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ABSTRACT Recently, thermal cameras are being widely used in various fields, such as intelligent
surveillance, biometrics, and health monitoring. However, the high cost of the thermal cameras poses a
challenge in terms of purchase. Additionally, thermal images have an issue pertaining to blurring caused
by object movement, camera movement, and camera focus settings. There have been very few studies on
image restoration centered around thermal images to address such problems. Moreover, it is important to
increase the processing speed of image restoration methods to jointly conduct with methods such as action
recognition and object tracking that use temporal information from thermal videos. However, no study has
been conducted on simultaneously performing super-resolution reconstruction and deblurring using thermal
images. Furthermore, existing studies on object detection using thermal images have errors owing to the
incapability in distinguishing reflections on the surrounding ground or wall due to the heat radiated from
the object. To address such issues, this study proposes a deep learning-based thermal image restoration
method that simultaneously performs super-resolution reconstruction and deblurring. According to recent
development of deep learning, generative adversarial network (GAN)-based methods which have ability to
preserve texture details in images, and yield sharper and more plausible textures than classical feed forward
encoders show success in image-to-image translation tasks. Considering the advantages of GAN, we propose
a deblur-SRRGAN for thermal image reconstruction. In addition, we propose a light-weightedMask R-CNN
for object detection in the reconstructed thermal image. For the input, we employ an image processing
method that converts 1-channel thermal images (often used in the existing studies) into 3-channel images.
The results of the experiments conducted using self-collected databases and an open database demonstrate
that our method outperforms the state-of-the-art methods.

INDEX TERMS Thermal image, deep learning, super-resolution reconstruction, image deblurring, object
and thermal reflection detection.

I. INTRODUCTION
In recent years, there has been an increase in the use of
thermal cameras in various fields. Thermal cameras are being
widely implemented in image processing tasks pertaining to
the analysis of coronavirus 2019 (COVID-19). A thermal
camera can examine the temperature of a body of an object in
the form of an image. In other words, a thermal camera, also
known as a long-wavelength infrared (LWIR) camera, can

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongjie Li.

measure electromagnetic radiation (EMR) with a wavelength
of 8−12 µm [1]. However, thermal images obtained from
the camera are often blurry owing to various environmental
factors. For example, image blurring occurs frequently when
a hot object moves and the temperature of air or surroundings
such as walls, floors, and windows is increased because of the
object [2]. Furthermore, factors such as the heat induced from
the surroundings of the target object, steam generated from
the surroundings, and heat reflected from the surrounding
walls, floors, or windows may cause image blurring. More-
over, there are twomore factors that cause the thermal camera
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to capture blurry images. 1) the hot air due to sun makes a
thermal camera capture blurry images in the middle of the
day in summer. 2) the temperature of a thermal camera is
increased continuously when capturing images. For example,
in case of collecting a huge amount of database, the cam-
era’s temperature is increased, and a body of the camera
becomes hot. This also affects the camera to capture blurry
images. Additionally, the high cost of high-resolution thermal
cameras [3] is a challenge. To address the aforementioned
problems, the existing studies have proposed variousmethods
of thermal image deblurring and super-resolution reconstruc-
tion (SRR). SRR can convert low-resolution (LR) images
into high-resolution (HR) images. However, in the existing
studies, image deblurring and SRR processes for thermal
images were performed separately [4], and no study has been
conducted yet to perform image deblurring and SRR tasks
simultaneously. In addition, the existing methods were devel-
oped using 1-channel (grayscale) thermal images in most
cases. Unlike the previousmethods, we generated a 3-channel
thermal image from an original 1-channel thermal image to
obtain more information from a thermal image to increase the
performance of the image restoration and the object detection
methods. The difference between a 1-channel thermal image
and a 3-channel thermal image is that a 1-channel thermal
image uses only one channel to describe the intensity of
thermal radiation emitted from an object whereas a 3-channel
thermal image uses three channels (R, G, and B) to describe
the intensity of thermal radiation by colors. To extract more
efficient spatial information from the generated 3-channel
thermal images, we adjusted the proposed models by chang-
ing layers and parameters based on our experiments. So,
the final optimal models have been proposed in this study.
In addition, we conducted various experiments using origi-
nal 1-channel thermal images and various 3-channel thermal
images such as HSL, HSV, Lab, Luv, XYZ, YCrCb, and
RGB. So, we selected thermal images in RGB color space
for the proposed methods based on the experimental results.
The methods compared in this study are not designed to use
3-channel thermal images for image restoration and object
detection tasks. Therefore, our methods are superior to the
previous methods in the experimental results in this study.

Thermal images comprise thermal reflections that are
caused by the heat radiated from an object in the image
on the surrounding floor or wall [5]. As shown in Figure 1
(red dashes), thermal reflections show similar characteristics
as the objects in terms of brightness, shape, and pattern.
In most cases, thermal reflections are connected to actual
objects and are difficult to be distinguished from their objects.
To detect exact region of an object from a thermal image,
it is important to detect the thermal reflection as well. Based
on our experiments, we confirmed that it makes us able to
separate the region of the thermal reflection from the region
of its object by providing information of thermal reflections to
object detectionmodel in training phase. Therefore, we detect
thermal reflections and objects from thermal images in this
study.

FIGURE 1. Examples of 1-channel thermal images with thermal
reflections (red dashes) and objects.

Moreover, there have been previous studies such as action
recognition and object tracking conducted by using ther-
mal images. To increase the performance of such methods,
the methods such as super-resolution reconstruction, image
deblurring and object detection have been proposed in pre-
vious studies. However, action recognition and object track-
ing methods use temporal information from thermal videos
which decreases the processing speed of the methods. Fur-
thermore, the processing speed of the methods is decreased
more if methods such as super-resolution reconstruction,
image deblurring and object detection are conducted jointly
with them. Therefore, we performed super-resolution recon-
struction and image deblurring using a single generative
adversarial network (GAN) to increase the processing speed
of the methods.

This study is novel in the following four ways compared to
the previous studies:

- For deblurring and super-resolution reconstruction,
we propose a new model of deblur-SRRGAN. In addi-
tion, we propose a light-weighted Mask R-CNN whose
number of layers is reduced compared to original Mask
R-CNN for object detection.

- The existing studies have used original 1-channel ther-
mal images to conduct deblurring, SRR, and object
detection methods. In this study we generated and used
3-channel thermal images to extract more information to
increase the performance of the proposed methods.

- Although various studies have attempted to detect an
object or its thermal reflection from thermal images,
studies on detecting both simultaneously have not been
explored yet. This study proposes a method that simul-
taneously detects an object and its thermal reflection.
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- The models developed in this study and self-collected
databases have been published online [6, 51] for fair
performance evaluation done by other researchers.

The rest of the paper is structured as follows: Section II intro-
duces existing studies on image reconstruction and object
detection. Section III discusses the details of the proposed
method. Section IV presents the experimental results and
comparative analyses. Section V concludes the paper.

II. RELATED WORKS
A. DEBLUR-SRR METHODS
The deblur-SRR methods developed to simultaneously
implement deblurring and SRR can be categorized into the
methods using handcrafted features and those using deep
features.

With regard to the existing studies on deblur-SRR method
using handcrafted features, Farsiu et al. [7] proposed a
ibilateral method based on norm minimization and robust
regularization. Moreover, the authors demonstrated that their
proposed deblur-SRR method maintained a fast process-
ing speed while providing robustness against images with
motion, blur, and sharp edges. Matsushita et al. [8] proposed
a method that simultaneously performs SRR and deblurring.
In their proposed model, the maximum a posteriori (MAP)
estimation was employed to perform deblur-SRR based on
video sequencing. Linyang et al. [9] proposed a deblur-
SRR method that addresses motion blurring using an edge-
preserving gradient prior and a sparse kernel prior. Park and
Lee [10] used a pioneering uni?ed framework to address
four issues simultaneously dense depth reconstruction, cam-
era pose estimation, SRR, and deblurring. Bascle et al. [11]
proposed a focus deblurring and SRR method to enhance the
motion deblurring.

However, as the previous studies still had issues of
having performance limitations depending on the environ-
mental changes of the input image and requiring accurate
optimal mapping functions, a number of studies using deep
features were conducted to resolve the issues as follows:
Bianli et al. [12] proposed a deblur-SRR method based
on convolutional neural networks (CNNs). Zhang et al. [13]
proposed a deep encoder-decoder network for joint deblur-
ring and super-resolution (ED-DSRN). Zhang et al. [14] pro-
posed a gated fusion network (GFN) for the joint image
deblur-SRR method. A deblurring super-resolution convo-
lutional neural network (DBSRCNN) has been proposed
for joint deblur-SRR method as well [15]. Moreover,
Yun and Park [16] proposed a joint face image SRR and
deblurring method based on GANs as well. Apart from the
aforementioned studies, a number of studies, such as the
survey papers on deblurring [17]–[21] and SRR [22]–[24] and
the review papers on deblurring [25]–[27] and SRR [28], [29],
have been published to summarize and compare the existing
studies.

Although there have been numerous studies on deblur-SRR
methods, most of them were conducted using images cap-
tured by a visible light camera. Furthermore, studies on

joint deblur-SRRmethod that simultaneously performs image
deblurring and SRR on thermal images are not conducted yet.

B. OBJECT DETECTION METHODS
In the existing studies on object detection using thermal
images [30]–[37], the detection methods can be categorized
into methods that detect and do not detect thermal reflections.

Davis and Sharma [30], [31] developed a method to
detect humans in an image with the halo effect based on
a contour-based method. The authors conducted a separate
background subtraction method using visible light and ther-
mal images, extracted contours from the derived images,
and then generated silhouette images through the fusion of
extracted contour features [30]. Moreover, the authors gen-
erated a contour saliency map using the background sub-
traction method [31]. Wong et al. [32] developed a human
detectionmodel by extracting a binary image based on human
temperature values. Kumar et al. conducted a study where
human detection was performed using the background sub-
tractionmethod [33]. Furthermore, Gangodkar et al. [34] pro-
posed a human detection model based on the block-matching
algorithm.

Lee et al. [35] implemented a human detection model
using the background subtraction method and the fusion of
visible light and thermal images Jeon et al. [36] performed
human detection for thermal images using background sub-
traction and background image generation. In addition,
Kumar et al. [37] summarized and described various existing
studies on human detection.

There are methods developed for thermal reflection detec-
tion as well. A method was previously proposed to detect
thermal reflection based on the Mask region-based convolu-
tional neural network (R-CNN) [5]. Furthermore, regions of
thermal reflection were detected using the Mask R-CNN, and
the thermal reflections were removed based on the detected
regions [38].

However, no study has been conducted to simultaneously
detect an object and its thermal reflection from a given ther-
mal image. Thus, this study proposes a detection method
that simultaneously detects object and its thermal reflection
from 3-channel thermal images. Table 1 lists comparative
summaries of the proposed and existing methods.

III. PROPOSED METHOD
A. OVERALL PROCEDURE OF PROPOSED METHODS
This section details the proposed methods. This study
proposes a GAN-based SRR and deblurring method that
uses 3-channel thermal images as input for image restora-
tion tasks. Furthermore, an object and thermal reflection
detection method that uses 3-channel thermal images as
input is developed based on the Mask R-CNN method.
Figure 2 depicts the overall procedures of the proposed
methods and the details of the image restoration method
and the object and thermal reflection detection method pro-
posed in Sections III. B and IV. C . This study uses a thermal
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TABLE 1. Comparative summaries of the proposed methods and previous methods.

FIGURE 2. Example of an overall procedure of the proposed method. (LR and HR mean low resolution and
high resolution, respectively).

camera that can capture images at 30 frames per second
(fps) [39]–[41]. In addition, the camera can measure temper-
atures at−40 ◦C to+80 ◦C to make the object visible in dark
and light environments. In this study, various experiments
were conducted using the database acquired using the thermal
camera (each captured image had a depth of 14 bits and a
size of 640 × 480 pixels [4], [5]) and open databases. The
details of the databases and thermal camera settings used in
this study are presented in the previous studies [42], [43].

B. IMAGE RESTORATION
This section details the image restoration method. Figure 3
depicts the procedures of the proposed image restoration
method, and Figure 3(a) displays the training phase of the
method. In the training phase, the HR image is first blurred
using the Gaussian blur kernel, and then, the image is resized
into an LR image.

In the preprocessing stage, the LR images are converted
into 3-channel thermal images based on colormaps prior
to using the images as an input in the deblur-SRRGAN
structure. The jet colormap array is used to perform the
image color conversion [44]. A jet colormap array enables
the expression of heat in the most appropriate color in the
image compared with other colormaps, and maps 256 pixels
(0–255) to convert a 1-channel image into a 3-channel image.
Figure 4 shows the color conversion operation.

Tables 2–5 and Figure 5 show the structure of the proposed
deblur-SRRGAN. The input image and output image sizes are
not defined because an input image of any size can be used
in the generator. The stride and padding of the filters used
in Table 2 are (1 × 1) and (1 × 1), respectively. The filter
sizes of both conv2d_1 and conv2d_4 are (9 × 9), and the
filter sizes of other layers are (3 × 3). We used filters with
different size in Table 2. The filters with size of (9 × 9) and
(3 × 3) are referred from the previous study [4]. However,
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FIGURE 3. Example of procedures of the proposed deblur-SRRGAN method. (a) Training phase of deblur-SRRGAN method; (b) testing phase of
deblur-SRRGAN method.

FIGURE 4. Example of the color conversion operation in the
preprocessing stage.

FIGURE 5. Architecture of the proposed deblur-SRRGAN method.

we do not reuse the network architecture and design from
previous work [4], but propose a new deblur-SRRGAN in
our research. Furthermore, up2d represents the up-sampling
operation. As listed in Table 2, the generator has a structure

TABLE 2. Description of a structure of generator of the proposed
deblur-SRRGAN network (upscaling factor = 2).

that upscales the input image by two times (upscaling factor
of 2), and the number of layers increases if an upscaling factor
of 3 or 4 is used.

In such case, the number of parameters also changes.
As listed in Tables 3–5, the filter size, stride, and padding are
(3 × 3), (1 × 1), and (1 × 1), respectively. Prelu, res_block,
conv2d, add, conv_block, dense, and sigmoid indicate para-
metric rectified linear unit, residual block, 2-dimensional
convolution layer, addition operation, convolution block,
fully connected layer, and sigmoid activation function,
respectively. In Table 4, the stride of conv_block_1 and
conv_block_3 is (1× 1), and the padding of conv_block_1 is
(1 × 1). The stride and padding of other convolution blocks
are (2 × 2) and (0 × 0), respectively. The filter size of all
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TABLE 3. Description of a structure of residual block.

TABLE 4. Description of a structure of discriminator of the proposed
deblur-SRRGAN network.

TABLE 5. Description of a convolution block.

the convolution blocks, input image, and output are (3 × 3),
(224 × 224 × 3), and (1 × 1), respectively.
The RGB (red, green, and blue) output image obtained

using the deblur-SRRGAN is not converted back into a
grayscale image but is used as an input in the object and ther-
mal reflection detection method described in the subsequent
section.

C. OBJECT AND THERMAL REFLECTION DETECTION
This section details the proposed object and thermal reflec-
tion detection method. The Mask R-CNN employs in the
proposed method used RetinaNet [45], unlike the tradi-
tional Mask R-CNN [46] method. The RetinaNet model uses
Resnet-50 [47] to extract features. Furthermore, it uses the
feature pyramid network (FPN) [48] and small fully convo-
lutional network (FCN) [49] instead of the region proposal
network (RPN) [50] when detecting the region of interest
(ROI) and candidate object box. In addition, FCN subnets
were used to simultaneously perform box classification and
box regression, and the final detected box was considered
as an input to another FCN to perform mask segmentation.
Based on the previous study using the Mask R-CNN, it was
inferred that the use of the Resnet-FPN backbone to extract
features increases accuracy and processing speed [5]. Thus,
we used Resnet-FPN/RetinaNet to detect objects and their
thermal reflections in this study. Here, parameters and the
number of layers of all the structures of the existing Mask
R-CNN [46] model were reduced to increase the processing

TABLE 6. Description of a structure of light-weighted Resnet-50.

TABLE 7. Description of a structure of FPN.

speed, and we proposed a light-weighted Mask R-CNN.
Tables 6 and 7 summarize the structures of Resnet-50 and
FPN included in the Mask R-CNN model. The three FCN
structures classification subnet, box regression subnet, and
mask segmentation network included in theMask R-CNN are
described (Tables 8–10). Tables 6 and 7 list the convolution
sets conv2, conv3, conv4, and conv5 as C2, C3, C4, and C5,
respectively. As listed in Table 7, arrows, 2×Up, P2 to P7,
and P2 to P7 denote the next step, upsampling, first feature
map of FPN, and the final feature map of FPN, respectively.
Here, the first feature map of FPN (extracted in stage 1 of
Table 7) is obtained from the feature map extracted using
Resnet-50. The final feature map of FPN (extracted in stage 2
of table 7) represents a feature map designed to minimize
the aliasing effect caused by the upsampling process. More
in-depth descriptions on P1–P7 can be found in a study by
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TABLE 8. Description of a structure of classification subnet.

TABLE 9. Description of a structure of box regression subnet.

TABLE 10. Description of a structure of FCN at the last stage.

Lin [45]. In Tables 8 and 9, A denotes anchors, and it was set
as A = 9 in the proposed method.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP AND DATABASES
In addition to our self-collected databases (DTh-DB and
DI&V-DB [51]), other open databases, such as thermal soccer
dataset [52], OSU database collection (OSU thermal pedes-
trian database [53], OSU color-thermal database [30], terravic
motion IR database [54], terravic weapon IR database [55]),
LITIV-VAP dataset [56], VIPeR dataset [57], CASIA C
dataset [58], BU-TIV dataset [59], and ASL dataset [60],
were used in the experiments of this study. Our self-collected
databases comprise thermal images of close-range objects,
as well as distant objects, captured in dark and bright indoor

FIGURE 6. Architecture of Mask R-CNN.

environments. Figure 7 depicts example images of our ther-
mal image datasets and open thermal image datasets.We used
4,000 images from our self-collected databases. The experi-
ments were evaluated using the two-fold cross-validation pro-
cedure. In other words, half of the entire data (2,000 images)
were used for training, while the other half (2,000 images)
were used for the testing process. Subsequently, the process
was repeated by swapping the training and testing data. The
average accuracy of the two tests was used as the final value.

The training and testing processes for the proposed
algorithms were conducted on a desktop computer,
and the specifications of the computer are as follows:
NVIDIA GeForce GTX TITAN X graphic card [61], Intel
core i7-6700 CPU @ 3.40 GHz (8 CPUs), and 32GB
RAM. Furthermore, the algorithms were implemented in
Python (version 3.5.4). As for the deep learning library,
we used Keras application programming interface (API)
(version 2.1.6-tf) with Tensorflow backend engine (version
1.9.0) [62]. The image processing part was implemented
using the OpenCV library (version 4.3.0) [63].

B. TRAINING OF THE MODELS
This study compared the proposed deblur-SRRGAN and
Mask R-CNN models with other state-of-the-art mod-
els, including super-resolution GAN (SRGAN) [64],
super-resolution CNN (SRCNN) [65], SegNet [66], andMask
R-CNN [5, 46]. In the training process of the GAN-based
models, the batch-size, training epoch, learning rate, and
optimizer were configured as 1, 100, 0.0001, and adaptive
moment estimation (Adam) [68], respectively. In the training
process of the GAN-based models, binary cross-entropy loss
was used for both discriminator loss (adversarial loss) and
generator loss (reconstruction loss). In the SegNet-based
model, the learning rate, learning rate drop period, learning
rate drop factor, momentum, mini-batch, and optimizer were
configured as 0.001, 20, 0.3, 0.9, 2, and stochastic gradient
descent with momentum (SGDM), respectively.

In the Mask R-CNN-based models, the batch-size, training
epoch, step-size, and optimizer were configured as 1, 100,
10,000, and Adam, respectively. The number of iteration is
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FIGURE 7. Example images from the datasets. (a–f) Images from our
datasets; (g, h, i) images from the OSU database collection; (j) image from
the VIPeR dataset; (k) image from the ASL dataset; (l) image from the
CASIA C dataset.

defined as ‘‘the number of training images/the batch size’’
and it is called as 1 epoch. In our experiments, the num-
ber of training images and the batch size are respectively
2,000 and 1, and the consequent number of iteration is 2,000
(2,000/1), which corresponds to 1 epoch. However, if we
set the step size of 10,000, 1 epoch is redefined as the case
that the iteration of 2,000 is repeated 5 times (10,000/2,000),
and the consequent number of iteration for 1 epoch becomes
10,000. Therefore, even with the same number of epochs,
the larger step size means the larger number of iterations.

FIGURE 8. Example of training loss curves of (a) deblur-SRRGAN, and
(b) proposed Mask R-CNN.

For the Mask R-CNN-based models, Resnet-50 architec-
ture was used as the backbone, and additional fine-tuning
was performed on the experimental data of this study by
using weights previously trained with the ImageNet database.
Finally, in the SRCNN-based model, the batch-size, training
iteration, loss, learning rate, and optimizer were configured
as 1, 90,000, mean squared error (MSE) [67], 0.0001, and
Adam, respectively. Training loss curves are presented in
Figure 8.

C. TESTING RESULTS
1) TESTING RESULTS USING THE PROPOSED
DEBLUR-SRRGAN NETWORK (ABLATION STUDIES)
In this section, the proposed deblur-SRRGAN network
is evaluated. In the evaluation, the MSE, SNR, peak
signal-to-noise ratio (PSNR), and structural similarity index
(SSIM [69]) were calculated using Equations (1)-(4), respec-
tively, to extract the similarity between the reconstructed
image and the original HR image.

MSE =

(√∑M
j=1

∑N
i=1 (X (i, j)− Y (i, j))

2
)2

MN
(1)

SNR = 10log10


(∑M

j=1
∑N

i=1(X (i,j))
2

MN

)
MSE

 (2)
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TABLE 11. Comparison of accuracies by proposed image restoration method based on image channel (upscaling factor = 2). The images were blurred by
various Gaussian blur kernels (kernel size: 5 × 5, 13 × 13, and 19 × 19).

TABLE 12. Comparison of accuracies by proposed image restoration method based on image channel (upscaling factor = 4). The images were blurred by
various Gaussian blur kernels (kernel size: 5 × 5, 13 × 13, and 19 × 19).

FIGURE 9. Comparison of results based on color spaces. (a) PSNR and (b) SSIM.

PSNR = 10log10

(
2552

MSE

)
(3)

SSIM =
(2µYµX + C1) (2σXY + C2)(

µY 2 + µ
2
X + C1

) (
σY 2 + σ

2
X + C2

) (4)

In Equations (1)–(3), X, Y, M, andN represent original image,
restored image, image width, and image height, respectively.
In Equation (4), µX and σX represent the mean and standard
deviation of the pixel values of a ground-truth image, respec-
tively; µY and σY represent the mean and standard deviation
of the pixel values of the restored image, respectively; and
σXY is the covariance of the two images. C1 and C2 are
positive constants, so that the denominator does not become
zero [69].

Tables 11 and 12, which display ablation studies, compare
the results derived using 1-channel images (without color
conversion of Figure 4) and 3-channel images (with color
conversion of Figure 4). The results are compared after pro-
viding the images that are blurred with Gaussian blur kernels
(5 × 5, 13 × 13, 19 × 19) as the input. Table 11 compares
the results derived based on the upscaling factor of 2, and
Table 12 compares the results derived based on the upscaling
factor of 4. As shown in Tables 11 and 12, the 1-channel
thermal image without color conversion was found to yield

TABLE 13. Comparison of accuracies based on various color spaces
(upscaling factor = 4). The images were blurred by Gaussian blur kernel
(kernel size: 13 × 13).

higher accuracy with regard to MSE, PSNR, and SNR,
whereas the 3-channel thermal image with color conversion
was found to yield higher accuracy with regard to SSIM.
However, the MSE, PSNR, and SNR measures are poor to
evaluate the difference and similarity in the human visual
image quality [70], [71]. Rather, SSIM can better evaluate the
similarity in the image quality [69]. Based on the aforemen-
tioned results, the proposed method has obtained the highest
accuracy.

In addition, image restoration was performed using var-
ious color spaces, and the performance based on the color
space was compared (Table 13 and Figure 9). As shown
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TABLE 14. Comparison of the proposed deblur-SRRGAN with the state-of-the-art methods using six databases (upscaling factor = 2). The images were
blurred using Gaussian blur kernel (kernel size = 13 × 13).

in Table 13, the SSIMs obtained by using RGB, XYZ, and
Lab color spaces were higher than those obtained by using
other color spaces. Moreover, the results obtained by using
HSL and HSV color spaces were much lower compared to
those obtained by using other color spaces. The reason for
the difference in results is that HSL and HSV color spaces use
only one channel (Hue) to describe color informationwhereas
Lab, XYZ and RGB color spaces respectively use two chan-
nels (a and b) and three channels (X, Y, and Z) and (R, G,
and B) to describe color information. In Figure 10, images by
the four color spaces are compared with an original grayscale
image. As shown in Figure 10, RGB image provides more
spatial information compared to the images of other color
space.

As a result, the performance obtained using RGB ther-
mal images was the highest in all the cases. The pro-
posed methods were designed based on the aforementioned
experimental results. The subsequent sections compare the

FIGURE 10. Comparison of input images in different color spaces. (a) An
original grayscale image; (b) HSL image; (c) HSV image; (d) Lab image;
(e) RGB image.

accuracies of the proposed and existing methods through
experiments.

2) COMPARISONS OF THE PROPOSED DEBLUR-SRRGAN
NETWORK WITH THE STATE-OF-THE-ART METHODS
In this section, we conducted additional experiments using
various open datasets of thermal images described in
Section IV.A to evaluate the applicability of the proposed
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FIGURE 11. Comparison of the results based on the upscaling factor of 2 (Gaussian blur
kernel size = 13 × 13). (a) An original image; (b) a downscaled image; (c) bicubic [72];
(d) OKI-SR [78]; (e) SRCNN [65]; (f) ScSR [73]; (g) Zhang et al.‘s [74]; (h) SRGAN [64];
(i) Bianli et al. [12]; (j) Zhang et al. [13]; (k) Zhang et al. [14]; (l) DBSRCNN [15]; (m) Yun and
Park [16]; (n) the proposed deblur-SRRGAN method.
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FIGURE 12. Comparison of the results based on the upscaling factor of 4 (Gaussian blur
kernel size = 13 × 13). (a) An original image; (b) a downscaled image; (c) bicubic [72];
(d) OKI-SR [78]; (e) SRCNN [65]; (f) ScSR [73]; (g) Zhang et al.‘s [74]; (h) SRGAN [64];
(i) Bianli et al. [12]; (j) Zhang et al. [13]; (k) Zhang et al. [14]; (l) DBSRCNN [15]; (m) Yun
and Park [16]; (n) the proposed deblur-SRRGAN method.
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FIGURE 13. Examples of results by proposed object detection method
with or without deblur-SRRGAN. The images were blurred by Gaussian
blur kernel (kernel size = 13× 13). (a) Ground truth image, and results
(b) without deblur-SRRGAN, and (c) with deblur-SRRGAN. In (a) ∼ (c),
the upper, middle, and lower images show the input, object area, and
reflection region, respectively.

image restoration method based on various environments.
Moreover, the proposed method was compared with the
state-of-the-art models based on six types of OSU dataset
collections [30, 53–55]. For the comparison, Bicubic [72]
and ordinary kriging interpolation-based super-resolution

method (OKI-SR) [78] were selected as traditional meth-
ods, and SRCNN [65], sparse coding super-resolution
(ScSR) [73], Zhang et al.’s method [74] and SRGAN [64]
were selected as the state-of-the-art methods. Bicubic and
OKI-SR belong to non-learning-based method whereas the
others belong to learning-based method. Non-learning-based
approaches usually do not require the training process
whereas learning-based one need the training procedure to
determine the optimal parameters or methods.

In addition, because the methods [12]–[16] can simulta-
neously perform super-resolution reconstruction and deblur-
ring, we conducted additional experiments and compared the
methods [12]–[16] with our method in Tables 14, 15, and
Figures 11 and 12.

Tables 14 and 15, and Figures 11 and 12 compares the
results of the models. Table 14 compares the results derived
with an upscaling factor of 2, and Table 15 compares the
results derived with an upscaling factor of 4. Original image
of Figure 11(a) is same to that of Figure 12(a). From
these original images, two kinds of downscaled images of
Figure 11(b) (1/4 downscaling) and Figure 12(b) (1/16 down-
scaling) were generated, respectively. With these same
original images and downscaled images, our method
and other methods were trained for fair comparisons.
Figures 11(c) ∼ (h) and Figures 12(c) ∼ (h) show the recon-
structed results by other methods and ours.

According to Tables 14 and 15, and Figures 11 and 12,
the SSIM results obtained using the proposed restoration
method were considered superior in all the cases compared
with that of the state-of-the-art methods.Moreover, the results
obtained by non-learning-based methods show more blurred
cases compared to those by learning-based methods. This

FIGURE 14. Examples of detection results using original images. From the top to the bottom, input images, detected results of an object, and a
thermal reflection. (a) Ground truth masks; (b) and (c) result mask images by SegNet [66] with and without color conversion of Figure 4,
respectively; (d) and (e) result mask images by Mask R-CNN [5], [46] with and without color conversion of Figure 4, respectively; (f) and (g) result
mask images by proposed method with and without color conversion of Figure 4, respectively.
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TABLE 15. Comparison of the proposed deblur-SRRGAN with the state-of-the-art methods using six databases (upscaling factor = 4). The images were
blurred by Gaussian blur kernel (kernel size = 13 × 13).

TABLE 16. Comparison of detection results without color conversion of Figure 4 in original HR images.

is because the non-learning-based methods use a manually
designedmapping function whereas the learning-basedmeth-
ods adopt the optimal mapping function which is obtained
based on learning process using a large size of training
data.

3) COMPARISON OF THE PROPOSED OBJECT AND
THERMAL REFLECTION DETECTION METHOD WITH THE
STATE-OF-THE-ART METHODS (ABLATION STUDIES)
In this section, the results obtained through the proposed
object and thermal reflection detection method are presented.

Furthermore, the proposed detection method was compared
with the state-of-the-art models such as SegNet [66], con-
ventional Mask R-CNN [5], [46], Mask-Refined R-CNN
(MR R-CNN) [79], global-and-local network architec-
ture (GLNet) [80] and multi-scale global contrast CNN
(MGCC) [81], and traditional methods such as ran-
dom sample consensus-based moving object detection
(RSC-MOD) [82] and contour-based background subtraction
method (Con-BS) [83]. Con-BS and RSC-MOD belong to
non-learning-based method whereas the others belong to
learning-based method.
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FIGURE 15. Examples of detection results using restored images (upscaling factor = 2 and kernel size = 13 × 13). From the
top to the bottom, input images, detected results of an object, and a thermal reflection. (a) ground truth masks; (b) result
mask images by RSC-MOD [82]; (c) result mask images by Con-BS [83]; (d) result mask images by MR R-CNN [79]; (e) result
mask images by GLNet [80]; (f) result mask images by MGCC [81]; (g) result mask images by SegNet [66]; (h) result mask
images by Mask R-CNN [5], [46]; (i) result mask images by proposed method.

Comparisons were made based on the similarity between
the detected image and the ground truth mask image when
measuring the accuracy of the detection models. In the com-
parison process, the object and thermal reflection pixels of
the ground truth mask image are referred to as positive pixels,
while the background pixels of the ground truth mask image

are referred to as negative pixels. In addition, the case in
which the pixels are detected as positive pixels is called the
true positive case (TP), whereas the case in which the positive
pixels are incorrectly detected as negative pixels is called
the false negative case (FN). The case in which the negative
pixels are incorrectly detected as positive pixels is called the

VOLUME 9, 2021 5965



G. Batchuluun et al.: Deep Learning-Based Thermal Image Reconstruction and Object Detection

TABLE 17. Comparison of detection results with color conversion of Figure 4 in original HR images.

TABLE 18. Comparison of detection results without color conversion of Figure 4 and with Deblur-SRRGAN, and the state-of-the-art methods (upscaling
factor = 2). The images were blurred by Gaussian blur kernel (kernel size = 13× 13).

TABLE 19. Comparison of detection results without color conversion of Figure 4 and with Deblur-SRRGAN, and the state-of-the-art methods (upscaling
factor = 4). The images were blurred by Gaussian blur kernel (kernel size = 13× 13).

TABLE 20. Comparison of results obtained by proposed object detection method with or without deblur-SRRGAN. The images were blurred by Gaussian
blur kernel (kernel size = 13× 13).

false positive case (FP). Furthermore, #TP, #FP, and #FN
are defined as the numbers of TP, FP, and FN, respectively.
The accuracies of the object and thermal reflection detec-
tion models were derived based on true positive rate (TPR)
(#TP/(#TP + #FN)), positive predictive value (PPV)
(#TP/(#TP+ #FP)), accuracy (ACC) [75], F1 score (F1) [76],
and intersection over union (IoU) [77] as follows.

Accuracy (ACC) =
#TP+ #TN

#TP+ #TN+ #FP+ #FN
(5)

F1 = 2 ·
PPV · TPR
PPV+ TPR

(6)

IoU(X,Y) =
|X ∩ Y|
|X ∪ Y|

=
TP

TP+ FP+ FN
(7)

In the object detection experiment, six databases were
combined into one database to conduct accuracy tests.
Tables 16 and 17, which are ablation studies, list the
comparison among detection results obtained in the pro-
posed and state-of-the-art methods using 1-channel (without
color conversion of Figure 4) and 3-channel images (with
color conversion of Figure 4) of the original HR images.
Tables 18–21, which are also ablation studies, list the com-
parison of object and thermal reflection detection results
obtained in the proposed and the state-of-the-art methods
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TABLE 21. Comparison of detection results with color conversion of Figure 4 and Deblur-SRRGAN, and the state-of-the-art methods. The images were
blurred by Gaussian blur kernel (kernel size = 13× 13).

using images (without or with color conversion of Figure 4)
restored through deblur-SRRGAN.

To confirm that the proposed deblur-SRRGAN is help-
ful to improve object detection performance, we performed

the additional experiments. As shown in Table 20 and
Figure 13, proposed object detection method with deblur-
SRRGAN shows the higher accuracies than that with-
out deblur-SRRGAN, which confirms that the proposed
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FIGURE 16. Example of pixel classification result using original images. From the top to the bottom, input images and detected results of an
object and a thermal reflection. (a) Ground truth masks; (b) and (c) result mask images by SegNet [66] with and without color conversion of
Figure 4, respectively; (d) and (e) result mask images by Mask R-CNN [5], [46] with and without color conversion of Figure 4, respectively; (f) and
(g) result mask images by proposed method with and without color conversion of Figure 4, respectively.

FIGURE 17. Example of pixel classification result using restored images (upscaling factor = 2 and kernel
size = 13× 13). From the top to the bottom, input images and detected results of an object and a thermal
reflection. (a) ground truth masks; (b) result mask images by RSC-MOD [82]; (c) result mask images by
Con-BS [83]; (d) result mask images by MR R-CNN [79]; (e) result mask images by GLNet [80]; (f) result mask
images by MGCC [81]; (g) result mask images by SegNet [66]; (h) result mask images by Mask
R-CNN [5], [46]; (i) result mask images by proposed method.

deblur-SRRGAN is helpful to improve object detection
performance.

Furthermore, Figures 14 and 15 compare detection results
derived using different methods. As shown in Tables 16–21,
all state-of-the-art methods provide promising results.

However, SegNet [66] provides lower localization result
compared to Mask R-CNN-based methods. The reason for
the difference in results is that the training loss of SegNet
decreases until epoch 10 in training phase whereas train-
ing losses of Mask R-CNN-based methods decrease until
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TABLE 22. Processing speed for the proposed methods (unit: ms).

epoch 25. This means the Mask R-CNN model learns more
information from thermal datasets compared to the SegNet
model. Nevertheless, theMask R-CNN shows the lower accu-
racy in localization than our method because proposed light-
weighted Mask R-CNN reducing the number of layers and
filters show the better generalization performance in testing
data than the Mask R-CNN. According to Tables 16–21 and
Figures 14 and 15, the proposed method yielded better object
and thermal reflection detection accuracy compared with the
state-of-the-art methods.

Original image SegNet [66] Mask R-CNN [5], [46]
Proposed method Figures 16 and 17 show whether the
pixels corresponding to the regions of an object and a
thermal reflection are well distinguished. Figure 16 shows
the pixel classification comparison results using origi-
nal images, and Figure 17 shows the pixel classification
comparison results using restored images. According to
Figures 16 and 17, the proposed method yielded the highest
detection accuracy among all themodels.Moreover, as shown
in Figures 16 and 17, the overlapping effect between the
object pixels and thermal reflection pixels detected using the
proposed method is significantly smaller than that of other
methods.

V. CONCLUSION
In this study, novel methods for thermal image restoration
and object and thermal reflection detection were proposed.
For the image restoration method, a 1-channel grayscale
thermal image was converted into a 3-channel RGB ther-
mal image; then, the image was restored using the proposed
deblur-SRRGAN method, which simultaneously performed
deblurring and SRR. In addition, the proposed Mask R-CNN
model detected the object and thermal reflection in the
3-channel RGB thermal image that was restored using
the deblur-SRRGAN method. The experiments were con-
ducted using various databases, including our self-collected
databases and numerous open databases of thermal images
to compare the performances of the proposed methods with
other state-of-the-art methods. That is, we trained from
scratch all the methods using our self-collected databases and
open databases for the comparisons. Furthermore, ablation
studies were conducted to observe and compare the effects
of the images without color conversion and with color con-
version on the performance using various databases. Sub-
sequently, various color spaces were used to conduct com-
parative experiments. The experimental results demonstrated
that the proposed image restoration and object and thermal
reflection detection methods outperformed the state-of-the-
art methods.

We trained all methods using same databases for the fair
comparisons. We conducted experiments using six databases
separately, which can confirm the generalization and general
performance in different environments and camera settings.

The limitation of the proposed methods in real-time task
such as action recognition is processing speed when using
both methods of deblur-SRRGAN and light-weighted Mask
R-CNN-based object detection jointly. As shown in Table 22,
our system including both methods can process 10.78 frames
per one second, which cannot cope with the recognition
of fast action. Therefore, we would research the method
of enhancing the processing speed of our system in future
work. In addition, we intend to conduct research on object
skeleton generation and behavior detection methods using
the obtained images (results) of this study. Moreover, studies
on the application of the proposed methods to visible light
cameras or near-infrared (NIR) light camera images will be
conducted.
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