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ABSTRACT The Rapid Upper Limb Assessment (RULA) is frequently used to monitor body posture for
early risk prevention of work-related musculoskeletal disorders. However, RULA measurements that are
based on workers’ self-report or external rater observation suffer from low repeatability. Thus, the objective
of this study was to investigate the accuracy and repeatability of an inertial measurement unit (IMU) system
for in-field RULA score assessment during manual material handling tasks using 3D Cardan angles and 2D
projection angles against reference values obtained by a motion-capture camera system. The experimental
results showed that for trunk and neck joint angles, the 2D convention had significantly (p<0.05) smaller
root-mean-square error (RMSE), while for other upper-body angles, the convention with significantly
smaller RMSE depended on the angle under analysis. Also, the 3D convention showed a ‘‘moderate’’
agreement with the reference system, while the 2D convention showed a ‘‘substantial’’ agreement for two
tasks and a ‘‘moderate’’ agreement for one task. Moreover, the intraclass correlation coefficients ranged from
0.82 to 0.94 for the 3D convention and 0.87 to 0.95 for the 2D convention for repeated trials performed by
each participant. Therefore, the wearable IMU system, along with the 2D convention, could be considered
as an accurate and repeatable ergonomic risk assessment tool.

INDEX TERMS Ergonomic risk assessment, inertial measurement unit, material handling tasks, RULA,
work-related musculoskeletal disorders.

I. INTRODUCTION
The physical factors such as forces exerted on the muscu-
loskeletal system, postures adopted, or work cycles contribute
to the development or progression of work-related muscu-
loskeletal disorders (WMDs) such as tendon inflammations,
nerve compression disorders, osteoarthrosis, myalgia, and
low back pain [1], [2]. WMDs account for a major cause
of nonfatal occupational injuries [3]. These disorders have
severe consequences for the workforce and impose a signifi-
cant financial burden on healthcare systems [4].

Therefore, several assessment methods have been pro-
posed to assess the human body motion and posture during
task execution to characterize and mitigate these physical
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factors towards reducing the risk of injury. These assessment
methods are grouped by their way of workplace observation
into three groups, including self-report, observational, and
direct methods [5]. The self-reporting methods are in the
form of questionnaires [6], checklists [7], or interviews [8],
and depend on the subjective report of the individuals about
their behaviour, symptoms, and attitude. Despite being easy
to measure and low cost of implementation for real-world
applications, subjective reporting could lead to an inaccurate
perception of theWMDs factors exposure amongworkers [9].

The observational methods are classified into simple and
advancedmethods [10]. Simple observationalmethods record
the worker postures in pre-designed proforma sheets by an
independent observer. In particular, the Rapid Upper Limb
Assessment (RULA) is a physical risk assessment tool that
evaluates the WMDs risk factors related to the trunk, neck,
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and upper-limb based on the posture’s observations [11]. This
method quantifies the posture risks as a single score ranging
from 1 (low risk) to 7 (high risk) by applying pre-defined
thresholds to segments’ angular position and provides sug-
gestions accordingly:
• Scores 1 and 2: Acceptable posture.
• Scores 3 and 4: Further investigation, change may be
needed.

• Scores 5 and 6: Further investigation, change soon.
• Score 7: Investigate and implement change.
The RULA scores should be monitored continuously dur-

ing the whole work/activity duration to identify and revise
the most harmful posture or longest-held posture [11]. Thus,
the RULA provides quick and low-cost upper limb disor-
der assessment for the working population. Yet, the low
inter-observer repeatability is the major shortcoming of
simple observational methods [5]. Therefore, advanced
observational methods based on video recording and
computer analyzing, such as hands-relative-to-the-body
(HARBO) [12], portable-ergonomic-observation (PEO) [13],
and SIMI software (Simi Motion R©) [14], were suggested to
assess a variety of postures in fast-paced environments in real-
time. For instance, the HARBO method was developed to
record the duration of four walking posture with hands at pre-
defined angular positions and a sitting posture using a hand-
held personal computer [12]. Similarly, the PEO method was
developed to register workers’ postures and activities (the
duration and number of events) at arms, neck, trunk, and knee
level using a hand-held personal computer [13]. The SIMI
software was also used to analyze 3D images of the workers’
trunks during standard tasks involved in supermarket check-
out workstations toward calculating trunk’s kinematics [14].
Nevertheless, the practical functionality of these systems in
real workplaces is questionable because of the self or object
occlusion, limited field of view, and high operating cost [9].

Recently, the integration of direct measurement of the body
posture and muscle fatigue using wearable sensing devices
and observational methods for evaluatingWMDs factors have
been considered to increase the inter-observer repeatability
and data collection accuracy [15]. Direct methods for WMDs
assessment employ wearable sensing devices attached to
the worker’s body for direct measurement/assessment of
the posture and muscle fatigue [10]. The posture measure-
ment could be based on an inclinometer, electric goniometer,
or hand-held equipment that continuously monitors the joint
angles during a task [16], [17]. The muscle fatigue measure-
ment is usually based on the readouts of an Electromyogra-
phy (EMG) sensor. However, these systems were developed
mainly for clinical applications rather than real workplaces.
For instance, while electric goniometers are suitable for knee
or elbow flexion/extension angle measurement, they cannot
be used to measure trunk, shoulder, or neck angles. Also,
EMG readout can be affected negatively by sweating.

On the other hand, wearable inertial measurement
units (IMUs) can be used along with observational meth-
ods to evaluate the WMDs factors [18]. IMUs can measure

body segments’ acceleration and angular velocity, as well as
kinematic parameters such as joint angles [19], [20]. Their
accuracy and reliability have been validated in various appli-
cations such as gait analysis [21], daily activities monitor-
ing [22], balance assessment [23], or ability to return to sport
after knee injury [24]. Considering the advantages such as
high accuracy and reliability, low cost, small size, and long
battery life, IMUs can be ideal for ergonomic assessment
studies.

Therefore, previous studies validated the application of
IMUs along with simple observational methods for WMDs
factors evaluation against human observers. For instance,
Vignais et al. [25] used seven IMUs placed on the upper-body
segments together with two goniometers to calculate joint
angles and then the RULA score and provided auditory and
visual feedback accordingly to decrease the hazard associ-
ated with industrial tasks. Peppoloni et al. [26] proposed the
combination of wearable IMUs and surface EMG sensors
for measuring the forearm’s muscle efforts in a simulated
environment to assess hazards associated with the material
handling tasks. Battini et al. [27] proposed the applica-
tion of 17 IMUs for building a biomechanical model with
20 degrees of freedom and validated the proposed system in
a fashion distribution center and supermarket warehouse.

Although IMUs have been used for various biomedical
applications, almost in all cases, only the accuracy and
repeatability of 3D joint angles defined by the joint coordi-
nate system (JCS) according to ISB recommendations have
been validated against a reference system. At the same time,
IMUs have shown great potential for applications that require
the sensors to be worn for an extended period of time,
while they minimally interfere with user’s routines, such as
ergonomic risk assessment of workers in industrial environ-
ments. However, in the application of IMUs for ergonomic
risk assessment, the convention adopted for calculating the
joint angles can play a significant role in RULA score calcula-
tion. In particular, JCS [28] along with the ISB recommenda-
tions for local anatomical frames [29], [30] (will be referred to
as 3D joint angles hereafter), is the standard method for joint
angle measurement with IMUs [20]. However, the RULA
score was initially defined based on the planar projection
of joint angles into anatomical planes (referred to as 2D
joint angles hereafter). Notably, Manghisi et al. [31] showed
that the RULA scores calculated using the 2D joint angles
obtained by Kinect V2 had a ‘‘perfect’’ proportion agreement
with those obtained by the gold-standard camera-based sys-
tem. The IMUs, unlike Kinect V2, can calculate joint angles
using both 2D and 3D conventions. Thus, the joint angle
convention’s effect on the accuracy and reliability of RULA
score measurement with IMUs is still unknown.

Therefore, in contrast to previous studies which used IMUs
with 3D convention, this study’s objective was to inves-
tigate the validity of an instrumented RULA assessment
tool based on the kinematic models obtained by wearable
IMUs and using both 2D and 3D joint angle conventions
against the kinematic model obtained by the reference camera
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motion-capture system. To this end, first, we quantified the
accuracy of joint angles obtained by the IMU-system based
on 3D and 2D conventions against the reference system
through an experimental study with able-bodied individu-
als performing three manual material handling tasks. Then,
we identified the convention resulting in higher reliabil-
ity based on the repeatability of obtained RULA scores.
Low-cost IMU-based instrumented RULA assessment tool
could achieve high accuracy/repeatability, in contrast to
simple observational methods proposed earlier, and can be
widely adopted in industrial environments to reduce the risk
of WMDs.

II. METHODS
A. EXPERIMENTAL PROCEDURES
Ten able-bodied individuals (all male, 25 ± 5 years old,
170 ± 5 cm, 69 ± 5 kg) with no history of back pain
or musculoskeletal/neuromuscular injuries participated in
the experiments. The Research Ethics Board Committee
at the University of Alberta approved the study protocol
(ID: Pro00083309), and written consent was obtained from
all participants.

Each participant performed threemanual material handling
tasks, including six repetitions of task 1 (Figure 1(a)) and
three repetitions of tasks 2 and 3 (Figures 1(b) and (c),
respectively). The dimensions of the desks in Figure 1 were
according to the NIOSH lifting equation manual [32]. For
task 1 (packing), the participant performed trunk twisting
to pick up an object from the initial position (desk 1) and
dropping it over to the final destination (desk 2). Task 2
(package inspection) involved an asymmetric movement in
which the participant bent in the sagittal plane to the knee
height to pick up a box (desk 1) and place it on another desk at
the head height (desk 2). In task 3 (reaching), the participant
was asked to perform the following movements: standing
motionless (N-pose) for five seconds and then reaching to an
object at the head height (desk 1). In addition to the main
tasks, participants were instructed to stand motionless for
five seconds at the beginning and end of each repetition.
The experimental study lasted about 15 seconds for each
repetition, and we analyzed the full-range movement for each
task, and not only the static standing postures at the beginning
and the end of each repetition.

B. DATA COLLECTION
Reference Kinematic Model: To build the reference kinematic
model, a motion-capture camera system (VICON, Oxford
Metrics Group, UK) with eight cameras and a sampling
frequency of 100 Hz was used to record the 3D trajectory
of 15 retro-reflective markers attached to the anatomical
landmarks of the body. The tracked anatomical landmarks
were as follows: right and left Auricularis (head segment);
seventh cervical vertebra or C7 (for head and trunk segments);
Incisura Jugularis (for head and trunk segments); Processus
Xiphoideus (for trunk segment); right and left Acromion

FIGURE 1. Three scenarios of manual material handling tasks. (a) task 1:
Packing; (b) task 2: Package inspection; (c) task 3: Reaching an object.

(shoulder segment); right and left lateral/medial Humeral
Epicondyle (upper-arm segment); right and left radial/ulnar
Styloid (lower-arm segment). These markers were used as
described in Sections II.D.1 and II.D.2 to calculated 3D and
2D joint angles.
IMU-based Kinematic Model: 17 IMUs (MTws, Xsens

Technologies, the Netherlands) were used to record the par-
ticipants’ motion with a sampling frequency of 60 Hz. Each
IMU included a tri-axial accelerometer (range: ±16 g), a tri-
axial gyroscope (range: ±2000 ◦/s), and a tri-axial mag-
netometer (range: ±1.9 Gauss) and was attached to body
segments using anti-allergic double-sided medical tape. After
data collection, the IMU data were up-sampled to attain the
sampling frequency of 100 Hz, similar to the camera system.
Data Collection: When the study coordinator pressed the

‘‘start/end’’ button in the custom-made software for data
collection, an analogue trigger signal was generated by an
Arduino and sent to both IMU and camera systems to
start/end data collection. As such, both systems started/ended
data collection at the beginning/end of each trial (i.e., each
repetition of each task) separately but synchronously.

C. RULA SCORE IMPLEMENTATION
To calculate the RULA score, commonly, an observer iden-
tifies the posture score A (composed of upper-arm, lower-
arm, wrist-twist, and wrist sub-scores) and the posture
score B (composed of neck and trunk sub-scores). Each
sub-score is obtained by comparing the segment’s angular
position with pre-defined angular thresholds in the RULA
score sheet [11]. For instance, for trunk flexion/extension,
angular positions of 0◦-10◦ (0◦ means standing upright), 10◦-
20◦, 20◦-60◦,>60◦ result in RULA sub-score of+1,+2,+3,
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and+4, respectively. After calculating all sub-scores, they are
combined and converted to the RULA score.

To evaluate the effect of joint angle convention on the
measurement accuracy of instrumented RULA score during
the material handling tasks, first, we calculated 3D or 2D
joint angles (see Sections II.D.1 and II.D.2) using both IMU
and camera systems. Then, we computed the RULA score at
each time instant during the trials, according to Table 1 and
RULA sheet [11]. Notably, for upper-arm, elbow, neck, and
trunk flexion/extension, we compared the calculated angular
positions for each segment with the pre-defined thresholds
in the RULA sheet. The RULA score sheet did not define
any numerical threshold for upper-arm adduction/abduction,
shoulder adduction/abduction, lower-arm axial rotation, neck
lateral bending, trunk adduction/abduction, and trunk axial
rotation. For these joint angles, we considered the sub-score
equal to 0 for angles equal to or smaller than 20◦ and equal
to 1 for angles higher than 20◦, similar to [33].

TABLE 1. Segments for which the RULA score was calculated along with
the joint angles used for RULA score calculation. We used 20◦ as the
threshold [33] for the undefined thresholds in the RULA sheet, meaning
that for angular positions higher than 20◦, a sub-score of +1 was given to
the segment; otherwise, a sub-score of 0 was given to the segment.

D. JOINT ANGLE CALCULATION
Table 1 identifies the joint angles required for RULA
score calculation and not the kinematic model that was
used for data collection (described in Section II.D.1 and
II.D.2 for 3D and 2D conventions, respectively). To measure
3D and 2D joint angles, the position of the markers
attached to anatomical landmarks has been tracked with both
IMU-based and camera-based systems. Then, the JCS con-
vention (according to the ISB recommendations) and a planar
projection method have been used to calculate 3D and 2D
joint angles, respectively. Finally, the targeted joint angles
(Table 1) were used to calculate the RULA score based on
the 2D and 3D conventions.

1) 3D JOINT ANGLES
3D joint angles were obtained based on the JCS conven-
tion [28] and using anatomical coordinate systems defined
in ISB recommendations [29], [30]. To this end, a seg-
mental kinematic model was created using both IMU and

camera data. For the camera-based segmental kinematic
model, a 3D model was constructed based on the anatom-
ical landmarks suggested by the ISB for upper [29], [30],
as detailed in Table 1, except for the head, shoulder, and
trunk segments. The reason is that the ISB recommendations
did not define the head and shoulder segments, and also,
the T8 marker, required for trunk segment construction, was
missed by the camera system due to occlusion in most tri-
als. Thus, we used the midpoint between C7 and Incisura
Jugularis and right and left Auricularis anatomical landmarks
to construct the head segment. We used the angles obtained
from the 2D convention in the RULA score calculation for the
shoulder segment. Moreover, C7, Incisura Jugularis, and Pro-
cessus Xiphoideus were used to construct the local anatomi-
cal coordinate system of the trunk segment.

For the IMU-based segmental kinematic model, a 3D
model was obtained by the Xsens-MVN Analyze software
(Xsens Technologies, The Netherlands). Using Xsens pro-
prietary sensor fusion algorithm for orientation estimation,
theMVNAnalyze software provided kinematic parameters of
a 23-segment body model, including segments’ orientation,
joints’ center position, and the 3D joint angles of the 22 joints
as detailed in [34].

2) 2D JOINT ANGLES
A planar projection method similar to [31] was used for
2D joint angle calculation. To this end, first, joint centers were
determined based on the anatomical markers (Figure 2(a)) as
follows: head (point 1): midpoint of right and left Auricu-
laris; neck (point 2): C7; right/left shoulder (points 4 and 5):
right/left Acromion; right/left elbow (points 6 and 7): mid-
point of right/left Lateral Humeral Epicondyle and right/left
Medial Humeral Epicondyle; right/left wrist (points 8 and 9):
midpoint of right/left Radial Styloid and right/left Ulnar Sty-
loid. The sagittal, frontal, and transverse planes of the body
were then defined, as shown in Figure 2(b), to locate the
segments’ angular position required for the RULA assess-
ment tool. The sagittal plane was defined to be perpendicular
to the shoulder vector. The shoulder vector was defined
as a line connecting the right shoulder to the left shoulder
(point 5 to 4). The frontal plane was parallel to the shoulder
vector and passed through the trunk vector. The trunk vector
was defined as a line connecting the spine base (point 3) to
C7 (point 2). The transverse plane was considered to be the
ground.

The neck flexion/extension angle was calculated as the
angle between the projection of the neck vector, defined as
a line connecting the head (point 1) to C7 (point 2), and the
trunk vector in the sagittal plane. The neck lateral bending
was computed as the angle between the neck and shoulder
vectors in the frontal plane. The trunk flexion/extension was
calculated as the angle between the trunk vector and the ver-
tical direction in the sagittal plane. The trunk lateral bending
angle was measured as the angle between the projections of
the shoulder vector and hip vector, defined as a line passing
through the right and left hips joint centers (points 10 and 11)
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FIGURE 2. Illustration of the (a) joints center positions (the number after
each joint’s name indicates the point number referred to in the text) and
(b) body anatomical planes used in the 2D joint angle calculation
convention.

in the frontal plane. The trunk rotation was defined as the
angle between the projections of the shoulder vector and the
hip vector in the transverse plane.

The upper-arm flexion/extension was calculated as the
angle between the projections of the trunk vector and the
upper-arm vector in the sagittal plane. The upper-arm vec-
tor was defined as a vector directed from the shoulder
(points 4 and 5) to the elbow (points 6 and 7). The upper-arm
adduction/abduction was computed as the angle between
the projection of the upper-arm vector in the frontal plane
and the trunk vector. The elbow flexion/extension angle was
calculated as the angle between the upper-arm vector and
lower-arm vector, defined as a line that passes through the
elbow (points 6 and 7) to the wrist (points 8 and 9) in the
sagittal plane. The upper-arm rotation was also calculated
as the angle between the shoulder vector and the lower-arm
vector projected into the transverse plane. Finally, the shoul-
der addiction/abduction angle was computed as the angle
between the shoulder vector and the trunk vector in the frontal
plane. Note that according to the RULA sheet [11], the upper-
arm (Figure 2: vector connecting point 4/5 to 6/7) and shoul-
der (Figure 2: vector connecting point 5 to 4) are different
segments. Therefore, the upper-arm abduction and raising the
shoulder (abduction/adduction) contribute to the RULA score
separately. Thus, as shown in Table 1, we considered separate
sub-scores for upper-arm and shoulder adduction/abduction
in line with the RULA score sheet.

E. DATA ANALYSIS
The data analysis was done inMATLAB (MathWorks, USA).
All IMU and camera data were filtered using a 3rd-order
one-dimensional median filter before any data processing.
Each repetition of each task was analyzed separately. Offset,

RMSE before removing offset (RMSE+), and RMSE after
removing offset (RMSE−) of joint angles were calculated,
based on the error between the IMU-based and camera-based
angles, to quantify the accuracy of the IMU-based system
for measuring 3D and 2D joint angles. Also, the agree-
ment between IMU-based and camera-based RULA scores
obtained by 2D and 3D kinematic models was quantified
by calculating the proportion agreement index and Cohen’s
Kappa coefficient on a sample-to-sample basis [35]. The
z-test was used to identify if the agreement between the two
systems was accidental.

To assess the intra-participant repeatability, the intra-class
correlation coefficient (ICC) [36] was calculated for the three
trials of each participant during each task. For the ICC,
the degree of absolute agreement for three independent
measurements under the fixed levels of the column factor
(two-way mixed model, interaction absent) was calculated.
The closer the value of ICC to 1, the more repeatable the
method.Moreover, the inter-participant variability of the joint
angle RMSEs was tested using a multiple-sample test for
equal variances (Bartlett test) at the significance level of 5%.
The Bartlett test showed that the variances of RMSEs were
significantly (p<0.05) different for all tasks. Thus, nonpara-
metric Friedman’s test, along with post-hoc multiple compar-
isons (using Bonferroni correction), were employed to detect
significant differences among the RMSEs of joint angles in
each task at the significance level of 5%.

III. RESULTS
We have collected data from 12 participants during our exper-
imental study. Nevertheless, due to the loss of spatial data
(occlusion of motion-capture cameras) or temporal synchro-
nization, we were only able to use the data of 10 participants.
In the current section, we report the major findings of the
experimental study, while Section IV: Discussion, details the
implications of the findings, places the obtained results in
the literature context, and addresses the limitations and future
directions for the current study.

A. 3D JOINT ANGLES
A representative plot of joint angles obtained based on
3D convention during task 1 shows that the measured joint
angles with the IMU-based system and their reference coun-
terpart had similar patterns (Figure 3(a)). However, there
was always an offset between the two systems, and the
value of the offset error was different among different seg-
ments, as presented in Table 2. Also, a representative plot
of RULA scores for one trial during the three tasks showed
that the RULA scores obtained based on 3D convention
using IMU-based and camera-based systems had similari-
ties and differences (Figure 4(a)). Note that the presented
angles/RULA score in Figures 3 and 4 may not be an actual
representative for all participants and demonstrate the pattern
of joint angles/RULA score in general.

Figure 5 shows the joint angles RMSE+s between the
IMU-based and camera-based kinematic models for the
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FIGURE 3. A representative plot of the joint angles of the trunk, neck, and right upper-arm, right lower-arm, and right elbow obtained
using the (a) 3D convention and (b) 2D convention (task 1, trial 1, participant 1). Shoulder adduction/abduction was not presented to
provide comparable graphs between both conventions. Solid black and dashed red lines show the angles obtained by camera-based and
IMU-based systems, respectively. Terms Flex, Add, and Rot indicate flexion/extension, adduction/abduction, and axial rotation,
respectively. The presented angles may not be an actual representative for all participants and are depicted to demonstrate the pattern of
joint angles in general.

3D convention during tasks 1, 2, and 3. For all tasks, the
median RMSE+s were lower than or close to 10◦ for trunk
and neck joint angles, except for neck flexion/extension.
Also, according to Table 2, for the trunk, neck, and elbow
flexion/extension as well as upper-arm adduction/abduction
and rotation angles, the median offset errors were 1.8 to
5.3 times greater than the median RMSE−s in task 1. In tasks
2 and 3, trunk, neck, and elbow flexion/extension, as well
as upper-arm adduction/abduction and rotation angles, had
a larger median offset error than that of RMSE−. Notably,
for all three tasks, elbow flexion/extension and upper-arm
rotation angles had offset errors of higher than 20◦, while
the RMSE−s were smaller than 11◦. Moreover, for all joints,
except for the elbow flexion/extension and upper-arm rota-
tion angles, the interquartile ranges of RMSE−s were lower
than 6.3◦ among all tasks, while the interquartile ranges of the
offset errors were lower than 11.4◦. Furthermore, the elbow
flexion/extension and upper-arm rotation angles had the

lowest inter-participant reliability (largest interquartile
range), as shown in Figure 5.

Table 3 shows that according to the Landis and Koch
scale [35], the RULA scores measured by IMU-based and
camera-based systems using the 3D convention had a ‘‘mod-
erate’’ agreement during all tasks. The z-test showed that the
high agreement between the two systems during all tasks and
for both body sides was not accidental at a significance level
of 5%.

B. 2D JOINT ANGLES
A representative plot of joint angles obtained based on
2D convention during task 1 shows that the measured joint
angles with the IMU-based system and their reference coun-
terpart had similar patterns (Figure 3(b)). However, for neck
and elbow flexion/extension, neck adduction/abduction, and
upper-arm rotation angles, there was an offset between the
two systems. Also, a representative plot of RULA scores
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TABLE 2. Offset and RMSE− (after removing the offset) of the joint angles obtained by the 3D convention using the IMU-based system against the
camera-based system presented as median (interquartile range) among all participants. Terms Flex, Add, and Rot indicate flexion/extension,
adduction/abduction, and axial rotation, respectively.

TABLE 3. Proportion agreement index (Po), linear weighted Cohen’s kappa, and p-value of z-test, and degree of agreement based on Landis and Koch
scale [35], between the RULA scores obtained by IMU-based and camera-based kinematic models using the 3D convention. The results are presented as
50th (25th, 75th) percentile among participants.

FIGURE 4. A representative plot of the RULA scores was obtained using the 3D convention for one complete trial, including five seconds of quiet
standing, performing the task, and then five seconds of quiet standing (tasks 1, 2, 3, trial 1, participant 1). Solid black and dashed red lines show the
RULA score obtained by camera-based and IMU-based systems, respectively. Terms Flex, Add, and Rot indicate flexion/extension, adduction/abduction,
and axial rotation, respectively. The presented angles may not be an actual representative for all participants and are depicted to demonstrate the pattern
of joint angles in general.

for one trial during the three tasks showed that the RULA
scores obtained based on 2D convention using IMU-based

and camera-based systems had similarities and differences
(Figure 4(b)).
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FIGURE 5. Root-mean-square error (RMSE+: without removing the offset)
of the 3D convention between the IMU-based and camera-based systems
shown as boxplots over the results of 10 participants for (a) task 1,
(b) task 2, and (c) task 3. The boxplots for the trunk and neck are shown
in black, those for the right side are shown in blue, and those for the left
side are shown in green. Terms Flex, Add, and Rot indicate
flexion/extension, adduction/abduction, and axial rotation, respectively.

Figure 6 shows the joint angles RMSE+s between the
IMU-based and reference camera-based kinematic models
for joint angles obtained by the 2D convention during the
three tasks. The median RMSE+s were lower than or close
to 10◦ for trunk and neck joint angles for all tasks. Also,
according to Table 4, for neck and elbow flexion/extension,
upper-arm adduction/abduction, and shoulder rotation angles,
the median offset errors were 2.7 to 9.6 times greater than the
median RMSE−s in task 1. However, in contrast to the 3D
convention, the trunk angles obtained by the 2D convention
had offset errors nearly 2 times smaller than the RMSE−s.
For tasks 2 and 3, neck and elbow flexion/extension, upper-
arm adduction/abduction, and shoulder rotation angles had a
larger median offset error than that of RMSE−. Notably, for
all three tasks, neck and elbow flexion/extension and upper-
arm rotation angles had offset errors of higher than 10◦, while
the RMSE−s were smaller than 17◦. Moreover, according
to Table 4, the upper-arm adduction/abduction and rotation
angles had the lowest inter-participant reliability, i.e., the
highest offset and RMSE− interquartile ranges, respectively,
among three tasks (15.2◦ and 17.7◦). At the same time,
the trunk angles, as well as the upper-arm flexion/extension,
had the highest inter-participant reliability, i.e., offset and
RMSE− interquartile ranges were lower than 4.2◦.

FIGURE 6. Root-mean-square error (RMSE+: without removing the offset)
of the 2D convention between the IMU-based and camera-based systems
shown as boxplots over the results of 10 participants for (a) task 1,
(b) task 2, and (c) task 3. The boxplots for the trunk and neck are shown
in black, those for the right side are shown in blue, and those for the left
side are shown in green. The terms Flex, Add, and Rot indicate
flexion/extension, adduction/abduction, and axial rotation, respectively.

Furthermore, Table 5 shows that according to the Lan-
dis and Koch scale [35], the RULA scores measured by
IMU-based and camera-based systems using the 2D conven-
tion had a ‘‘substantial’’ agreement during tasks 1 and 3 and a
‘‘moderate’’ agreement during task 2. The z-test showed that
the high agreement between the two systems during all tasks
and for both body sides was not accidental at a significance
level of 5%.

C. COMPARISON OF 3D AND 2D CONVENTIONS
Table 6 shows a comparison between the 3D and 2D conven-
tions by comparing the RMSE+ associated with each joint
angle (measured against the camera-based system). In gen-
eral, the 2D joint angle convention had significantly (p<0.05)
smaller RMSE+s compared to the 3D convention in tasks 1,
2, and 3 for 6, 7, and 9 joint angles (out of 13 joint angles),
respectively. In particular, for trunk angles, Figures 5 and 6,
as well as Table 6, show that the 2D convention was preferred,
as the RMSE+s associated with trunk flexion/extension,
adduction/abduction, and rotation angles of the 2D conven-
tion were significantly (p<0.05) smaller than those of the
3D convention for all tasks. Notably, the median RMSE+

in measuring the trunk angles using 2D convention never

7300 VOLUME 9, 2021



A. Humadi et al.: Instrumented Ergonomic Risk Assessment Using Wearable Inertial Measurement Units

TABLE 4. Offset and RMSE− (after removing the offset) of the joint angles obtained by the 2D convention using the IMU-based system against the
camera-based system presented as median (interquartile range) among all participants. Terms Flex, Add, and Rot indicate flexion/extension,
adduction/abduction, and axial rotation, respectively.

TABLE 5. Proportion agreement index (Po), linear weighted Cohen’s kappa, and p-value of z-test, and degree of agreement based on Landis and Koch
scale [35], between the RULA scores obtained by IMU-based and camera-based kinematic models using the 2D convention. The results are presented as
50th (25th, 75th) percentile among participants.

exceeded 5◦, while for trunk flexion/extension obtained by
3D convention, median RMSE+ of nearly 10◦ were observed.
Also, the interquartile ranges associated with 2D trunk angles
tended to be smaller than the 3D angles. Similarly, for the
neck flexion/extension angle, the median RMSE+ of the
3D convention was nearly 2 times greater than those of
the 2D convention for all tasks. On the other hand, for neck
adduction/abduction angle, similar RMSE+s were obtained
by both conventions, except for task 3, where the RMSE+s
obtained by the 3D convention were significantly smaller.

In contrast to trunk and neck angles, the elbow flex-
ion/extension angle, obtained using 3D convention, resulted
in significantly (p<0.05) lower RMSE+s compared to the 2D
convention for tasks 1 and 2. For the same angle and task 3,
RMSE+s of the right-side angles associated with the 2D con-
vention were significantly (p<0.05) smaller compared to the
3D convention, and no significant difference was observed
between the left-side RMSE+s. Also, the upper-arm flex-
ion/extension angle obtained by the 2D convention resulted in
significantly smaller RMSE+ compared to the 3D convention

for both sides and all tasks. Notably, Figures 5 and 6 show that
for the 2D convention, the RMSE+s were less than 5◦ among
all tasks (for both sides), while for 3D conventions, RMSE+s
were close to 10◦ or higher.
On the other hand, the upper-arm adduction/abduction

angle, obtained by 3D convention, resulted in significantly
smaller RMSE+ compared to the 2D convention, except for
the right-side in task 1. Notably, for tasks 2 and 3 with a
smaller range of motions in the frontal plane, the 3D con-
vention showed to be more reliable by achieving smaller
interquartile ranges of error compared to 2D. For upper-arm
rotation during task 1, no significant difference was observed
between the two conventions, while for task 3, the 2D con-
vention resulted in a significantly (p<0.05) lower error than
the 3D convention.

Tables 3 and 5 show that the obtained RULA scores with
the two conventions had Cohen’s kappa coefficients ranged
from 0.43 to 0.60 for 3D and 0.54 to 0.80 for 2D. In other
words, a ‘‘substantial’’ agreement between IMU-based and
camera-based systems was achieved for two tasks using the
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TABLE 6. Comparison between the accuracy of the 2D and 3D
conventions for the three manual material handling tasks. The accuracy
of the two conventions was defined as their RMSEs measured against the
camera-based system before removing the offset (RMSE+) and compared
using statistical analysis (p-values of the comparisons are reported).
†indicates significantly lower RMSE+s for the 2D convention, while
‡indicates significantly lower RMSE+s for the 3D convention. The terms
Flex, Add, and Rot indicate flexion/extension, adduction/abduction, and
axial rotation, respectively.

2D convention only. Moreover, Table 7, which provides the
ICC values among repeated trials of each participant, shows
that the 2D convention was more repeatable than the 3D in all
tasks except for the left-side in task 3.

IV. DISCUSSION
Wearable IMUs proved to be a powerful tool for ambula-
tory measurement of human motion, focusing on lower-limb
or upper-limb. For instance, Qiu et al. [37] proposed a
distributed IMU system to analyze lower-limb motion and
measure the swing/stance phase, step size, and segment
positions. More recently, Anwary et al. [38] performed an
extensive experimental study to determine the optimal loca-
tion for the foot-mounted IMU toward building an auto-
matic system for accurate and repeatable gait analysis. Also,
Sun et al. [39] proposed the application of wearable IMUs
to conduct gait-based identity recognition for the elderly
population. However, these works, or their counterparts for
upper-limb such as [40], [41], were focused on algorithm
development with wearable IMUs toward measuring clini-
cally meaningful parameters, especially for among elderly
population or patients, and have not involved the development
of an instrumented ergonomic risk assessment tool for the
healthy population in industrial environments.

Wearable IMUs have a great potential for in-field mea-
surement of RULA scores to improve the ergonomic risk
assessment’s accuracy and reliability. Yet, few studies [25],
[26], [42] have proposed the application of IMUs for RULA
score calculation toward ergonomic risk assessment based
on various biomechanical models with different degrees of
freedom. Also, the body segment angles defined in the RULA
score are not the same as the 3D Cardan angles measured by
IMUs in biomechanics research. Thus, it is unknown which

TABLE 7. The intraclass correlation coefficient (ICC) and lower and upper
bound of 95% confidence interval of the median RULA score among
repeated trials of each participant.

joint angle convention obtains better accuracy and reliability
for the IMU-based RULA scores. This study experimentally
investigated the accuracy of a wearable IMU-based instru-
mented RULA assessment tool against the kinematic model
obtained by a camera motion-capture system, using both
3D (using JCS according to ISB recommendations) and 2D
(using planar projection of angles) joint angle calculation
conventions during three manual material handling tasks.

A. ACCURACY OF JOINT ANGLE CONVENTIONS
We compared the 3D and 2D conventions for the joint
angles associated with the trunk segment and observed larger
errors for the 3D convention (Figures 5 and 6). In particu-
lar, the trunk flexion/extension angle was measured as the
angle between trunk vector and vertical direction for the
2D convention, which only relied on the position of two
anatomical landmarks, i.e., head (point 1 in Figure 2) and
C7 (point 2 in Figure 2). On the other hand, for the 3D
convention, trunk and pelvis anatomical local frames must be
calculated, which requires the position of seven anatomical
landmarks. Thus, small differences between the position of
anatomical landmarks obtained by the Xsens-MVN Analyze
software and camera system caused by marker displacements
due to skin movement artifact would have a greater impact on
the joint angles calculated via the 3D convention. A similar
pattern was observed for the neck flexion/extension angle.
Another reason for having the largest error in trunk and neck
flexion/extension angles during tasks 2 and 3 was that during
these two tasks, the range of motion in the sagittal plane was
larger compared to the other planes, i.e., the primary motion
of the trunk and neck was in the sagittal plane. In contrast
to trunk and neck angles, none of the conventions always
resulted in smaller errors for elbow and upper-arm angles
(Table 6).

To better characterize the errors obtained by the two con-
ventions, we calculated offset and RMSE− (after removing
the offset error) (Tables 2 and 4). The fixed offset error was
caused by the IMU calibration, while errors in orientation
estimation with IMU or soft tissue artifact contributed to the
RMSE−. The offset error could be eliminated by instructing
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the participants to hold a specific posture, e.g., N-pose, at the
beginning of the data acquisition, and then removing the off-
set between two systems. Therefore, to identify a joint angle
calculation convention, we focus on RMSE−s. Comparing
Tables 2 and 4 reveals that the 2D convention resulted in
errors with lower RMSE−s in all tasks, except for the neck
and upper-arm adduction/abduction angles, and upper-arm
rotation angle in tasks 2 and 3.

Robert-Lachaine et al. [43] evaluated the differences
between the joint angles obtained by the Xsens software
and the reference camera-based system using the 3D con-
vention during simple functional tasks such as head, trunk,
and upper-arm flexion/extension, adduction/abduction, and
rotation. They showed that the soft-tissue artifact associated
with both IMUs andmarkers duringmanualmaterial handling
tasks could negatively affect the calculated joint angles’ accu-
racy and reliability. They also showed that the IMU calibra-
tion process and the anthropometric measurements required
for obtaining anatomical local coordinate systems according
to ISB recommendations [29], [30] could contribute to the
observed errors, mostly in terms of a constant offset. How-
ever, the impact of the joint angle calculation convention
on the accuracy and reliability of the results has not been
assessed.

They reported a mean RMSE of 40.2◦ for the upper-
arm adduction/abduction, which was larger than the median
error RMSE+ of the same angle obtained by the 3D con-
vention in our study for the left side (9.5◦). This large
difference could be a result of (1) measuring the gleno-
humeral joint to represent the upper-arm joint center posi-
tion and (2) having a longer experimental duration, which
may increase the orientation estimation error in [43]. Also,
the largest upper-arm adduction/abduction RMSE+ obtained
by 2D convention (18.5◦) in our study was smaller than the
one reported in [43] using the 3D convention. Conversely,
the elbow flexion/extension median RMSE+s obtained by
3D and 2D conventions (23.7◦ and 25.5◦, respectively) in
our study were larger than the mean RMSE (6.2◦) reported
in [43]. These large errors in our study were mainly due to
the offset between the IMU-based and camera-based systems.
Also, in contrast to [43], where only single-axis motions
were evaluated, we assessed the IMU system during complex
multi-dimensional tasks.

B. IN-FIELD RULA SCORE MEASUREMENT
As the effect of the joint angle calculation convention
on the RULA score calculation has not been assessed,
we reported the agreement between RULA scores obtained
by the IMU-based and camera-based systems for 2D and
3D conventions. Using the 3D convention, for tasks 1 and
2, with more complex motions than task 3, a ‘‘moderate’’
agreement was obtained between RULA scores measured via
IMU-based and camera-based systems. At the same time,
using the 2D convention, for tasks 1 and 3, a ‘‘substantial’’
agreement was obtained between RULA scores measured via
IMU-based and camera-based systems, while a ‘‘moderate’’

agreement was obtained for task 2 (Table 5). The differences
between the agreements of right and left sides for all tasks
in Tables 3 and 5 were likely due to the bilateral asymmetry
at the destination workstations.

Also, we evaluated the repeatability of the two conventions
by measuring the ICC among repeated trials of one partici-
pant. The ICCs ranged from 0.82 to 0.94 (‘‘good’’ and ‘‘excel-
lent’’ according to [36]) for 3D and 0.87 to 0.95 (‘‘good’’ and
‘‘excellent,’’ according to [36]) for 2D conventions (Table 7).
In other words, the 2D convention tended to be more repeat-
able than the 3D in all tasks except for the left-side in task 3.
Therefore, the 2D convention could be considered a more
accurate and repeatable convention than the 3D convention
for joint angle and RULA score measurement.

C. VALIDITY OF RULA SCORES COMPUTED BY IMU
SYSTEM
According to Tables 2 and 4, for 3D and 2D conventions, the
median of RMSEs among all participants and tasks ranged
between 1.5◦ to 10.8◦ and 1.4◦ to 16.6◦. At the same time,
the pre-defined thresholds for calculating RULA sub-scores
for upper-arm, lower-arm, neck, and trunk angles are 20◦,
40◦, 10◦, and 20◦, respectively. Thus, this level of error
might not always affect the calculated RULA score. As a
result, the agreement between IMU and camera systems were
‘‘moderate’’ or ‘‘substantial.’’ Therefore, despite consider-
able RMSE of the IMU system in tracking the body segments’
angular position, the accuracy of the RULA scores computed
by IMUs was not poor in most cases.

Nevertheless, we used the Xsens-MVN Analyze as a com-
mercial package to track the segments’ angular position.
Thus, the obtained RULA score by other IMU systems
might have different accuracy. In general, to further improve
the accuracy and reliability of the IMU system for in-field
ergonomic risk assessment, we recommend the following:

1) A proper sensor fusion algorithm with high accu-
racy and reliability must be implemented to esti-
mate the IMU orientation from its raw data. For
instance, [44], [45] provided surveys on various sensor
fusion algorithms.

2) An accurate and reliable sensor-to-segment calibra-
tion must be implemented to transform quantities
such as joint angles from the IMU technical frame
to the segment anatomical frame. See [46], [47]
and [19], 20], [48] for examples of procedures devel-
oped for upper and lower extremities, respectively.

3) A proper calibration pose (N-pose or T-pose) must
be included at the beginning of the data collection to
remove the offset in the calculated joint angles.

D. LIMITATIONS AND FUTURE WORKS
A number of limiting factors must be mentioned. First,
the IMU system’s accuracy and reliability were evaluated for
10male participants and threemanual material handling tasks
and should be further investigated. Notably, recruiting a larger
sample size from both sexes and performing more complex
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tasks in industrial environments is required before making
any general conclusion about the accuracy and reliability of
the IMU system in real-world scenarios. Second, the effect
of muscle use and weight during manual material handling
tasks were not considered in the current work as they could
not be measured using IMUs. Third, the wrist joint angles
were entered manually due to limited kinematic data.

Fourth, the RULA tool inherently lacks precision since
the integer sub-scores are based on many thresholds, and
the final score is much sensitive to the angle thresholds
and accurate measurement around them. Besides, the RULA
assessment tool does not consider all body joint angles and
thus might not be an ideal tool for comprehensive ergonomic
risk assessment. Therefore, in the future, the IMU system’s
accuracy and reliability must be evaluated for whole-body
assessment tools, such as the Rapid Entire Body Assessment
(REBA). Fifth, the IMUs inherently suffer from gyroscope
drift and magnetic disturbance, which could have a drastic
effect on the measured joint angles for long-duration tasks
in industrial environments. Thus, the effect of IMU calibra-
tion on the accuracy and reliability of its estimated segment
orientation must be investigated in the future, particularly for
dynamic tasks and in the presence of ferromagnetic distur-
bances [49], [50].
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