm additional information of solar radiation and
wind speed is required.

Rainfall prediction plays a critical role in the water
resource management system, flood risk assessment, and
the agriculture industry. Acknowledging the chaotic nature
of rainfall, it is very difficult for statistical approaches to
accurately predict the rainfall. Cramer et al. [40] evaluated
the performance of seven ML algorithms for rainfall predic-
tion. The statistical results show that the radial-basis func-
tion neural network (RBFNN) shows the best performance
among other state of the art algorithms. Sierra and Jesus [41]
predicted the rainfall in Tenerife, an island in Spain based
on atmospheric synoptic patterns using different ML algo-
rithms and found NN gave the best performance among
other ML algorithms. Kamatchi and Parvathi [42] employed
NN for weather prediction and proposed a hybrid recom-
mender system for enhancing the success ratio of the system.
Lazri et al. [43] build a multi-classifier model for estimating
precipitation using MSG images (Meteosat second genera-
tion) and dataset obtained using radar. The proposed approach
shows that the proposed multi-classifier improves the

standard of classification. Shardoor and Rao [44] surveyed
three different approaches i.e. ML techniques, data mining
techniques, and satellite forecasting techniques for rainfall
prediction. Table 4 presents a comparative study of different
ML algorithms for prediction of soil properties and weather
prediction.

B. CROP YIELD PREDICTION
A significant piece of information for any farmer is the
prediction of crop yield and how the yield can be increased.
pH value, soil type, and quality, weather pattern: temperature,
rainfall, humidity, sunshine hours, fertilizers, and harvesting
schedules are some of the parameters which play an important
role in predicting the crop yield [45]. Scientifically manual
farming can be considered as a feedback control system in
which the corrective action is taken once a setback in a
crop is observed. The crop yield will highly depend on the
efficiency of the optimal utilization of the above-mentioned
resources. If some kind of anomaly goes undetected in the ini-
tial stage may harm the crop yield in an unprecedented way.
Singh et al. [46] assessed hailstorms on India’s wheat pro-
duction and observes that in February and March 2015 alone
the hailstorm events caused a decline of 8.4% in national
wheat production. For financially weak farmers in a country
such as India, where intermittent storage of harvested crops
is a rare resource, accurate weather predictions may turn to
be miraculous for farmers. ML models when systematically
applied to a system act as feedforward control. With the help
of accurate ML models, we can anticipate the factors which
are going to affect the crop yield. Hence the corrective action
can be taken before even an anomaly hits the crop production.

Kamir et al. [47] used ML models to identify the yield
gap hotspots in wheat production. Authors generated very
high-resolution yield maps using data from various sources
between 2009 and 2015. The data was collected from various
sources:(a) NDVI time-series data across Australia using
the MOD13Q1 data set [48], (b) rainfall and temperature
data were collected from historic climate data at Australia
bureau of metrology, (c) maps for observed grain yield were
collected at source using intelligent harvesting machines. The
dataset generated were tested with 9 ML algorithms: RF,
XGBoost, Cubist, MLP, SVR, Gaussian Process, k-NN, and
Multivariate Adaptive Regression Splines. The authors com-
bined predictions from each of the algorithms into ensembles
for prediction optimization [49]. Out of these algorithms,
SVR with RBFNN outperformed other algorithms and inves-
tigators were able to achieve the yield estimate with an
R2 of 0.77 and an RMSE value of 0.55 tha−1. The results
were validated using 10-fold cross-validation techniques
applied to the full data set.

Aghighi et al. [50] used various advanced regression algo-
rithms to predict the yield of silage maize crops. The authors
selected maize fields located at Moghan Agro-Industrial and
Animal Husbandry Company (MAIAHC), which is about
28,000 hectares’ area and located in Iran. The crop yield
dataset was collected for around 40 silage maize fields
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TABLE 4. Different ML algorithms for prediction of soil properties and weather conditions.
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were collected for a period from 2013-2015. In addition
to it, the historic crop yield data the authors also gathered
time-series NDVI data from Landsat 8 OLI satellite. The
data was fed to advanced regression algorithms: (a) Gaussian
Process Regression, (b) SVR, (c) Boosted Regression tree
(d) RF Regression models and the prediction form each of
the regression models were compared and evaluated. Authors
found out the boosted regression tree reported best evaluation
parameters with an average R-value of higher than 0.87, and
RMSE in a range of 8.5 to 11.10, with amean value of 9.5 dur-
ing the period 2013-14. Kuwata and Shibasaki [51] employed
DLmodels to estimate the crop yield. Authors deployed SVR
for predicting the yield of corn in Illinois. For input following
dataset was employed by the authors: (a) 5 year moving
average of corn crop yield, (b) The enhanced vegetation index
is obtained using theMOD09A1 datasetMODIS satellite, and
(c) Historic climatic data. The dataset was fed to support the
vector regression model and the authors reported an RMSE of
8.204 and a correlation coefficient of 0.644 for the model. For
result, validation authors conducted 10-fold cross-validation
on the full data set. Kulkarni et al. [52] utilized DL models
to predict rice crop yield. The authors utilized soil proper-
ties and nutrients measurements recorded over 31 years and
historic rainfall data. The input data was fed to recurrent
neural network models for crop yield prediction. For effective
prediction the authors explored different activation functions
viz. sigmoid, reLu, and linear in the neural network.

Chu and Yu [53] builds an end to end summer and winter
rice prediction model in 81 counties in the Guangxi Zhuang
Autonomous Region, China. The proposed BBI model works
in three stages, in the first stage the original area data and
time series metrological data is pre-processed and its output
works as input for the second stage where BPNN and RNN
(recurrent neural network) learns deep spatial and temporal
features from the input data. In the third stage, BPNN learns
the relationship between deep features and rice yield to pre-
dict the summer and winter rice yields. The performance of
the model is evaluated in terms of error and rate of con-
vergence, the model presents lowest error values with MAE
and RMSE of 0.0044 and 0.0057 for summer rice prediction
and 0.0074 and 0.0192 for winter rice prediction while the
algorithm converges within 100 iterations. Feng et al. [54]
proposed a hybrid approach for wheat yield prediction in
new-south Wales in southeastern Australia. Multiple growth
specific indicators, viz. agricultural production system sim-
ulators (APSIM), NDVI, and SPEI (Standardized Precip-
itation and Evapotranspiration Index) are used before the
prediction of wheat yield using regression models (multi-
ple linear regression (MLR) and RF). APSIM+ RF hybrid
model presents the best performance among other predictors
in terms of prediction accuracy. Cai et al. [55] integrated
two data sources, i.e. climate data and satellite data over
fourteen years to predict the wheat yield in Australia using
ML algorithms (SVM, RF, and NN). Simulation results show
that climate data provides distinctive information in compar-
ison to satellite data for yield prediction with R2 of around

0.75. Planting the crops on accurate date plays an important
role in improving productivity and reducing financial loss.
Gumuscu et al. [56] explored three supervised ML algo-
rithms; kNN, SVM, and decision trees for predicting planting
dates; early, normal, and late for wheat crops in Turkey.
The authors utilized climate data of the last 300 days to
train ML algorithms and explored GA for feature selection.
kNN classification ML algorithm shows robust performance
and best predicts the planting dates of wheat crops. Several
African, American, and Asian countries are the major pro-
ducer of coffee in the world. Nevavuori et al. [57] explored a
deep learning approach, i.e. CNN for wheat and barley yield
prediction in the agriculture field of Pori, Finland. NDVI and
RGB dataset obtained from cameras installed in UAV is used
to train the six-layer CNN. RGB dataset best predicts the
crop yield in CNN with MAE of 484.3 kgha−1 and mean
absolute percentage error (MAPE) of 8.8%. Koirala et al. [58]
reviewed deep learning approaches for fruit detection and
yield estimation. CNN in the context of computer vision is
widely used for feature extraction from images that provide
useful insight to object detection and yield estimation.

Kouadio, et al. [59] predicted the Robusta coffee yield
using ML techniques from soil fertility dataset of Vietnam.
ELM model outperforms multiple linear regression and
RF algorithm with RMSE of 496.35 kg ha−1 and MAE
of 326.40 kg ha−1. Gamboa et al. [60] predict the cocoa
yield in Santander, Columbia using a generalized linear
model (GLM) and SVM. In recent decades researchers have
explored statistical and probabilistic models for crop yield
prediction. Gyamerah et al. [61] proposed a novel robust
probabilistic forecasting model based on quantile random
forest and Epanechnikov kernel function (QRF-E) for crop
yield prediction in Ghana. The proposed approach didn’t
only predict discrete yield values but completely showcase
probability descriptions for prediction interval for the two
crops groundnut and millet. The simulation result shows the
superior performance of the proposed algorithm in terms
of prediction intervals coverage probability and prediction
interval normalized average width under uncertain weather
conditions.

Peng et al. [62] explored remote sensed satellite-based
Solar-Induced Chlorophyll Fluorescence (SIF) dataset for
training ML algorithms to predict maize and soybean yield
in the mid-west region of the United States. Simulation
results show that non-linear algorithms such as SVM, ANN,
RF best predict the crop yield in comparison to least absolute
shrinkage and selection operator regression (LASSO) and
ridge regression (RIDGE) algorithm. Khaki and Wang [63]
predicted the hybrid maize yield with a dataset of 2,267 loca-
tions of the United States and Canada between the years
2008 to 2016 using deep neural networks (DNN). Genotype,
weather, and soil properties were the three components used
to train DNN. The proposed model accurately predicts the
maize yield with RMSE of 12% of the average yield for
predicted weather dataset and 11% of the average yield for
perfect weather dataset and outperforms LASSO, shallow
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neural network (SNN) and regression tree (RT). Simulation
results show that environmental factors have a large impact on
the prediction accuracy of crop yield. In most areas of Africa,
agriculture field data is scarcely available thus remotely
sensed dataset is widely used for monitoring the field.
Leroux et al. [64] explored the ML algorithm for predicting
the maize yield in Burkina Faso with a remotely sensed
dataset. A process-based crop model SARRO which is basi-
cally designed to simulate attainable agricultural yields under
tropical conditions is used in this study. RF outperformsMLR
in maize yield prediction with R2 of 0.59 at the end of the
season and 0.49 before two months of harvest. Li et al. [65]
build a statistical model for predicting the rain-fed crop
yield using climate, satellite, and country-specific datasets in
the mid-west region of the USA. Maimaitijiang et al. [66]
explored the potential of UAV with DNN for soybean yield
prediction from the fields of Columbia, Missouri, USA.
Multi-modal information such as canopy spectral, structural,
and thermal features extracted from images obtained from
the sensors installed on UAV is used as the input dataset
for training DNN. The simulation result shows that DNN
accurately predict the crop yield and outperforms partial least
square regression (PLSR), RF, SVR algorithms with R2 of
0.720 and RMSE of 15.9%. Zhang et al. [67] explored ANN
for prediction of annual crop planting utilizing a historical
cropland data layer (CDL) dataset of corn-belt of mid-west,
USA.

Kocian et al. [68] utilized both approaches to predict crop
growth in greenhouses. IoT smart sensors are installed in
the greenhouses to monitor different environmental param-
eters, soil properties and plant growth parameters such as
leaf area index (LAI), accumulated dry weight (DW) and
evapo-transpiration (ET). These parameters are in real-time
send to the cloud through IoT devices and permit the imple-
mentation of an agriculture decision-support system. The
probabilistic Bayesian network is explored in the proposed
system to predict crop development parameters. Shahinfar
and Kahn [69] explored ML algorithms for early prediction
of adult wool growth in Merino sheep of Australia. Model
Tree algorithms best predict the wool growth in comparison
with NN with a correlation coefficient of 0.93, 0.90, 0.94,
0.81 and 0.59, MAE of 0.48 kg, 0.41 kg, 0.92 µm, 6.91mm
and 6.82 N/ktex, for predicting Greasy Fleece Weight, adult
Clean Fleece Weight, adult Fibre Diameter and adult Staple
Length. Table 5 presents a comparative study of different ML
algorithms for crop yield prediction.

C. DISEASE AND WEED DETECTION
Disease fungi, microorganisms, and bacteria take their energy
from the plants they live on, which in turn affects the crop
yield. If not detected at the right time may account for a huge
economic loss to farmers. A lot of financial burden goes to
a farmer in the form of pesticides, to get rid of diseases and
restore the functioning of crops. Excessive use of pesticides
also leads to environmental damage and the effects of the
water and soil cycle of the agricultural land.

Using an optimally designed AI system during crop growth
period not only reduces the risk of crop disease andminimizes
the economic impact, but it also results in minimizing the
adverse impact of unsystematic farming on the environment.
Sambasivan and Opiyo [70] used a CNN based DL model
to detect disease in cassava crops for imbalanced datasets.
The authors took a database of 10,000 labeled images that
were pre-processed to improve the image contrast using
contrast limited adaptive histogram equalization algorithm.
The model evaluation was done using the performance met-
rics: confusion matrix, accuracy measure, precision measure,
sensitivity, and F1 score. The authors reported a best-case
accuracy of 99.30% and the lowest accuracy was reported
as 76.9%. Ramcharan et al. [71] used DL algorithms to
detect diseases in cassava crops. Authors deployed deep
CNN to identify three different diseases and two types of
pests from a set of 11,670 images dataset. Author’s utilized
GoogLeNet algorithm based Inception v3 in Tensor Flow.
The authors achieved efficiency in a range of 80% to 93.0%,
and the validation of the results was done with the help of the
confusion matrix.

Mohanty et al. [72] employed DL methods to detect crop
disease from the image dataset of plant leaves. The authors
used a public database consisting of smartphone generated
54,306 images of diseased and healthy plants leaves. These
images were resized to 256 × 256 pixels and were assigned
38 different class labels of crop-disease pair, and transformed
into 3 datasets color, grayscale and segmented. The dataset
was then fed to two of the most common deep CNNs:
AlexNet [73] and GoogLeNet [74]. The authors achieved
an accuracy of 99.34% for GoogLeNet, and an accuracy
of 85.53% for AlexNet network. The results were vali-
dated using F1 score, authors achieved a mean F1 score of
0.9886 for GoogLeNet, and a mean F1 score of 0.9848 for
AlexNet.

Amara et al. [75] used LeNet based CNN architecture
for disease detection in banana leaves. Authors utilized data
from open source local and digital libraries which were
pre-processed and resized to 60 × 60 pixels, and the model
was implemented for RGB as well as grayscale images.
Hughes and Salathe [76] utilized this developed model for the
identification of diseases in the images dataset. The authors
achieved the best F1 score of 0.9971 for detection in RGB
images and a score of 0.976 for grayscale images.

Ferreira et al. [77] deployed CNN for the identification of
weeds in soybean crops. The image dataset for soy plantation
located at São José farm, Campo Grande Brazil was acquired
using phantom DJI3 drone. The images are segmented using
the SLIC algorithm into square grids. For training, the seg-
mented images were manually annotated to their class. The
segmented images dataset was fed to AlexNet (a convolu-
tion neural network) for classification. The performance of
the AlexNet was compared with SVM, AdaBoost, and RF.
To evaluate the performance of the AlexNet the model was
fedwith a balanced dataset and the authors reported an overall
accuracy of above 90% and 96.3% images were correctly
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classified. Waheed et al. [78] proposed a cost-effective opti-
mized dense CNN (DenseNet) for disease detection in corn
leaves with an accuracy of 98.0%. Simulation results show
that the proposed model outperforms other CNN models
such as EfficientNet, VGG19Net, NASNet, and Xception-
Net in terms of fewer parameters, accuracy, computation
complexity, and computation time. Pereira et al. [79] pro-
posed an expert system for identifying three species of
aquatic weeds from aquatic weed leaves dataset based on
their shape and supervised pattern recognition techniques.
The author explored five shape descriptors with different
shape-based skills viz. Beam Angle Statistics (BAS), Fourier
Descriptors (FD), Moment Invariants (MI), Multi-scale Frac-
tal dimension (MS), and Tensor Scale Descriptor (TSD) along
with five ML algorithms viz. Optimum-Path Forest (OPF),
SVM, Naive Bayes, ANN,MLP. Simulation results show that
OPF using the BAS-100 descriptor presents the best results
with a recognition rate of 96.41% in comparison to other
approaches. Jiang et al. [80] proposed a semi-supervised
CNN feature-based Graph Convolutional Network (GCN)
for identifying weeds utilizing 6000 images of corn, lettuce,
radish, and mixed weed dataset. The proposed approach
works in two parts, i.e. in the first part CNNmodel is used for
feature extraction thereafter in the second part GCN graph is
explored utilizing CNN feature dataset for extracting feature
of an unlabelled dataset using labelled dataset. The proposed
approach shows the best results in comparison with AlexNet,
VGG16, and ResNet-101 approaches with recognition accu-
racies of 97.80%, 99.37%, 98.93%, and 96.51% on four
different weed datasets.

Oppenheim and Shani [81] explored CNN for identify-
ing four different types of diseases in potatoes. The simu-
lation result shows that the model trained on 90% of the
images and tested on 10% of images give the best results
with 96% accuracy. Sugar beet contributes around 30% of
world sugar production. Leaf spot diseases in sugar beet
can create a loss of around 10 % to 50 % of yearly sugar
yield. Rumpf et al. [82] proposed SVM with a radial basis
function as a kernel based model for early detection and
classification of three diseases Cercospora, leaf spot, leaf
rust, and powdery mildew in sugar beet leaves. Diseased and
non-diseased leaves were classified with an accuracy of 97%
and three diseases were identified with accuracy higher
than 86%. Ozguven and Adem [83] proposed updated faster
R-CNN for leaf spot disease identification and classification
in sugar beet. Leaf spot disease initially generates as small
circular spots and later spread over the entire leaf surface.
The proposed R-CNN architecture changes its parameters
according to the images and the disease infected regions,
which improves the overall classification rate to 95.48%.
Bah et al. [84] explored CNN for weed detection in images
obtained using UAV from bean and spinach fields. The pro-
posed model first identifies the crop rows and then identifies
the inter-crop row weeds which are used as a training dataset
for CNN for crop and weed identification and classification.
Kerkech et al. [85] identified the vine diseases from visible

and infrared UAV images obtained in the Center Val de Loire
region in France. A CNNmodel is trained with this dataset of
images to classify each pixel according to different instances,
namely, shadow, ground, healthy, and symptom. The model
identifies with an accuracy of 92% at grapevine-level and
87% at leaf level. Oslen et al. [86] explored robust deep learn-
ing models Inception-v3 and ResNet-50 for weed species
identification and classification from a dataset of images col-
lected in Australian rangeland. Simulation results show that
the average classification performance of both the models is
95.1% and 95.7%. These results found fruitful for automatic
real-time robotic weed control in the agricultural field.

Sudars et al. [87] establish an experimental set up with
RGB digital cameras in Latvia to collect images of the field
having 6 food crops and 8 weed species grown in normal
field conditions and controlled environment. This dataset
can be utilized by deep learning algorithms for weed iden-
tification and classification. Sethy et al. [88] identified the
rice leaf disease based on a hybrid CNN and SVM. In this
model, CNN is explored for deep feature extraction from
5932 diseased rice leaf images and this data is used as
input for SVM classifier. The resnet50 with SVM classifi-
cation model best classify with respect to other models with
F1 score of 0.9838. Garcia et al. [89] proposed an ML and
DL learning hybrid approach for weed and crop identifi-
cation in the agriculture fields of Greece. Image dataset of
two crops tomato and cotton and two weeds black night-
shade and velvetleaf was generated for training and testing
of the model. Initially CNN (Xception, Inception-Resnet,
Vignette’s, Mobilenet, and Densenet)) is used for feature
extraction and this feature set is later used to train ML classi-
fier (SVM, XGBoost and Logistic Regression) for classifica-
tion. The simulation result shows that Densenet and Support
Vector Machine outperforms other approaches with F1 score
of 99.29%. Shah and Jain [90] identified the disease in cotton
leaf through ANN with some image pre-processing tech-
niques. Yu et al. [91] explored deep learning algorithms with
a dataset of images for identifying dandelion, ground ivy, and
spotted spurge in perennial ryegrass. Parraga-Alava et al. [92]
generated a robusta coffee leaf image dataset (RoCoLe) for
disease identification using ML algorithms.

Glezakos et al. [93] proposed an innovative method
to identify two viruses Tobacco Rattle Virus (TRV) and
the Cucumber Green Mottle Mosaic Virus (CGMMV) in
plants. In the proposed research Bio-Electric Recognition
Assay (BERA) technique is utilized to obtain time-series
information of the two viruses by measuring the waves
through biosensors for 331s. This time-series data is
preprocessed using GA to eliminate noise and for dimen-
sionality reduction of a large dataset. Thereafter this meta-
data is used to train MLP neural network classifier. The
proposed model is tested against other ML classifiers via
cross-validation. Ramesh and Vydeki [94] explored opti-
mized deep NN with the Jaya algorithm for the identifica-
tion of paddy leaf diseases. A dataset of rice plant leaves
was taken from the agricultural field to identify and classify
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normal, bacterial blight, brown spot, sheath rot, and blast
diseases. Simulation results show that the proposed model
accurately classifies the diseased and normal images with
an accuracy of 98.9%, 95.78%, 92%, 94%, and 90.57% for
blast affected, bacterial blight, sheath rot, brown spot, and
normal rice leaf images. Chechlin’ ski et al. [95] explored
CNN for weed identification in four plant species at different
growth level and under varying light conditions. CNN archi-
tecture combines U-Net, MobileNets, DenseNet, and ResNet
models for classification of weeds in crops. In [96]–[99]
author has reviewed machine and deep learning techniques
for weed, pests and disease identification, and classification
in crops at different growth stages. Table 6 presents a compar-
ative study of different ML algorithms for disease and weed
identification.

D. DRIP IRRIGATION
In the modern era, irrigation for crops has been improvised
using the concept of drip irrigation [100], where the sys-
tem consists of thin plastic tubes placed in or above the
soil along the vertical rows of the plants for nurturing the
water supply to the crops. Employing the proper operational
management of drip irrigation, minimizes the utilization of
water supply for crop production, and provides a better yield
of crops. Socio-economic and environmental demands have
widely appreciated in use of drip irrigation on farmlands for
agriculture, especially for the high cost valued crops i.e.,
vegetables and fruits. Furthermore, drip irrigation is based on
the low-pressure watering system in comparison to sprinkler
systems; this makes the system more efficient in terms of
energy consumption [101].

Various advantages have been observed using drip irriga-
tion in agriculture over other irrigation systems which include
sub-irrigation systems or sprinkler irrigation systems. These
advantages are entitled to minimal usage of water supply,
usage of soluble fertilizers through a drip irrigation system,
automated system, minimization of soil erosion, uninter-
rupted activities, minimized weed problems, facilitation of
double-cropping. Precision irrigation is another innovative
approach in intelligent farming where it uses the water intel-
ligently that further helps the farmers to achieve better yield
in crops with minimal water usage. It can also be featured as
providing the right amount of water, at the right time and the
right place in the field. It focuses its implementation based
on variable rate irrigation (VRI) methods employing drips
or sprinklers. [102]–[104]. Advancements in the field of on-
farm sensor technologies, weather forecasting, IoT based sen-
sor detection system of vegetation and precision-based smart
irrigation produces a huge size of data that ultimately bene-
fits the farmers in optimizing the usage of water resources,
improve the yield of crops and maximizes the profit of
farmers [105].

ML and DL and reinforcement learning are employed
on the historical data and it provides various opportuni-
ties for real-time prediction and decision making purposes
for smart irrigation which are solely based on the data

collected by the sensors and IoT enabled systems
[106]–[109]. Roberts et al. [110] have discussed that a
sensor-based control system might create some bottleneck in
terms of reducing the reliability of decision support tools on
process-based crop models, which further may require costly
calibration and affect in generating an uncertain representa-
tion of soil-plant-atmosphere processes. Further, ML tech-
niques have been employed extremely well for protection
analysis of hydrological processes i.e., soil moisture and
groundwater levels [111], [112]. Li et al. [113] utilized ANN
for estimating nitrate distribution in different types of soils
under a drip irrigation system.

Kavianand et al. [114] proposed a fully automated drip
irrigation system based on the ARM9 processor along with
different kinds of sensors equipped for monitoring the PH
content and nitrogen content of the soil and controlling the
irrigation of the field. Emmanuel et al. [115] establishes an
experimental set-up in a greenhouse in Malaysia to monitor
the growth of mustard leaf vegetable plants through IoT
devices and alongside developed a data-driven model of drip
irrigation system. Soil moisture, irrigation volume, evapo-
transpiration were measured through sensors and were given
to the Raspberry Pi 3 controller for storing it in the cloud.
This data was utilized by different predictive models ARX,
BJ, and state-spacemodels to predict soil moisture content for
an optimized drip irrigation system. ARXmodel outperforms
other predictive models in terms of MSE and response time.
Seyedzadeh et al. [116] explored ML algorithms to optimize
the uniform emitter discharge rate of drip irrigation system
under varying pressure and temperature conditions. In this
model operating pressure, water temperature, discharge coef-
ficient, pressure exponent, and nominal discharge were taken
as input parameters while ration of emitter discharge to
nominal discharge is taken as output temperature. Authors
explored four different ML algorithms for optimizing emitter
discharge rate and simulation results show that LS-SVM
presents best results with the least error of mean absolute
error. Peng et al. [117] utilize soil moisture, soil electrical
conductivity, air temperature, and light intensity parameters
to build an optimized irrigation prediction model using back-
propagation NN in China. The proposed prediction model
presents good results with MSE of 0.00857724. The authors
also identified an optimized layout and network arrangement
for pipe in a drip irrigation system using computational fluid
dynamics (CFD) software. The simulation results present that
the H-shaped network layout is more suitable for field crop
irrigation than the comb-shaped and fish bone-shaped layout.
Drip irrigation system gives the best performance when the
wetting front dimension, i.e. diameter, depth, and upward
movement are optimized. Shiri et al. [118] explored soft-
computing approaches viz., gene expressions programming
(GEP), and RF techniques in modeling wetting front dimen-
sions over different soil types for surface and sub-surface
irrigation system. Proposed model, best predicts ETc with
an improved correlation coefficient and decreases MSE and
MAE. Elnesr and Alazba [119] explored ANN for predicting
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TABLE 6. (Continued.) Different ML algorithms for disease and weed identification.

the wetting front dimensions from the dataset of a well-tested
HYDRUS 2D/3Dmodel. The simulation results show that the
proposed model has a good correlation of 0.93-0.99.

Chang et al. [120] developed a smart irrigation model
based on ML with the LoRa P2P network to learn the
irrigation experiences from the expert farmers working on
greenhouse organic crops. Singh et al. [121] have discussed
an ML and IoT based model for soil moisture prediction
during irrigation. Torres-Sanchez et al. [122] proposed a
decision support system for irrigation management of citric
crops in southeast Spain. In the proposed model smart sen-
sors are deployed in the field to monitor water supplied
previous week, weather data, soil water status, and based
on this data three regression models SVM, RF, and Linear
regression was trained to build the irrigation decision support
system. RF best predicts with comparatively less predic-
tion error. Hellín et al. [123] explored the Partial Least
Square Regression (PLSR) and Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS) model for building a smart irri-
gation decision support system crops in southeast Spain.
Goumopoulos et al. [124] proposed a real-time adaptable
intelligent and autonomous closed-loop irrigation manage-
ment system. The authors built an experimental set-up in
a greenhouse and deployed wireless sensors for monitor-
ing the plant growth and environmental conditions along
with plant growth control actuators. Estimation of evap-
otranspiration (ETc) plays a vital role in water resource
management system. Chen et al. [125] estimate crop actual
ETc from temporal convolution network (TCN) from the
dataset of lysimeters for maize under drip irrigation with film
mulch. Simulation results show that the proposed model best
predicts ETc with an improved correlation coefficient and
decreases MSE and MAE. Table 7 presents a comparative
study of different ML algorithms for drip irrigation.

E. LIVESTOCK PRODUCTION AND MANAGEMENT
Livestock production is basically related to the production
and management of cattle i.e., sheep, pigs, etc. for human
consumption in terms of meat. Livestock production and

their management are based on the farming parameters of
these cattle i.e., health, food, nutrition, and behaviour to
optimize their production in such a way that the economic
efficiency of this livestock can be maximized. In the present
scenario, Artificial intelligence, IoT and Blockchain tech-
nologies [126] are widely explored to improves livestock
sustainability and for analysis of their chewing habits, eat-
ing patterns, their movement patterns i.e., standing, moving,
drinking and feeding habits, indicate the amount of stress
the animal is going through which in turn helps in predict-
ing the vulnerability to disease, weight gain, and production
of the livestock. Furthermore, an ML-based weight predict-
ing system can help in the estimation of their body weight
90-180 days before the slaughtering day. According to these
analyses and estimations, farmers can change their diet plans
and living conditions for their better growth in terms of
health, behaviour, and weight gain which in turn will improve
the economic efficiency of these livestock [127], [128].
Villeneuve et al. [129] build a decision support system that
encounters not only real-time data but also expert knowledge
for precision sheep farming.

Livestock production and management can be further clas-
sified into two sub-categories, i.e., animal welfare and live-
stock production. Animal welfare generally deals with the
animal’s health and their well-being; for this ML techniques
are applied to their health monitoring feature for prospective
of early disease detection. Whereas, livestock production
employs theML on the estimation of the balanced production
of livestock for the producers to achieve economic benefits.
Dutta et al. [130] described a procedure for the classification
of cattle behaviour employing the ML techniques for data
collection using collar-based sensors i.e., magnetometers and
three-axis accelerometers. In this study, events such as oestrus
and dietary changes on cattle have been analyzed for their
well-nutrition. Pegorini et al. [131] presented an automatic
identification and classification of chewing habits of claves
employing ML-based techniques for analysing their health
and behavioural patterns. Ebrahimie et al. [132] proposedML
predictive model for estimating Sub-Clinical Mastitis (SCM)
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TABLE 7. Different ML algorithms for drip irrigation.

from milking parameters in dairy herds. Mastitis is an
inflammatory disease that is widely affecting the dairy indus-
try. Author’s explored four classification models decision
trees, stump decision trees, parallel decision trees, and ran-
dom forest to discover SCC independent of Somatic Cell
Count (SCC) which is widely used to measure SCM world-
wide. RF with Gini Index criteria best predicts SCM with an
accuracy of 90%. Ebrahimie et al. [133] explored the attribute
weighting model (AWM) for identifying lactose concentra-
tion and electrical conductivity in milk, which are two of the
major indicators of SCM in dairy cattle. Hyde et al. [134]
also explored RF to predict the route of transmission of germs
and classify them into contagious (CONT) or environmental
(ENV) with ENV further sub-classified into non-lactating
‘‘dry’’ period (EDP) or lactating period (EL). The simulation
results show that an accuracy of 98% was achieved for dis-
covering CONT vs ENV and 78% for discovering EDP and
EL. Esener et al. [135] utilized spectral profiles dataset to dis-
criminates CONT and ENV strains using GA, NN, and quick
classifier. Ebrahimi et al. [136] predicted sub-clinical bovine

mastitis using a large milking dataset collected through an
automated in-line monitoring system in commercial New
Zealand dairy farm. The simulation results show that GBM
outperforms other ML model and best predict sub-clinical
bovine mastitis with an accuracy of 84.9%. Sharifi et al. [137]
explored meta-analysis and decision trees data mining tools
to discover genes that can help to find mastitis in dairy cattle.
Machado et al. [138] explored the RF model to identify
factors influencing the occurrence of Bovine viral diarrhea
virus (BVDV) viral disease in cattle in southern Brazil. The
proposed approach identifies that insemination, the number
of cattle in neighbouring farms, and routine rectal palpation
are among the main factors of the occurrence of this disease.

Matthews et al. [139] developed an ML-based automated
monitoring system for tracking animal behaviour and move-
ment i.e., standing, moving, feeding, and drinking by employ-
ing the depth video cameras and sensors. Qiao et al. [140]
explored the DL technique Mask R-CNN for examining
cattle health and welfare information in precision livestock
management. The proposed model extract key features from
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image frames, enhance the image to remove non-uniform
illumination shadow influences, segment image of cattle from
the background image using the Mask R-CNN DL tool, and
lastly extract cattle contour lines from the segmented image.
The proposed approach outperforms SharpMask and Deep-
Mask image segmentation models with mean pixel accuracy
of 0.92 and an average distance error of 33.56 pixels.

Liakos et al. [141] explored ML model for predicting
healthy cattle and cattle suffering from lameness utilizing
basic features of cattle which includes per day habits of cattle
like steps taken, overall walking, lying, and eating habits.
Morales et al. [142] employed a method based on SVM
for early detection, warnings, and production issues of eggs
in the poultry farms. The simulation results show that the
proposed technique alerts a day before with an estimation
accuracy of 0.9854. The identification of livestock is an
important aspect of monitoring growth and animal welfare.
Hansen et al. [143] explored deep learning techniques CNN
for identifying pigs faces from the dataset of digital images of
pigs obtained from commercial farm environment where the
parameters such as dirt and lighting are highly unpredictable.
The proposed approach accurately predicts the faces with an
accuracy of 96.7%.

Fenlon et al. [144] build a decision support system using
predictive ML algorithms to provide calving assistance in
the dairy industry. Four ML techniques multimodal regres-
sion, decision trees, RF, and NN were explored to predict
three calving difficulties unassisted, slight assistance, and
veterinary assistance. The simulation result shows that NN
andmultimodal regression models accurately classify 75% of
calving difficulties with an average prediction error of 3.7%
and 4.5%. Fenlon et al. [145] analyzed calving difficulties
in dairy herds in Ireland using ML algorithms. A dataset
of parity, log days in milk, inter-service interval, difficulties
faced in the last calving, herd body conditions were built to
predict conceptions using artificial insemination in the Iris
dairy industry. Logistic regression outperforms RF, decision
trees, and Naive Bayes in predicting conception using artifi-
cial insemination. Borchers et al. [146] explored RF, linear
discriminant, and NN for calving prediction in dairy cattle
by examining their behaviour which includes number the of
steps, lying time, standing time, transition from one state to
other and total motion 14 days before the predicted calving
date. Although, the innovative algorithms play a crucial role
in livestock management but combining livestock data with
public data will improve precision livestock farming stan-
dards [147]. Table 8 presents a comparative study of different
ML algorithms for livestock production and management.

F. INTELLIGENT HARVESTING TECHNIQUES
Smart harvesting systems helps the farmers to harvest agri-
culture goods by reducing human efforts. In this approach,
technologies such as smart sensors, robotics, UAVs, and
IoT devices [148], AI, and ML-based computer vision tech-
niques are employed to intelligently harvest the crops. The
research community has provided a comprehensive review of

different intelligent techniques used to automate the agricul-
ture industry [149]–[151] and have analyzed the potential
and challenges of this decision support system [152]. In the
last few years, different robots have been developed for har-
vesting fruits and vegetables [153]. Smart harvesting offers
better insight into the crops and helps farmers to achieve
the potential harvest of crops which leads to increased pro-
ductivity. Smart harvesting system has numerous advantages
in comparison to traditional harvesting approaches like it
requires less labour, optimized crop yield, maximum prob-
ability, better insight into crops, reduced cost of harvesting,
and cost-efficient production.

A significant problem in the Japanese agriculture industry
is a labour shortage. Sakai et al. [154] utilized machine vision
for asparagus robot harvesting in Nagasaki prefecture. The
speed of asparagus robot harvesting is three times faster than
the human being. Since asparagus harvesting is modeled on
their size and doesn’t require color properties thus laser sen-
sor is used to collect 3D distance information in the proposed
work. Monta et al. [155] also explored laser sensors along
with color cameras for tomato harvesting through robots.
Preter et al. [156] developed an autonomous system consist-
ing of e-vehicle, cameras, robotic arm, localization system,
gripper, quality monitoring, and logistic handling system,
which can efficiently detect, plucks, and puts the strawberries
in a box. The proposed robot prototype is fast enough to pluck
the fruit in just 4 seconds. Hayashi et al. [157] practically
evaluated the performance of strawberry harvesting robots
in a greenhouse test field. The proposed autonomous system
efficiently access the fruit position and its maturity level and
pick the fruit with and without suction in a duration of two to
three weeks without damaging the fruit. Horng et al. [158]
proposed a smart harvesting system that employs IoT and
smart image recognition systems for the detection of mature
crops using object detection feature trained on MLP neural
network. The mature crop can be harvested using a robotic
arm whose movement is predicted using ML algorithms.

Zhang et al. [159] explored Regions-CNN (RCNN) for
multi-class canopy object detection in shake and catch the
apple harvesting system. A dataset of RGB images was
created in the commercial orchard using a Kinect v2 sensor
and pre-trained RCNN is utilized for real-time detection
of apple, branches, and trunks. The authors also developed
an estimation algorithm to predict shaking location based
on the results of RCNN. Spectral and thermal images have
also been explored for the detection of fruits and vegetables
[160], [161]. Zhang et al. [162] investigated eleven canopy
parameters using principal component analysis (PCA) and
classified the removal status of apples into mechanically
harvested and mechanically unharvested. Zhang et al. [163]
reviewed technology progress in the mechanical harvest-
ing of apples which includes shake and catch, robots, and
harvest assist platforms. Pise and Upadhye [164] explored
Naive Bayes and SVM ML techniques for grading of har-
vested mangoes based on their color, size, features, quality,
and maturity. Grading of fruits increases the profit of the
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TABLE 8. Different ML algorithms for livestock production and management.

agriculture and food industries. A mango image dataset
comprising of three different colors red, green, and yellow
is created and is used for training and testing the ML algo-
rithm. The proposed approach presents limited scope as it
can detect defects in a particular surface area which can be
overcome by creating a dataset of rotational view images.
Wu et al. [165] explored NN for recognition, classification of

fruits and vegetables, and obstacle avoidance in a harvesting
robot. Table 9 presents a comparative study of different ML
algorithms for intelligent harvesting.

V. IoT APPLICATIONS IN PRECISION AGRICULTURE
Precision agriculture refers to a system with minimizing
direct involvement of the caretaker/farmer except when there
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TABLE 9. Different ML algorithms for intelligent harvesting.

FIGURE 6. Google trend response for keywords IoT in agriculture and
sensor in agriculture for the last 10 years.

is an urgent need or an emergency i.e. when there is a failure
in the system. IoT helps in maintaining the defined standards
of parameters needed for day to day work in agriculture. The
parameters can be measured using the required sensors and
can be uploaded to an IoT cloud for remote monitoring so
that the direct involvement of farmers is minimized. The IoT
cloud can be used for control purposes also, say for example
in detecting and avoiding animal intrusion in the agricul-
ture field. Sensors are an integral part of IoT for precision
agriculture without which the monitoring and control-
ling becomes next to impossible task. Figure 6 shows
the trend search of keywords ‘‘IoT in agriculture’’ and
‘‘sensor in agriculture’’ on google in the last 10 years. Apart
from monitoring and controlling, IoT in agriculture is also
used as data-storage technology. Parameters like properties
of soil, crop yield, seasonal behaviour data, temperature
changes, etc can be stored on the IoT cloud which will be
helpful in analyses, prediction, and deciding on estimated
crop production.

A. SENSORS FOR IoT IN PRECISION AGRICULTURE
IoT is defined as the interconnection of things, where one
example of a thing is a sensor. A group of sensors can
communicate with every other sensor and thereby with the
control center. A WSN in IoT has the benefits of increasing
the efficiency of production, enhancing the yield quality,
detecting and avoiding plant-eating pets, detecting the fires
in the farms [166]. IoT has helped in increasing the scope
of farming, animal, and pet rearing along with smart irriga-
tion [167]. Sensors form an integral part of IoT architecture in
agriculture. A sensor is defined as a transducer that converts
the sensed parameter (soil moisture, for example) into the
equivalent electrical signal.

Depending on the nature of the output signal they generate,
sensors are classified as analog or digital sensors. An analog
sensor’s output needs to be converted to digital before it is
being fed, processed by any IoT system. On the other hand,
sensors that generate signals in digital form can be directly
connected to any IoT system. Table 10 compares the list of
some important sensors applicable in precision agriculture.
Addressing the complete list of sensors available for preci-
sion agriculture is beyond the scope of this article, although,
table 10 provides the list of sensors and their parameters that
are very widely used and covers almost every aspect of IoT
in agriculture. A pair of sensors and actuators can be used
to collect information about some of the vital parameters of
precision agriculture and react to perform predefined action
whenever required. IoT plays an important role in assuring
that the action performed happens instantaneously with min-
imum delay. The factors that can affect the real-time decision
making and causes a delay is the tolerance of the measuring
parameter and the communication protocol used. The operat-
ing temperature where the sensors are placed have a propor-
tional effect on tolerance. An increase temperature on either
side will increase the tolerance of the measuring parameter
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TABLE 10. Sensor parameters used in precision agriculture.

and sensor reading will deviate the value of the measurand
from the actual value. The communication protocol is used
to send the readings of the sensor to the microcontroller from
where the value will be uploaded to the IoT cloud. The data
rate of communication protocol decides the time required for
this data transfer.

B. WIRELESS SENSOR NETWORKS IN PRECISION
AGRICULTURE
WSN is the collection of spatially displaced sensor deployed
to monitor the physical parameters of the environment and
coordinating the collected data at central location. IoT trans-
fers the recorded data to cloud which is further processed
and analyzed through intelligent algorithms. In precision

agriculture integration of artificial intelligence with WSN
allows real time monitoring and intelligent decision making
in agriculture fields. IoT sensor network which includes soil
moisture senor, electrochemical sensor, optical sensors, etc.
continuously monitor the field data and works as a training
data for ML and DL algorithms. Edge computing enabled AI
systems assist in reducing the amount of data to be uploaded
to IoT cloud by identification of meaningful data to be
communicated and discarding the redundant data.

Intelligent processing of data generated from nodes result
in better management of sensor network In [185] author
utilized AI driven sensor network to classify land as suit-
able, more suitable, moderately suitable and unsuitable after
every cultivation. In [186] author developed a power efficient
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WSN using Arduino microcontroller and ZigBee module
to monitor and control essential parameters that effect crop
growth such as soil and weather conditions in Florida, USA.
In [187] author integrating sensor nodes with AI systems to
reduce the power consumption of nodes by optimizing the
performance and data transmission of respective nodes. RNN
based Long-Short term (LSTM) network was built which
increases the runtime of a single sensor and guarantees
180 days autonomous operation using Li-ion battery. The pro-
posed system continuously monitors the growth dynamics of
plant leaves. In [188] author presents an autonomous system
built with low power sensor nodes and IoT based cloud plat-
form to estimate level of phosphorous in soil through ANN.
Author incorporates dynamic power management system to
maintain balance between energy consumption and estima-
tion accuracy. In [189] author presents GA optimized WSN
for precision agriculture applications. Thus, we conclude that
integrating artificial intelligence with WSN, IoT plays a key
role in assuring the best yield of crops.

VI. ASSESSMENT AND EVALUATION OF
KNOWLEDGE-BASED AGRICULTURE SYSTEM
In this sectionML algorithms used by different researchers in
the precision agriculture system are analyzed. The agriculture
industry is facing many challenges across the world, and a
knowledge-based agriculture system allows sustainable use
of resources by the farmers aiming to get maximum output
from the agriculture land. There are two basic stages in
precision agriculture, i.e. pre-processing stage and processing
stage. In the pre-processing phase market trends are studied
and based on geographical conditions and soil properties
of the land seeds are selected and the land is prepared for
precision agriculture system. In the post-processing stage
machine vision techniques are explored for disease and weed
identification while intelligent techniques are used for irri-
gation and harvesting. In this article, author reviewed and
discussed 70 articles where multiple ML algorithms are pre-
sented for performance optimization of the agricultural cycle.
Figure 7 shows the classification of articles based on different
applications of precision agriculture.

FIGURE 7. Classification based on agriculture cycle.

FIGURE 8. ML techniques used in precision agriculture applications.

Figure 8 depicts the cumulative distribution of the ML
and DL models used by researchers in precision agriculture.
The graph depicts the broad categorisation of the techniques
with their applications to agricultural cycle. It has been
observed that in majority of the literature the researchers have
applied multiple algorithms for classification and parameter
prediction. Regression models and ANN together make up
around 65% of the AI techniques employed by researchers.
Hence, it is important to investigate the techniques used and
compared by the authors. The individual best performing
algorithms have already been covered in appropriate sec-
tions, however the figure 8 depicts the distribution of the
various regression algorithms and DL models throughout the
literature. ELM algorithm is widely explored in prediction
of soil properties such as soil moisture, soil temperature,
surface humidity, ETc. ANN accurately predicts the rainfall
and crop yield across different regions of globe. DL based
CNN model finds wide applications for accurate disease and
weed classification in agriculture crops. ANN model best
predicts the nitrate content and water requirement in drip irri-
gation system. SVM regression model estimates the emitter
outflow discharge under varying temperature and pressure
conditions. Decision Tree algorithm accurately identify the
chewing habits and predicts SCM in dairy herds. CNN have
widely explored for livestock identification. Metaheuristic
optimized ML algorithms are also explored by researchers in
precision agriculture.

In the reviewed articles, authors have used around 22 dif-
ferent regression algorithms for prediction, however 5 most
commonly used algorithms are identified and depicted in the
figure 9. Remaining 17 algorithms which are used either only
for comparison or employed as a support algorithms have
been classified into others.
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FIGURE 9. Regression algorithm in precision agriculture.

DLmodels have contributed significantly and outperforms
ML classification algorithms in classification of crop dis-
ease and weed as well as for livestock diseases identifi-
cation. Figure 10 shows CNN, ANN and RNN algorithms
explored in precision agriculture. In the reviewed articles,
authors have used around 10 different DL/NN algorithms
for prediction/classification, however 8 most commonly used
algorithms are identified and depicted in the figure 10.
Remaining 2 (LeNet, and Caffee) algorithms which are
used either only for comparison or employed as a support
algorithms have been classified into others.

FIGURE 10. Classification algorithm in precision agriculture.

A. PERFORMANCE COMPARISON OF ML ALGORITHMS IN
PRECISION AGRICULTURE
The application of ML and DL algorithms highly depends on
the agriculture cycle and the dataset involved. This section
discusses the advantages and limitations of various ML
and DL algorithms such as regression and classification
algorithms based on the agriculture cycle involved.

1) SOIL PROPERTIES AND WEATHER PREDICTION
The application of AI techniques in prediction of soil
parameters and weather is dependent on various factors.
The researchers generally employ around 3 to 4 algorithms
in for prediction and select the algorithms which has most
accurate prediction and is robust to factors such as: noise,
non-linearity, outliers etc. the most commonly employed
algorithms are ELM, RF, SVR, and cubist algorithm.

Advantages of usingML in prediction of soil properties
and weather pattern:
1. Non-linear dataset – these predictions often attributes a

non-linear dataset which can be utilized for accurate pre-
diction by regression algorithms such as: ELM, RF, SVR

2. Large dataset – the dataset for is often obtained from
satellite which can be well handled by the regression
algorithms with less convergence time and accurate
predictions.

3. Insensitivity to outliers –Weather patterns often encounter
outlier events which may affect the prediction accuracy,
however algorithms such as ELM, NN are robust to out-
liers and provide accurate predictions.

4. Accurate prediction – prediction of parameters using ML
exhibit low error indices such as RMSE, and R2 which are
standard measures of accuracy for statistical analysis.
Challenges and limitations in prediction of soil proper-

ties and weather pattern:
1) Varying geographical conditions poses a challenge for

universal design of the prediction algorithms.
2) Soil parameters prediction is highly dependent on the

sample selection philosophy.
3) Dataset selection and filtering is a challenge for

researchers with non-computing background.

2) CROP YIELD PREDICTION
The application of AI techniques in prediction of crop yield is
a mammoth task and lack of availability of a universal model
makes designing of the algorithm challenging. The most
promising algorithms for crop yield prediction are regression
algorithms, and neural networks.

Advantages of using ML in crop yield prediction:
1. Complex dataset – crop yield prediction involves enor-

mous dataset composing of satellite data and/or historic
data. Faster and accurate predictions can be made by
utilizing the AI techniques such as regression algorithms
(SVR, RF) Neural networks (CNN).

2. Parameter variation – the crop yield depends on a lot
of parameters, like climatic factors, soil quality, NDVI,
altitude, air parameters. The AI based prediction systems
handle the parameters dependency efficiently.

3. Accurate prediction – prediction of parameters using ML
exhibit low error indices such as RMSE, and R2 which are
standard measures of accuracy for statistical analysis.

Challenges and limitations in prediction of crop yield:
1. Varying parameters and complex datasets pose a challenge

for universal design of the prediction algorithms.
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2. Dataset selection is critical due to the complexity; as an
improper selection of data may result in underfit/overfit
prediction pattern.

3) DISEASE AND WEED DETECTION
The applications of AI techniques in disease and weed detec-
tion primarily depends on the advances in image processing.
CNN’s are the most prominent choice for building a disease
identification system. Training dataset will govern the per-
formance of the algorithm, although these are available in
open-source format, users have to be cautious while using the
dataset.

Advantages of using ML in detection of weed and
disease in a crop field:

1. Prediction accuracy – AI offer accurate detection of dis-
ease and weeds with an accuracy of 99% which is better
compared to manual/classical techniques.

2. Robust prediction – the algorithms can predict the
disease/weed even with smartphone images, which is
commonly available with farmers.

3. Easy configuration – with CNN being the most common
and reliable technique, designing a disease/weed detection
system is not a complex job unlike other systems discussed
in text.

Challenges and limitations in detection of weed and
disease in a crop field:

1. The accuracy of prediction depends on the quality of train-
ing dataset some of which is available as an open-source
dataset, but is applicable to only a limited number of crops.

2. Improperly labelled data may result in a disastrous pre-
diction system, as the training of the system plays a major
role in the performance of the system.

3. Overtraining the model may result in a sensitive prediction
system.

4) DRIP IRRIGATION
Smart irrigation systems are not only crop friendly but are
environmental friendly too. The combination of IoT with the
AI not only reduces the manual intervention but also utilizes
the available in an optimum way to ensure no adverse effect
to environment. Regression and

Advantages of using ML in drip irrigation for an
agricultural field:

1. Optimum resource utilization – accurate estimation of
irrigation requirements results in a system which
optimizes the resource (water, electricity) utilization
(NN algorithms).

2. Crop protection – optimized irrigation practices min-
imizes water related damage to the crops and hence
increases the crop yield.

3. Robust to weather variations – an accurately designed AI
based (Regression algorithms) irrigation system handles
the randomweather events in a better way when compared
with the non-AI based irrigation methods.

Challenges and limitations in drip irrigation for an
agricultural field:
1. Accurate prediction sometimes depends on the number of

sensors and hence increases the initial investment of the
farmers.

2. An incorrect sensor placement in the filed affects the accu-
racy of the system, hence sensor optimization becomes
imperative in designing a smart irrigation system.

3. The architecture of prediction system highly depends on
the dataset; hence no universal guidelines can be laid out
for system design.

5) LIVESTOCK PRODUCTION AND MANAGEMENT
The livestock management primarily focuses on the
well-being of the farm animals and uses advanced image
recognition (CNN) algorithms, and regression techniques to
detect and predict the disease/ disease spread.

Advantages of using ML in livestock production and
management:
1. Decreased risk of diseases – AI systems assists in identi-

fying the livestock diseases and also helps in combating
the disease, by predicting the root of diseases and trans-
mission (Regression algorithms).

2. Minimization of disease spread – timely diagno-
sis and treatment reduces the risk of spreading the
disease.

3. Psychological analysis – advanced image recognition and
behavioural analysis (CNN techniques) help is detecting
the stress in animals ensuring heath of the livestock.

Challenges and limitations in drip irrigation for an
agricultural field:
1. With varying geographic and climatic conditions the

attributes of the cattle and diseases changes hence, no uni-
versal system can be designed to cater to the diversities.

2. Some viruses are difficult to predict even using the
state-of-art prediction algorithms.

6) INTELLIGENT HARVESTING
The applications of AI techniques in harvesting is primarily
an assistive technology for automatic harvesting systems.
Harvesting prediction system largely relies on the advances in
image processing and CNN’s are the most prominent choice
for building these systems.

Advantages of using ML in intelligent harvesting:
1. Assistive technology – AI in conjunction with existing

harvesting robots exhibit high accuracy in harvesting.
2. Image processing – the identification of harvesting relies

on the state-of-art image processing algorithm (CNNs)
and hence the developments in the image processing algo-
rithms result in direct accuracy enhancement of intelligent
harvesting techniques.

3. Universal algorithms – the AI harvesting techniques
largely depend on image recognition methods, hence
CNNs can easily be deployed for implementing intelligent
harvesting techniques.
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Challenges and limitations in intelligent harvesting:

1. The accuracy of the prediction systems largely depends
on the training dataset, hence accurately labelled dataset
is a primary requirement of implementing an intelligent
harvesting system.

2. Inaccurate harvesting recognition system result in eco-
nomic loss for farmers, as a delay in harvesting might
lead to an overripe crop or early harvesting might lead to
rejection of the product.

VII. CHALLENGES AND LIMITATIONS OF ARTIFICAL
INTELLIGENCE IN PRECISION AGRICULTURE
Artificial intelligence has the potential of playing an impor-
tant role in meeting the food requirement of entire world.
However, there are certain challenges which are hampering
its adoption in agriculture industries which are outlined as
follows:

• A recent government survey in India estimated that liter-
acy rate of Indian farmers is very low therefore bridging
the gap between farmers and technology is a challenging
task.

• Farmers are less motivated to come out from their com-
fort zone and learn digital skills to improve their farming
standards.

• Agriculture lands are mostly situated in rural areas.
Implementation of IoT architecture and WSN which
requires cloud services for data storage and analysis is
a big issue in rural areas where reliable internet connec-
tivity is not available.

• Accurate prediction and classification through cognitive
ability of machines is difficult in varying geographical
conditions.

• Initial set up of digital farming which includes hardware
and software requires huge investment.

• Deployment of smart sensors and other electronic gad-
gets requires heavy energy consumption.

VIII. FUTURE TRENDS OF ARTIFICAL INTELLIGENCE AND
IoT IN PRECISION AGRICULTURE
Agriculture industry is globally US$5 trillion industry and
now it has been revolutionized with artificial intelligence
and IoT technologies. These innovative tools are assisting
famers to improve crop yield, monitor soil parameters, live-
stock health and temperature conditions, control pests and
improve other agriculture related tasks. Conventional ML
and DL models such as SVM, RF, ANN finds difficult to
accurately estimate soil parameters and weather conditions in
varying ecosystem. Therefore, swarm intelligence optimized
robust and adaptive ML and DL algorithms such as SVM-
PSO, ANN-GWO algorithms can be explored to effectively
forecast different parameters in precision agriculture. In large
agriculture fields swarm intelligence inspired autonomous
system can be built for crop health and growth monitor-
ing. UAV swarm can be utilized for near real time field
and livestock monitoring through computer vision and DL

algorithms and accordingly swarm of UAV can be used for
spraying of pesticides and fertilizers in the infected crops.
Greenness of crops can be identified through UAVs installed
cameras and an automated irrigation system can be built in
large agriculture fields. Swarm of mobile robots can be used
in the agriculture fields to efficiently automate task such as
harvesting, weed identification and elimination, etc. Meta-
heuristic algorithms can be explored for nodes localization
in agriculture fields in order to optimize the sensor deploy-
ment in the field and keep the minimize cost to farmers.
Offline service chatbots can be built to assist farmers in
developing countries where farmers don’t have good internet
connectivity. These chatbots can assist farmers by providing
timely advice based on expert recommendations and will
help to resolve their specific farming problems. Artificial
intelligence assisted renewable energy plants can be installed
in agriculture lands to maximize the power output of clean
energy in unpredictable weather conditions. This will allow
for sustainable agricultural practices. Artificial intelligence
can also be explored in vertical and soilless agriculture.
In near future artificial intelligence systems, robotics and
smart sensor technology will automate the whole farming
process starting from seed sowing to intelligent fruits and
vegetables harvesting and packaging.

IX. CONCLUSION
Precision agriculture is empowering the farmers with tech-
nology intending to get optimum outputs with precise inputs.
IoT enabled smart sensors, actuators, satellite images, robots,
drones are some of the key technological revolutions that
boosted the agriculture industry. These components play a
vital role in collecting real-time data and accordingly mak-
ing decisions without human support. Artificial intelligence
which is the automation of intelligent behaviour is continu-
ously benefiting our planet and helping humans in various
aspects of life. In this paper, authors have reviewed ML
applications for precision agriculture. The impact of AI and
IoT in smart farm management is discussed with a brief
introduction to ML algorithms which are most commonly
used in precision agriculture. Regression algorithms are the
backbone for soil properties, weather, and crop yield pre-
diction. DL algorithms such as CNN and ML classifica-
tion algorithms such as SVM, Decision trees, and RF were
explored for the identification of disease and weeds in the
plants. Smart irrigation systems and harvesting techniques
play an important component in precision agriculture as these
techniques quickly complete the work and reduces human
labour. Drones and robots enabled with a digital camera are
employed for this work. Livestock management is an impor-
tant concern for farmers across the world. Knowledge-based
agriculture system which includes smart IoT devices and AI
tools efficiently handle livestock management.

As a scope of future work, NLP based chatbots can be
built for famers and more ML, DL and hybrid algorithms can
be explored in the agriculture industry for sustainable use of
available resources.
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