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ABSTRACT Accurate prediction of the large-scale channel fading is fundamental to planning and opti-
mization in 5G millimeter-wave cellular networks. The current prediction methods, which are either too
computationally expensive or inaccurate, are unsuitable for city-scale cell planning and optimization. This
paper presents FadeNet, a convolutional neural-network enabled alternative for predicting large-scale fading
with high computation speed and accuracy. By using carefully designed input features and neural-network
architecture to capture topographical information, FadeNet accurately predicts the large-scale fading from a
base station to each location in its coverage area. Evaluations on realistic data, derived frommillimeter-wave
cells across multiple cities, suggest that FadeNet can achieve a prediction accuracy of 5.6 decibels in root
mean square error. In addition, by leveraging the parallel processing capabilities of a graphics processing
unit, FadeNet can reduce the prediction time by 40X − 1000X in comparison to industry prevalent methods
like ray-tracing. Generalizations of FadeNet, that can handle variable topographies and base station heights,
and its use for optimal cell site selection are also explored.

INDEX TERMS Cell planning, channel modeling, convolutional networks, deep learning, large scale fading,
mm-Wave, pathloss, U-net.

I. INTRODUCTION
The wireless signal strength from a base-station (BS) experi-
ences significant variation as the receiver (RX) moves, due to
interactions with scattering objects in the propagation envi-
ronment. This effect, known as fading, is usually modeled as
the combination of a large scale fading (LSF) component,1

which varies slowly in time, frequency and space, and a small
scale fading component, which accounts for fast random
variations in time, frequency and space. Accurate modeling
and prediction of the LSF component, in particular, is of
vital importance for planning and optimization in cellular
networks. With an accurate LSF model, operators can iden-
tify coverage holes, find the best locations to install new
BSs, and optimize deployed BS configuration parameters
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approving it for publication was Cesar Vargas-Rosales .
1The LSF component here characterizes impact of both the

distance-dependent pathloss and shadow fading. Some papers also
refer to this combined term as pathloss.

(e.g., antenna heights, tilts, transmit power etc.) – a task
referred to as network planning and optimization [1]. This is
especially crucial for the imminent planned deployment for
5-th generation (5G) millimeter-wave (mm-Wave) networks
where the use of higher carrier frequencies leads to a high
dynamic range in LSF values.

Conventionally, there are two types of approaches to model
the LSF in wireless channels, namely, statistical and deter-
ministic. The first approach involves modeling the LSF sta-
tistically, with examples including the Okumura-Hata model
[2], COST 231 model [3], [4], WINNER II model [5],
QuadRiGa [6], 3GPP spatial channel model [7], etc. In this
approach, the LSF from a transmitter (TX) to a RX is typ-
ically calculated by a distance-based propagation equation
plus a random shadowing value. The randomness is aimed at
achieving convergence in distribution of the LSF values rather
than exactly predicting the LSF value for a given RX. Thus,
while the cost and computational complexity of this approach
are negligible, the resulting LSF models are not very accurate
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since the models do not take into account the surrounding
radio frequency (RF) environment between the TX and RX.2

At mm-Wave frequencies, the LSF is deeply affected by
the surrounding RF environment, including buildings, trees,
terrain etc. Neglecting these effects, the LSF estimation errors
from statistical channel models can be as large as 20 deci-
bels (dB) or more. The second approach for modeling the
LSF is to use deterministic methods like ray-tracing [8],
[9], uniform theory of diffraction [10], Maxwell’s equations
[11], finite difference time domain method [12] etc. In this
approach, detailed maps of the surrounding RF environment
are maintained and used for predicting the LSF at each RX
deterministically. In ray-tracing, for example, a large number
of out-going rays are simulated from the TX, allowing them
to be reflected, scattered and diffracted by the surrounding
environment. Subsequently, for each RX point, all the rays
that reach its vicinity are identified. Correspondingly, the
details of Azimuth angle Of Arrival (AOA), Azimuth angle
Of Departure (AOD), Zenith angle Of Arrival (ZOA), Zenith
angle Of Departure (ZOD), power and delay for each ray/path
between the TX and RX can be captured. Although the deter-
ministic methods can accurately predict the LSF values, the
cost of the required detailed RF maps, the computation time
and the memory requirements of these methods can be pro-
hibitively large. For example, the required three-dimensional
(3-D) maps for ray-tracing may cost around $50/km2 to
purchase and computation of LSF values for a 500m× 500m
area using full 3-D ray-tracing may take up to 10 minutes.
These large overheads make this approach less attractive for
the network planning and optimization of a large city. Conse-
quently several techniques have been proposed to bring down
this computational complexity via dimensionality reduction
[13], space partitioning [14], [15], using coarse simulation
with interpolation [16], [17], constraining ray interactions
and power levels [18], adopting parallel processing methods
[19] etc. A detailed survey of such ray-tracing enhancements
can be found in [20], which can bring down the LSF compu-
tation time by up to a factor of 10.

As an exciting alternate approach, this paper studies the
use of supervised deep learning (DL) based techniques for
modeling the LSF in a BS’s coverage area. With deep neu-
ral networks being universal function approximators, this
approach shows potential for achieving good modeling accu-
racy. Furthermore, deep neural networks are a natural fit
for parallelization on graphics processing units (GPUs),
thus promising high computation speeds. Finally, unlike
the deterministic methods where several system parame-
ters require manual tuning, DL based approaches can train
directly on the data, thus reducing manual effort in system
calibration. The following section summarizes the current
progress in the literature on such DL techniques and our
contributions.

2While the COST231 model does use the height information of buildings
between the TX and RX, it still is quite inaccurate in practice.

A. RELATED WORKS AND OUR CONTRIBUTIONS
For a single TX and RX (point-to-point) framework, a signif-
icant amount of work has been done on supervised learning
based LSF or pathloss3 prediction. In [21], a comprehen-
sive overview of DL techniques for several communication
problems is presented. In [22], a general framework for
training neural networks for pathloss prediction is proposed,
albeit without considering the surrounding RF environment
information. In [23], the authors use image segmentation
to classify satellite images of an area of interest as urban,
semi-urban, rural, free space and forest, and then use the
corresponding COST-231 statistical models to calculate the
point-to-point pathloss value. In [24], a Multi-layer Precep-
tron (MLP) is used to predict the point-to-point pathloss
using as inputs the TX-RX distance and local parameters for
terrain and vegetation, such as the terrain clearance angle
and vegetation type surrounding the RX. In [25], a 1-layer
MLP is proposed to predict the error between the statistical
channel models and the measured pathloss, using as inputs
the predicted pathloss and the distance between the TX and
RX. In [26], support vector regression was used to predict
the point-to-point pathloss value using the TX-RX distance,
terrain elevation, horizontal, vertical angles and the prediction
from Okumura-Hata model as inputs. In [27], an MLP is
trained to predict the point-to-point LSF value using the
building and terrain features as inputs. In [28], an MLP is
designed to predict the point-to-point LSF using the TX-RX
distance, TX/RX heights, diffraction loss for the line-of-sight
(LoS) path and crossed distance in each clutter type as inputs.
In [29], the LSF for the air-to-air channel between unmanned
aerial vehicles was predicted using TX/RX altitude, distance,
LoS feature and elevation angle as inputs. In [30], the authors
use deep convolutional neural networks to predict the point-
to-point LSF using some environmental features surrounding
the RX. In [31], an MLP is trained to predict the point-
to-point LSF using as input a classification of the local
topography into several clutter types. However, these prior
works have several limitations. Firstly, these solutions do not
sufficiently exploit the surrounding RF environment informa-
tion. Secondly, the solutions are trained and tested on a very
limited set of topographies. Finally, there has been no prior
work on themodeling of LSF from one TX tomanyRXpoints
over a large region of interest (RoI), such as the TX coverage
area. Such an RoI based prediction is vital for many cellular
applications, such as network coverage prediction, automatic
site selection, BS parameter optimization etc.

In this paper, we propose a supervised learning based
solution for one-shot prediction of the LSF from one BS
to each grid point in a large RoI (see Fig. 1), by using the
building, terrain and foliage height information for the RoI
as input features. We treat each grid point of the RoI as a

3Depending on the reference, pathloss may either refer to the complete
LSF or only the distance dependent component of LSF (not accounting for
shadowing by buildings or objects). In this paper we shall use the latter
definition.
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pixel, and represent the input features as well as the LSF
prediction for the RoI as images. We then harness the techno-
logical maturity of state-of-the-art neural network solutions
for image processing tasks [32], to model the LSF prediction
problem as an image regression problem. Since the number
of grid points in the RoI can be very large and since the input
features in the vicinity of a grid point will have a greater
impact on its LSF, we adopt convolutional neural networks as
an ideal candidate for the regression task. As shall be shown,
our proposed solution reduces the LSF computation time
by a massive 40X - 1000X, in comparison to conventional
deterministic methods. The contributions of the paper are as
follows:

• We propose a novel deep-learning solution to predict the
LSF from a BS to a large RoI in one shot, with high
accuracy, low cost and very low computation overhead.

• In addition, we also propose a LoS-aided deep-learning
solution for LSF prediction with improved performance.

• The proposed solutions use contextual information for
the whole RoI, including the heights and locations of
buildings, foliage and terrain, and are trained and tested
on a massive data set obtained from 3 different cities in
USA, covering many different topographies.

• We also propose several base-line prediction approaches
and evaluate performance in realistic scenarios.

• We present extensions of FadeNet for dealing with
variable TX antenna height and arbitrary geographical
topographies, and exemplify the application of FadeNet
for the optimal BS site selection problem.

The organization of the paper is as follows: the prob-
lem formulation and the neural network details such as
input feature encoding, network architecture, output encod-
ing, training methodology etc. are discussed in Section II;
the baseline solutions for LSF prediction are detailed in
Section III; the performance evaluation of the different LSF
prediction solutions is presented in Section IV; extensions
of FadeNet to realize additional functionalities are dis-
cussed in Section V; the practical use of LSF prediction for
cell-site planning is discussed in Section VI; the limitations
of FadeNet and future directions of research are discussed
in Section VII; and finally the conclusions of the work are
summarized in Section VIII.
Notation: In this paper, matrices are represented by bold

upper-case letters, sets are represented as calligraphic letters
and scalars are represented by light lower-case letters. In addi-
tion, [A]i,j represents the (i, j)-th element of a matrix A and
|A| represents the cardinality of a set A.

II. FadeNet
We define the RoI for a BS as a square region of dimension
512 × 512m with the BS located at the center, such that it
encapsulates the typical coverage area of the BS. However,
the dimensions and the square shape are only representative,
and themethodology in the paper can also be extended to arbi-
trary RoIs. To leverage image processing neural networks, the

FIGURE 1. An illustration of the quantized RoI for a typical BS (Toyota
Center, Houston, USA).

RoI is quantized into a grid of pixels of size 2 × 2 m, where
each grid ‘pixel’ has a representative RX point at its center,
as illustrated in Fig. 1. Thus, the RoI can be represented as a
256× 256 matrix or image of RX points. Note that the BS is
located at the bottom right corner of pixel (128,128). The BS
antenna height is assumed to be hBS = 7m while each RX
point is assumed to have an antenna height of hRX = 1.5m
above the terrain. The extension to variable BS height shall
be discussed later in Section V-B. The aim of FadeNet is
to predict the LSF from the BS to all the representative RX
points in the RoI, in one shot. In the following subsections,
we discuss the input features, network architecture and the
training methodology for FadeNet.

A. INPUT FEATURES FOR THE PURE DL SOLUTION
As mentioned previously, the RF environment strongly
impacts the signal propagation at mm-Wave frequencies.
Consequently, the environment information within an RoI,
including terrain height, building height (above terrain
level), and foliage height (above terrain level) are used
as input features in FadeNet. Note that such environmen-
tal information is commercially available for most cities
from map vendors such as Microsoft Bing, Google Maps
etc. Each of the terrain, building, and foliage heights for
an RoI r are encoded as images/matrices T̃r , B̃r , F̃r of
dimension 256× 256, as illustrated in Fig. 2. Here the values
at pixel (i, j), i.e., [T̃r ]i,j, [B̃r ]i,j, [F̃r ]i,j are the maximum
height (in meters) of the terrain, buildings and foliage, respec-
tively, within the corresponding 2 × 2m quantized area of
the RoI in Fig. 1. To equalize the dynamic ranges of these
different inputs, they are further normalized as:

Tr =
(
T̃r − [T̃r ]128,128

)/
25 (1a)

Br = B̃r
/
100 (1b)

Fr = F̃r
/
10. (1c)

3280 VOLUME 9, 2021



V. V. Ratnam et al.: FadeNet: DL-Based mm-Wave Large-Scale Channel Fading Prediction and Its Applications

FIGURE 2. An illustration of the pre-normalized 256× 256-pixel inputs
T̃r , B̃r , F̃r (in meters) and the additional LoS input Lr (refer to
Section II-B) for the RoI in Fig. 1.

FIGURE 3. An illustration of the LoS and non-LoS (nLoS) regions for an
example scenario.

Here the coefficient 25 in (1a) is the 95 percentile value of
[T̃r ]i,j − [T̃r ]128,128, computed over the pixels (i, j) of many
training RoIs r . Similarly, {100, 10} are the 95 percentile
values for B̃r and F̃r , albeit when considering only pixels
with non-zero values of B̃r and F̃r , respectively. Note that
adding a constant bias to the terrain height of all pixels does
not affect the signal propagation or the LSF. Thus to avoid
having many such equivalent inputs, the second term in (1a)
is used to ensure that the terrain height at the BS, which is
located near pixel (128,128), is always 0.

B. ADDITIONAL INPUT FOR THE LoS-AIDED DL SOLUTION
Mm-Wave signals suffer from strong attenuation losses by
obstacles such as buildings, foliage, etc, that block the signal.
Thus, the LSF at an RX point is highly correlated with the
presence or absence of an unobstructed straight line path
between the BS and RX point, called the line-of-sight (LoS)
path. The presence/absence of the LoS path in an example
scenario is illustrated in Fig. 3 for convenience. To improve
the performance of FadeNet, we also explore the use of the
LoS feature as input, in addition to the topographical features
discussed in Section II-A. The LoS feature for an RoI r
is encoded as a binary matrix/image Lr , as exemplified in

Fig. 2d, with [Lr ]i,j = 1 if the corresponding 2 × 2m block
has an LoS path to the BS and [Lr ]i,j = 0 otherwise. Sev-
eral algorithms exist for quickly computing Lr from the BS
height, RX height, and the topographical inputs T̃r , B̃r , F̃r ,
such as the GIS ‘viewshed’ algorithm [33].

Although the LoS feature is a deterministic function of
the other inputs T̃r , B̃r , F̃r , it has sharp variations and thus
can be difficult to approximate for the hidden layers of a
neural network. Thus, using it as an explicit additional input
can potentially improve network performance, as shall be
verified in Section IV. Note that LoS computation is also
an important, albeit computationally inexpensive, sub-step of
ray-tracing. Therefore, we shall refer to the FadeNet solution
that only uses the inputs from Section II-A as the ‘pure DL
solution’ while the one that additionally uses the LoS feature
as the LoS-aided DL solution.

C. NEURAL NETWORK ARCHITECTURE
Asmentioned in the introduction, we treat the LSF prediction
for the RoI r as an image regression task, where the input
images such as Br ,Tr ,Fr , etc, are fed as inputs to the neural
network of FadeNet to generate the LSF prediction output
image Ŷr . As with the inputs, the desired format for the
LSF prediction output Ŷr for an RoI r is also a matrix/image
of dimension 256 × 256, with [Ŷ]i,j being the predicted
LSF (in dB) at the RX point in the center of (i, j)-th pixel.
Since the dimensions of the inputs and the output are quite
large (256 × 256) and since the output for a pixel is pre-
dominantly determined by input features in the neighboring
pixels, we explore the use of a convolutional neural network
for this regression task. We adopt a 28-layer convolutional
network for FadeNet, as illustrated in Fig. 4, which is a variant
of a popular image segmentation network called the U-Net
[34]. For the uninitiated, a primer on the basic operations
in a convolutional network can be found in [35], which are
skipped here for brevity.

The output generation procedure for an RoI r using
FadeNet is as follows. First, the input images for the RoI are
stacked together to form a 256× 256× C tensor and are fed
to layer 1 of the network, where C is the number of input
images/channels (C = 3 for pure DL and C = 4 for the
LoS-aided DL solution). The input to each layer then under-
goes a two-dimensional convolution with the layer’s filters,
is post-processed and is fed as input to the subsequent layer.
The proposed network has several strided convolution layers
(layers 1-12), which extract the high-level features from the
input tensor via dimensionality reduction. This is followed
by several de-convolution layers (layers 13-28) which then
construct the higher dimensional output image Ŷr . There
also exist skip connections between the convolution and
de-convolution layers of the same dimensions, to pass the
detailed local information from the inputs into the output
construction phase. In Fig. 4, the network layers are shown
as arrows with the color coding representing the convolution
filter dimensions and the operations within each layer, and the
dimensions of the inputs and outputs for these different layers
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FIGURE 4. An illustration of the network architecture adopted for FadeNet. The network has 28 layers, represented by colored arrows described in
the legend, and the corresponding layer inputs and outputs are represented as rectangles. The dimensions of these inputs and outputs are
tabulated below the network structure. In the legend, ‘a× a conv, stride b’ and ‘a× a deconv, stride b’ represent 2D-convolution and transpose
2D-convolution with an a× a filter, respectively, followed by an output decimation by a factor of b. Similarly, ‘ReLU’ is the rectified linear unit
activation function, and ‘dropout’, ‘batch norm’ are commonly used regularization techniques [36], [37]. We use a dropout probability of 0.8 for the
layers 8− 12 and 0.4 for layers ≥ 13, and C in the Table refers to the number of input features/images per RoI.

are also summarized in the tables. Despite the similarity to
U-Net, there are also several modifications in the proposed
architecture owing to differences in the associated learning
tasks. Firstly, since FadeNet is designed for an image regres-
sion task, unlike U-Net which is designed for an image seg-
mentation task, we add several additional stride-1 convolution
layers at the output (layers 26-28). Secondly, unlike U-Net,
FadeNet uses multiple input images and the ground-truth
output is significantly different from the inputs in appearance.
Consequently, we also add additional stride-1 convolution
layers at the input (layers 1-3) to enable mixing of the inputs
before dimensionality reduction, as illustrated in Fig. 4. The
network dimensions and parameters chosen for FadeNet have
been engineered by an extensive and intricate parameter and
network tuning process. We shall henceforth use the variable
W to represent the trainable parameters (weights, biases etc.)
of the neural network architecture.

D. GROUND TRUTH AND NETWORK OUTPUT
Note that the FadeNet output can be expressed as: Ŷr =

f (inputs,W), where the inputs are from Section II-A
and/or II-B, andW is a matrix of trainable weights associated
with the neural network. Supervised deep-learning solutions
typically require a large, labelled training data-set, and con-
sequently the ground-truth LSF values for a large number of
RoIs are required for training the FadeNet weights W. Since
obtaining actual LSF values via field test measurements for

many RoIs is practically infeasible, we use ray-tracing to gen-
erate the ground-truth LSF values for the training RoIs. Note
that, while being computationally expensive, ray-tracing can
provide an accurate prediction of the true LSF and is thus
a good substitute ground truth [38]–[40]. Furthermore, since
FadeNet only requires the ray-tracing results during the ini-
tial training phase, the cost and computational benefits of
FadeNet over conventional ray-tracing are not precluded.
The ground-truth for RoI r is also encoded as a 256 × 256
dimension image Yr , with [Y]i,j being the ray-tracing LSF
(in dB) at the RX point in the center of the (i, j)-th pixel. Such
a matrix/image can be easily computed from the prediction
result of any commercial raytracing tool for the whole RoI
r . An example of the ground truth LSF Yr and prediction
output Ŷr for the RoI in Fig. 1 are illustrated in Fig. 5 for
convenience. Note that the ray-tracing prediction may not be
available for all pixels of the RoI, such as pixels inside build-
ings or pixels to which signal propagation is difficult. Such
regions are represented with black color in Fig. 5a. Because
of this limitation, FadeNet never encounters labeled training
data for pixels inside buildings and can give inaccurate results
for such pixels. Therefore, we shall intentionally post-process
the FadeNet output Ŷr to black out the pixels with [Br ]i,j > 0,
as illustrated in Fig. 5b.4

4This is a limitation of the ray-tracing tool used rather than a limitation
of FadeNet. By using an alternate ground-truth tool that can generate indoor
LSF values, FadeNet can be trained to predict indoor LSF values as well.
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FIGURE 5. An illustration of the 256× 256-pixel ray-tracing based ground
truth Yr and the predicted LSF output Ŷr for the RoI in Fig. 1.

Since the ground-truth is generated from ray-tracing,
FadeNet can be interpreted as a cost and computationally
efficient approximator to ray-tracing. However, FadeNet also
paves the way for transfer learning [41], a technique wherein
a neural network trained on ray-tracing can be fine-tuned
using a limited amount of field test based actual LSF mea-
surements. While beyond the scope of this paper, such
a transfer-learned FadeNet can potentially out-perform the
accuracy of ray-tracing based LSF prediction. To quantify the
mismatch between the prediction output Ŷr and the ground
truth Yr , we use the root mean square error (RMSE) as
the performance measure. For an RoI r , the RMSE can be
computed as:

RMSE(r) =
√ ∑

(i,j)∈Vr

(
[Ŷr ]i,j − [Yr ]i,j

)2/
|Vr |, (2)

whereVr is defined as the subset of pixels in the RoI for which
valid ray-tracing based ground-truth exists, i.e., the non-dark
pixels of Fig. 5a.

E. DATA AUGMENTATION AND TRAINING METHODOLOGY
It is well known that larger the training data set, the better is
the performance and robustness of the resulting trained neural
network. Thus to successfully train FadeNet, we collected
2500+ sample RoIs with the associated ground-truth LSF
images from the city of Houston, USA, covering a wide vari-
ety of topographies. An augmentation method is employed
to further increase the sample size, wherein new training
RoIs are generated from existing ones via a combination of
horizontal flipping and/or clockwise rotation (by 90◦, 180◦ or
270◦) of the input and ground truth images. One such example
of horizontal flip + rotation by 270◦ of B̃r in Fig. 2b and Yr
in Fig. 5a is illustrated in Fig. 6. By using this augmentation
technique, the data samples are augmented by a factor of 8
to generate an aggregate of 20K+ sample RoIs. Apart from
increasing the training data size, another benefit of the data
augmentationmethod is that the resulting FadeNet is invariant
to rotation and flipping of inputs, which is a desired charac-
teristic. In other words, rotation and flipping operations can
remove the bias in prediction results over different directions
from a BS.

Among the set of all RoI samples Sall, a randomly selected
80% subset is chosen as the training set Strain. The FadeNet

FIGURE 6. An illustration of the building height input B̃r̄ and the
ray-tracing based ground truth Yr̄ for the augmented RoI r̄ , obtained by a
horizontal flip followed by a 270◦ clockwise rotation of the RoI in Fig. 1.

FIGURE 7. An illustration of the training procedure for FadeNet for a
sample RoI.

network weights W are trained over r ∈ Strain to minimize
the sum square error (SSE) between Ŷr and Yr , defined as:

SSE =
∑

r∈S̃train

RMSE(r)2|Vr |,

where S̃train is the augmented superset of Strain. Of the
remaining 20% samples, half are chosen as the validation set
Sval and are used for selecting the best network parameters
and for early stopping the training process [42]. The final
10% samples (called the testing set Stest) are then used to
evaluate the network performance in Section IV. The training
methodology for FadeNet is depicted pictorially in Fig. 7.

III. BASELINE CLASSICAL LEARNING SOLUTION
As mentioned in Section I, there is very limited work
on learning/AI-based, one-shot LSF prediction for multi-
ple receive points in an RoI. Consequently, for quantifying
the benefits of using DL for the LSF prediction problem,
in this section we also formulate two baseline classical learn-
ing solutions, namely, (i) Distance-dependent prediction and
(ii) Conditional least-squares prediction.

A. DISTANCE-DEPENDENT PREDICTION
This approach is based on the extensively used log-distance
pathloss model [4], where the LSF (in dB) for a pixel (i, j) of
any RoI is predicted by a distance-dependent formula:

[Ŷdd]i,j = α + 10η log10
[
di,j
]
, (3)

where α, η are tunable parameters representing the bias and
pathloss exponent, and di,j is the LoS distance between the
BS, located at the bottom-right corner of pixel (128, 128), and
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RX point. Thus, di,j is computed as:

d2i,j = 4(i− 128.5)2 + 4(j− 128.5)2 + (hBS − hRX)2,

where hBS, hRX are the heights of the BS and RX (in meters).
The optimal tunable parameters α∗, η∗ are then obtained as
the minimizers of the sum square prediction error over the
augmented training set as:

argminα,η
{ ∑
r∈S̃train

∑
(i,j)∈Vr

(
[Ŷdd

r ]i,j − [Yr ]i,j
)2}
.

Note that this model only uses the distance from the BS as
an input, and is thus reminiscent of the statistical prediction
models discussed in Section I.

B. CONDITIONAL LEAST-SQUARES PREDICTION
As the distance from the BS di,j is a fixed value for a pixel
(i, j), the solution in Section III-A always generates the same
LSF prediction Ŷdd for any RoI. Such a topology-agnostic
prediction is clearly sub-optimal. Among the topographi-
cal features, the presence or absence of the LoS path has
a strong correlation with the LSF for a RX point, as dis-
cussed in Section II-B. Thus we also propose a conditional
least-squares prediction solution, that uses the LoS featureLr
to predict LSF as:

[Ŷcls
r ]i,j =

{
[Z(0)]i,j if [Lr ]i,j = 0
[Z(1)]i,j if [Lr ]i,j = 1,

(4)

where Z(0) and Z(1) are two tunable 256 × 256 matrices,
representing the LSF values for pixels of the RoI under the
nLoS and LoS scenarios, respectively. Note that unlike in (3),
we now have two candidate values [Z(0)]i,j, [Z(1)]i,j for each
pixel (i, j) based on the LoS condition. Furthermore, unlike
the distance dependent equation in (3) that only has two
parameters α, η, here these matrix entries are more flexible
and are computed as the least-square solutions of:

[Z(0)]i,j

= argmina

{ ∑
r∈S̃train|(i,j)∈Vr

(
a− [Yr ]i,j

)2(1− [Lr ]i,j
)}

[Z(1)]i,j

= argmina

{ ∑
r∈S̃train|(i,j)∈Vr

(
a− [Yr ]i,j

)2[Lr ]i,j}.
Note that in the first equation, a is the least-squares fit to the
LSF values observed for pixel (i, j) over all training samples
with [Lr ]i,j = 0. Similarly in the second equation, a is the
least-squares fit to the LSF values observed for pixel (i, j) over
all training samples with [Lr ]i,j = 1.

IV. EVALUATION
In this section, we evaluate and compare the performance
of FadeNet: (i) without LoS input (pure DL solution) and
(ii) with LoS input (LoS-aided DL solution) and the baseline

solutions (iii) Distance dependent prediction and (iv) Con-
ditional least-squares prediction. For ease of notation, the
networks in (i) and (ii) shall be denoted as FadeNetH and
FadeNetH, respectively. For the training and evaluation, 2500
RoIs are picked in the city of Houston, USA and the cor-
responding topographical maps, including building, terrain
and foliage information are purchased from a map vendor.
For generating the ground truth LSF values of these RoIs,
we use a state-of-the-art commercial 3-D ray-tracing tool
for the 28GHz frequency band that uses a ray-launching
based technique [43]. To improve computation efficiency,
we perform the ray-launching with a ray angular resolution
of 0.1 degrees in both azimuth and elevation, and with the
per ray upper bounds on the number of reflections, number
of diffractions and maximum ray LSF of 4, 1 and 200dB,
respectively. Furthermore, since we are only interested in
LSF, we use omni-directional antennas at the BS and RX
with antenna heights of hBS = 7m and hRX = 1.5m for the
ray-tracing.

Of the 2500 labeled RoIs, FadeNet and the baseline solu-
tions are trained over a set of |Strain| = 2000 RoIs. Of the
remaining RoIs, 250 are used for validation of FadeNet, while
a final 250 RoIs are used for comparison of the solutions’
performance. While the training is performed with data aug-
mentation, the validation and testing are performedwithout it.
For quantifying the performance, we use the average RMSE
as the metric, obtained as:

RMSE =

√√√√∑
r∈S∗ RMSE(r)2|Vr |∑

r∈S∗ |Vr |
,

where ∗ = train, val or test, depending on the situation. The
training and testing are performed on a Linux machine with
1TBRAMand a Tesla P40Nvidia GPU. For solutions (ii) and
(iv), the LoS input is generated using the GIS viewshed algo-
rithm [33], which requires a computation time of 3 secs/RoI.5

For training FadeNet, we use the Adam optimizer with
Xavier weight initialization and zero bias initialization. The
learning rate is decayed from 0.001 to 0.00001 during the
training process, and we adopt mini-batch training with a
batch size of 8. The maximum number of epochs is set to
1000, but we use the early stopping criterion (based on lowest
validation set RMSE) to prevent over-fitting in the training
phase. The training and validation RMSE of FadeNetH along
with the early stopping point are illustrated in Fig. 8a. For the
baseline solutions, the optimal parameter values for the dis-
tance dependent LSF formula in (3) computed over S̃train are:
α∗ = 48.36dB and η∗ = 3.21. For these parameter values,
the predicted LSF for any RoI is depicted in Fig. 8b. Similarly
for the conditional least-squares solution, the optimal choice
of the matrices Z(0),Z(1) after training on S̃train are depicted
in Fig. 8.

The average RMSEs of these solutions on the training set
and test set are depicted in Table 1. As evident from the

5While not explored here, a significant boost in compute speed may be
possible by parallelizing the LoS computation for each pixel.
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FIGURE 8. Training of the proposed solutions on the augmented training
set S̃train. (a) depicts the training and validation RMSE of FadeNet during
the training process. (b) depicts the 256× 256 LSF prediction from
Section III-A with optimal α∗, η∗. (c) and (d) depict the optimal
conditional LSF predictions from Section III-B for the nLoS and LoS
scenarios, respectively.

TABLE 1. Average test RMSE and the computation speed/test RoI of
different LSF prediction solutions on Houston test set.

results, the test RMSE of the distance dependent prediction is
quite high since the topographical information of the RoI is
not exploited. Since the conditional least-squares prediction
can exploit some topographical information encoded in the
LoS input Lr , it achieves a lower test RMSE. Note that the
test RMSEs for these baseline solutions is still quite high
and is identical to their train RMSEs, suggesting that these
are high bias, low variance estimators [44]. From the result
of the pure DL solution FadeNetH, we observe that FadeNet
can out-perform the base-line solutions by > 1.5 dB even
without explicitly using the LoS information. However, the
use of the LoS information as an additional input can boost
the performance of FadeNet by a further 1.3 dB, as observed
from the test RMSE of the LoS-aided DL solution FadeNetH.
While we observe some gap between the training RMSE and
test RMSE of FadeNet, attempts to improve performance
by reducing this gap (via regularization) were unsuccessful.
The distribution of RMSE across different test RoIs for the

FIGURE 9. Histogram of the RMSE per RoI RMSE(r ) (in dB) for the test set
Stest, for each of the two FadeNet solutions.

two FadeNet solutions is depicted in Fig. 9. As can be seen
from the results, the RMSE distribution is concentrated and
is bounded below 12dB for the whole test set.

In addition to the RMSE, the compute time per RoI for
each of these solutions is also depicted in Table 1, where
we account for input generation time and the time for the
forward pass through network but not the time required to
load the network and data into the GPU. As observed, the
pure DL FadeNet solution requires a compute time of only
0.1s/RoI while the LoS-aided solution requires 3s/RoI, due
to computation of LoS feature. In comparison, the 3-D
raytracing tool used for generating the ground truth values
requires > 120s to generate the LSF prediction for an RoI of
this dimension. The authors have verified that several other
popular commercial ray-tracing tools such as Wireless Insite,
Atoll, etc., also require a similar compute time. We thus con-
clude that our DL solutions FadeNet and FadeNet reduce the
LSF computation time by a massive 1000X and 40X, respec-
tively, in comparison to conventional deterministic methods.
This large speed boost facilitates several of new applications,
as shall be discussed later in Section VI.

V. EXTENSIONS
In this section, we explore extensions of FadeNet tomore gen-
eralized scenarios, including joint multi-city LSF prediction,
accommodating for variable BS antenna height etc. Due to the
superior performance of the LoS-aided DL solution FadeNet
over the pure DL solution FadeNet, here we shall restrict the
comparisons to the former solution.

A. MULTI-CITY TRAINING VS. INDIVIDUAL TRAINING
In this subsection, we explore the application of FadeNet
to multi-city LSF prediction. For this purpose, we collect
2500+ RoI samples each from 3 cities of USA: Houston,
Sacramento and San Francisco.We use 250, 250 sample RoIs
from each city for validation and testing, respectively, while
the rest of the samples are used as the training set. Let us
denote FadeNetH,FadeNetS and FadeNetSF as the FadeNet
networks trained exclusively on Houston, Sacramento and
San Francisco data, respectively. In addition, we also define
FadeNetH,S and FadeNetH,S,SF as the FadeNet networks that
are trained on the joint training sets of Houston+Sacramento
and all three cities, respectively. The performance of these
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TABLE 2. Average RMSE of the different FadeNet networks, on the test
sets of three cities.

trained networks on the test sets of the three cities are tab-
ulated in Table 2. As observed from Table 2, the perfor-
mance of FadeNetH is similar to that of FadeNetS on the
Sacramento test set, but its performance is significantly worse
than FadeNetSF on the San Francisco test set and vice versa.
This is due to the similar terrain topography of Houston and
Sacramento, which is significantly different from that of San
Francisco. Furthermore, a larger fraction of buildings are
sky-rises in San Francisco than in Houston or Sacramento.
This suggests that a network trained on one city only gen-
eralizes well to cities with similar topographical features.
We also observe that the network trained on both Houston
and Sacramento FadeNetH,S yields slightly better test per-
formance than FadeNetH and FadeNetS on the Houston and
Sacramento test sets, respectively. This is due to the similar-
ities of the two cities data, and the larger training set used by
FadeNetH,S.6 Finally, we observe that FadeNetH,S,SF has bet-
ter performance in comparison to FadeNetH, FadeNetS and
FadeNetSF on the Houston, Sacramento and San Francisco
test sets, respectively. This suggests the our proposed FadeNet
structure has sufficient capacity to learn intrinsic features of
multiple cities. Thus if having separate networks for each
type of city is infeasible, a good alternative is to jointly train
FadeNet on all the cities data.

B. VARIABLE BS HEIGHT
The results in Section IV are applicable for the scenario
where the BS antenna height is fixed (hBS = 7m). Therefore,
the BS antenna height is not fed as an input to the neural
network. However, in a real deployment, the height of a
mm-Wave BS may vary based on the available installa-
tion locations. In fact, field trials have shown that in real
deployment scenarios, the BS antenna height values can
vary from 2m to 50m. In this section, we therefore explore
the generalization of FadeNet to the scenario where the BS
height is variable. For this, we collect 3000 new training
RoIs for the city of Houston, of which we have 600 RoIs
uniformly distributed in each of the following BS height
ranges: 2− 5m, 5− 10m, 10− 20m, 20− 30m, 30− 50m.
The train, validation and test sets are chosen of sizes

6Note that a 2X increase in the training set size (for FadeNetH,S) only
improves performance by 0.2dB in comparison to FadeNetH,FadeNetS.
Thus, due to the diminishing returns, we have restricted the sample size per
city Sall to 2500.

FIGURE 10. RMSE versus BS antenna height range for different FadeNet
solutions.

2000, 300 and 700, respectively, while ensuring equal rep-
resentation of each height range in these sets. Let us denote
FadeNet7 and FadeNetvar as the FadeNets trained on the
hBS = 7m RoIs (from Section IV) and the new variable
BS height RoIs, respectively. In addition we also introduce
a new network ˜FadeNetvar that, in addition to the inputs
Br ,Tr ,Fr ,Lr for an RoI r , also uses an antenna height
image/matrix Hr as an input, and is trained on the new
variable BS height RoIs. Here Hr is a 256 × 256 constant
matrix, with each element being equal to the BS antenna
height (in meters), normalized by 25.7 Note that the network
architecture for ˜FadeNetvar is identical to Section II-C, with
the number of inputs adjusted from C = 4 to C = 5.

The comparison of the performance of these networks on
the variable height test set is illustrated in Fig. 10, for different
height ranges. In addition, we also include the performance
on the 7mHouston test set from Section IV. As observed from
the results, FadeNet7 performs well for 7m height range but
has poor performance for other heights since it is trained only
on hBS = 7m data. In comparison, we see that FadeNetvar has
reasonable performance at all heights since it is trained on
the variable height data, albeit without the antenna height as
input. For a network that properly exploits BS antenna height
as input, we expect its test RMSE to be lower than that of
FadeNetvar at all antenna heights and only slightly higher than
FadeNet7 on the hBS = 7m test data. As evident from Fig. 10,
˜FadeNetvar outperforms FadeNetvar at all heights by 0.2 dB

and is only 0.1 dB worse than FadeNet7 at 7m height range,
thus demonstrating its efficacy in dealingwith an arbitrary BS
height. As a side note, the lower test RMSE of ˜FadeNetvar at
larger BS heights is because the LoS coverage area within an
RoI increases with BS height, and the LSF prediction for LoS
locations is less erroneous.

7Several other encodings of the antenna height were also explored, but did
not yield any performance improvement.
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VI. USE CASE: OPTIMAL CELL SITE SELECTION
Many wireless operators are currently deploying network
infrastructure to provide 5G mm-Wave cellular cover-
age. As discussed previously, the channel propagation at
mm-Wave frequencies is strongly impacted by the surround-
ing RF environment. Therefore, selection of good site loca-
tions for deployment of mm-Wave BSs is of paramount
importance to improve the network coverage while keeping
the deployment cost low. One good approach for such selec-
tion in a deployment region is to: (i) determine a large set
of candidate sites, (ii) predict the received signal power from
each of the sites to the their surrounding area and (iii) deter-
mining a subset of sites that jointly maximize the signal cov-
erage within the deployment region. Here we define coverage
as the set of locations with received signal power above a
certain threshold from any one of the active BSs. Note that
the average received signal power from an omni-directional
transmitter can be obtained from the LSF value as: Prx,dBm =
Ptx,dBm − LSF, where Ptx,dBm is the transmit power. Thus
the solutions discussed in this paper can be used for received
power prediction in step (ii). Of the solutions discussed in
the paper, statistical prediction models yield poor prediction
results and the deterministic methods like ray-tracing are
computation and time intensive. For example, for an area
with 100 candidate sites, the time required for generating
ray-tracing based LSF predictions is ≈ 4 hours. In com-
parison, the FadeNet solutions FadeNetH,FadeNetH provide
good accuracy and can perform the LSF prediction for the 100
candidate sites in 10s and 5 minutes, respectively, thus signif-
icantly reducing the turn-around time for network planning.

An illustrative demo of this use case using FadeNet is
depicted in Fig. 11, where we have a 1km x 1km deployment
area from Houston with 9 candidate site locations. FadeNetH
is used to predict the received signal power from each candi-
date site to the 512m x 512m area surrounding it. Every subset
of these 9 candidate sites is a valid solution for deploying
active BSs. For each solution of active BSs, we calculate the
coverage as the fraction of pixels that have LSF smaller than
135 dB from at least one of the active BSs.8 An exhaustive
search is then performed over the BS subsets to find the
smallest set of active sites that satisfies the 90% network
coverage. For this toy demo, the optimal subset can be found
in < 30 seconds.

VII. LIMITATIONS AND FUTURE DIRECTIONS
While FadeNet significantly improves the LSF prediction
performance in comparison to the baseline approaches in the
prior art, there are several opportunities to further improve the
performance and address its drawbacks. These are discussed
in this section and shall be explored in future work.

8The value of 135dB is just exemplary for this toy demo and is obtained
using a back-of-the-envelope calculation with Ptx,dBm = 30dBm, a trans-
mission bandwidth of 14MHz and minimum RX signal-to-noise-ratio of
−6dB [45].

FIGURE 11. A demonstration of the optimal site selection to maximize
the network coverage using FadeNet. (a) demonstrates the 1× 1 km
deployment area along with the candidate BS locations and (b) illustrates
the selected 6 active sites with green markers. For (b) we also overlay a
500× 500 pixel predicted LSF image, where the value at a pixel is the
minimum LSF (in dB) from any of the 6 active sites. Pixels with no
prediction or with best LSF > 135 dB are shaded with blue color
(i.e., no coverage).

FIGURE 12. Comparison of Yr and Ŷr (in dB) for a test RoI r for which
FadeNetH yields a large prediction error (RMSE = 8.2dB).

1) PREDICTING REFLECTIONS
It has been observed that FadeNet struggles to predict signal
reflections properly, at least in some of the RoIs. This is
evident from Fig. 12, where the ground-truth Yr and the
prediction result Ŷr (from FadeNetH) are depicted for a high
RMSE test RoI r . This behavior is somewhat expected since
reflections by buildings are quite sensitive to the building
surface, and their prediction using pixelated building height
inputs can be quite difficult. Exploring mechanisms for bet-
ter prediction of the signal reflections in FadeNet shall be
explored in future work.

2) ACCOMMODATING FOR THE ANTENNA PATTERN
Since the focus of this paper is on LSF prediction, an omni-
directional BS is considered and FadeNet returns, for each
RX point in RoI, only the LSF values. Other channel param-
eters like angle-of-arrival (AoA) and angle-of-departure
(AoD) of the dominant paths etc., which ray-tracing methods
provide, are not predicted. Such parameters can be quite
essential to predict how the received signal power in an RoI
changes when the BS uses a directional antenna pattern. Due
to the unavailability of these parameters, the use of FadeNet
for scenarios with arbitrary BS antenna patterns is non-trivial
and needs further investigation. Potential approaches for such
a generalization include: using the antenna pattern as an input
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to FadeNet, or predicting AoA, AoD as additional outputs
with Ŷr , and shall be explored in future work.

3) IMPROVING NETWORK ARCHITECTURE
Note that wemodel the LSF prediction as an image regression
task, and propose a network architecture that is similar to the
U-Net architecture [34] for this task. With the rapid advances
in the image processing literature, there potentially exist other
network architectures which may be better suited for the LSF
prediction task, which can also be explored in future work.

VIII. CONCLUSION
This paper presents FadeNet, a deep learning based solution
for predicting the LSF from a mm-Wave BS to the sur-
rounding coverage area using the environment topographical
features as inputs. From the results, we observe that FadeNet
significantly outperforms statistical methods in terms of pre-
diction accuracy, and reduces the computational complexity
by 40 − 1000X in comparison to deterministic methods like
ray-tracing. We also conclude that the presence or absence
of the line-of-sight path from the BS has a strong influence
on the LSF value, and its use as an input feature to FadeNet
can improve the prediction RMSE by 1.3 dB. Furthermore,
FadeNet trained on cities with certain type of topographies
only generalizes well to new cities with similar topographical
features. We also conclude that LSF prediction is easier for
line-of-sight points, and thus is easier for taller BSs which
provide more line-of-sight coverage. Due to its prediction
speed, FadeNet can also significantly reduce the turn around
time of network planning tasks such as optimal cell site
selection. Finally, we also conclude that there is scope for
improving FadeNet to better predict the impact of signal
reflections, and to account for variable BS antenna patterns.

REFERENCES
[1] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, ‘‘A survey

of machine learning techniques applied to self-organizing cellular net-
works,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2392–2431,
4th Quart., 2017.

[2] M. Hata, ‘‘Empirical formula for propagation loss in land mobile radio
services,’’ IEEE Trans. Veh. Technol., vol. VT-29, no. 3, pp. 317–325,
Aug. 1980.

[3] E. Damosso and L. Correia. Digital Mobile Radio Towards Future
Generation Systems: COST Action 231. European Commission. Brus-
sels, Belgium. Accessed: 1999. [Online]. Available: https://books.
google.com/books?id=setUHQAACAAJ

[4] A. F. Molisch, Wireless Communications, 2nd ed. Hoboken,
NJ, USA: Wiley, 2010. [Online]. Available: https://www.ebook.
de/de/product/12049967/molisch_wireless_communications_2e.html

[5] J. Meinil, P. Kysti, T. Jms, and L. Hentil, ‘‘WINNER II channel models,’’ in
Radio Technologies and Concepts for IMT-Advanced. Hoboken, NJ, USA:
Wiley, 2010, pp. 39–92.

[6] S. Jaeckel, L. Raschkowski, K. Borner, and L. Thiele, ‘‘QuaDRiGa: A 3-
D multi-cell channel model with time evolution for enabling virtual field
trials,’’ IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3242–3256,
Jun. 2014.

[7] Study on Channel Model for Frequencies From 0.5 to 100 GHz, document
3GPP TR 38.901, May 2017.

[8] M. C. Lawton and J. P. McGeehan, ‘‘The application of a deterministic
ray launching algorithm for the prediction of radio channel characteristics
in small-cell environments,’’ IEEE Trans. Veh. Technol., vol. 43, no. 4,
pp. 955–969, Nov. 1994.

[9] S.-C. Kim, B. J. Guarino, T. M. Willis, V. Erceg, S. J. Fortune,
R. A. Valenzuela, L. W. Thomas, J. Ling, and J. D. Moore, ‘‘Radio propa-
gation measurements and prediction using three-dimensional ray tracing in
urban environments at 908MHz and 1.9 GHz,’’ IEEE Trans. Veh. Technol.,
vol. 48, no. 3, pp. 931–946, May 1999.

[10] W. M. O’Brien, E. M. Kenny, and P. J. Cullen, ‘‘An efficient implemen-
tation of a three-dimensional microcell propagation tool for indoor and
outdoor urban environments,’’ IEEE Trans. Veh. Technol., vol. 49, no. 2,
pp. 622–630, Mar. 2000.

[11] J.-M. Gorce, K. Jaffres-Runser, and G. de la Roche, ‘‘Deterministic
approach for fast simulations of indoor radio wave propagation,’’ IEEE
Trans. Antennas Propag., vol. 55, no. 3, pp. 938–948, Mar. 2007.

[12] J. W. Schuster and R. J. Luebbers, ‘‘Comparison of GTD and FDTD
predictions for UHF radio wave propagation in a simple outdoor urban
environment,’’ in IEEE Antennas Propag. Soc. Int. Symp. Dig., Jul. 1997,
pp. 2022–2025.

[13] Z. Lai, H. Song, P. Wang, H. Mu, L. Wu, and J. Zhang, ‘‘Implementation
and validation of a 2.5D intelligent ray launching algorithm for large urban
scenarios,’’ inProc. 6th Eur. Conf. Antennas Propag. (EUCAP), Mar. 2012,
pp. 2396–2400.

[14] R. P. Kammaje and B. Mora, ‘‘A study of restricted BSP trees for
ray tracing,’’ in Proc. IEEE Symp. Interact. Ray Tracing, Sep. 2007,
pp. 55–62.

[15] H. Mi, D. He, K. Guan, B. Ai, C. Liu, T. Shui, L. Zhu, and H. Mei,
‘‘Implementation and evaluation of ray-tracing acceleration methods in
wireless communication,’’ in Proc. 14th Eur. Conf. Antennas Propag.
(EuCAP), Mar. 2020, pp. 1–5.

[16] L. Azpilicueta, M. Rawat, K. Rawat, F. M. Ghannouchi, and F. Falcone,
‘‘A ray launching-neural network approach for radio wave propagation
analysis in complex indoor environments,’’ IEEE Trans. Antennas Propag.,
vol. 62, no. 5, pp. 2777–2786, May 2014.

[17] F. Casino, L. Azpilicueta, P. Lopez-Iturri, E. Aguirre, F. Falcone,
and A. Solanas, ‘‘Optimized wireless channel characterization in large
complex environments by hybrid ray launching-collaborative filtering
approach,’’ IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 780–783,
2017.

[18] M. Lecci, P. Testolina, M. Giordani, M. Polese, T. Ropitault, C. Gentile,
N. Varshney, A. Bodi, and M. Zorzi, ‘‘Simplified ray tracing for
the millimeter wave channel: A performance evaluation,’’ 2020,
arXiv:2002.09179. [Online]. Available: https://arxiv.org/abs/2002.09179

[19] J. Tan, Z. Su, and Y. Long, ‘‘A full 3-D GPU-based beam-tracing method
for complex indoor environments propagation modeling,’’ IEEE Trans.
Antennas Propag., vol. 63, no. 6, pp. 2705–2718, Jun. 2015.

[20] D. He, B. Ai, K. Guan, L.Wang, Z. Zhong, and T. Kurner, ‘‘The design and
applications of high-performance ray-tracing simulation platform for 5G
and beyondwireless communications: A tutorial,’’ IEEECommun. Surveys
Tuts., vol. 21, no. 1, pp. 10–27, 1st Quart., 2019.

[21] S.M. Aldossari andK.-C. Chen, ‘‘Machine learning for wireless communi-
cation channel modeling: An overview,’’Wireless Pers. Commun., vol. 106,
no. 1, pp. 41–70, May 2019, doi: 10.1007/s11277-019-06275-4.

[22] Y. Zhang, J. Wen, G. Yang, Z. He, and J. Wang, ‘‘Path loss prediction based
on machine learning: Principle, method, and data expansion,’’ Appl. Sci.,
vol. 9, no. 9, p. 1908, May 2019.

[23] S. Phaiboon, P. Phokharatkul, and P. Kittithamavongs, ‘‘Mobile path loss
prediction with image segmentation and classification,’’ in Proc. Int. Conf.
Microw. Millim. Wave Technol., Apr. 2007, pp. 1–4.

[24] E. Ostlin, H. Zepernick, and H. Suzuki, ‘‘Macrocell path-loss prediction
using artificial neural networks,’’ IEEE Trans. Veh. Technol., vol. 59, no. 6,
pp. 2735–2747, Jul. 2010.

[25] J. Isabona and V. M. Srivastava, ‘‘Hybrid neural network approach
for predicting signal propagation loss in urban microcells,’’ in Proc.
IEEE Region 10 Humanitarian Technol. Conf. (R HTC), Dec. 2016,
pp. 1–5.

[26] R. Timoteo, D. Cunha, and G. Cavalcanti, ‘‘A proposal for path loss
prediction in urban environments using support vector regression,’’ inProc.
Adv. Int. Conf. Telecommun. (AICT), Jan. 2014, pp. 119–124.

[27] S. P. Sotiroudis, K. Siakavara, and J. N. Sahalos, ‘‘A neural network
approach to the prediction of the propagation path-loss for mobile com-
munications systems in urban environments,’’ PIERS Online, vol. 3, no. 8,
pp. 1175–1179, 2007.

[28] M. Ayadi, A. Ben Zineb, and S. Tabbane, ‘‘A UHF path loss model using
learning machine for heterogeneous networks,’’ IEEE Trans. Antennas
Propag., vol. 65, no. 7, pp. 3675–3683, Jul. 2017.

3288 VOLUME 9, 2021

http://dx.doi.org/10.1007/s11277-019-06275-4


V. V. Ratnam et al.: FadeNet: DL-Based mm-Wave Large-Scale Channel Fading Prediction and Its Applications

[29] Y. Zhang, J. Wen, G. Yang, Z. He, and X. Luo, ‘‘Air-to-air path loss
prediction based on machine learning methods in urban environments,’’
Wireless Commun. Mobile Comput., vol. 2018, pp. 8489326:1–8489326:9,
Jun. 2018.

[30] N. Kuno and Y. Takatori, ‘‘Prediction method by deep-learning for path
loss characteristics in an open-square environment,’’ in Proc. Int. Symp.
Antennas Propag. (ISAP), Oct. 2018, pp. 1–2.

[31] L. Wu, D. He, B. Ai, J. Wang, H. Qi, K. Guan, and Z. Zhong, ‘‘Artificial
neural network based path loss prediction for wireless communication
network,’’ IEEE Access, vol. 8, pp. 199523–199538, 2020.

[32] Y. Guo, Y. Liu, T. Georgiou, and M. S. Lew, ‘‘A review of semantic
segmentation using deep neural networks,’’ Int. J. Multimedia Inf. Retr.,
vol. 7, no. 2, pp. 87–93, Nov. 2017.

[33] H. Haverkort, L. Toma, and Y. Zhuang, ‘‘Computing visibility on terrains
in external memory,’’ ACM J. Experim. Algorithmics, vol. 13, pp. 1–5,
Feb. 2009, doi: 10.1145/1412228.1412233.

[34] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-net: Convolutional net-
works for biomedical image segmentation,’’ inMedical Image Computing
and Computer-Assisted Intervention—MICCAI, N. Navab, J. Hornegger,
W. M. Wells, and A. F. Frangi, Eds. Cham, Switzerland: Springer, 2015,
pp. 234–241.

[35] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html

[37] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift,’’ in Proc. Int.
Conf. Mach. Learn. (ICML), vol. 37, F. Bach and D. Blei, Eds. Lille,
France: PMLR, Jul. 2015, pp. 448–456. [Online]. Available: http://
proceedings.mlr.press/v37/ioffe15.html

[38] H. C. Nguyen, G. R. MacCartney, T. Thomas, T. S. Rappaport,
B. Vejlgaard, and P. Mogensen, ‘‘Evaluation of empirical ray-tracing
model for an urban outdoor scenario at 73 GHz E-band,’’ in Proc. IEEE
80th Veh. Technol. Conf. (VTC-Fall), Sep. 2014, pp. 1–6.

[39] A. Karstensen,W. Fan, F. Zhang, J. Ø. Nielsen, andG. F. Pedersen, ‘‘Analy-
sis of simulated and measured indoor channels for mm-wave beamforming
applications,’’ Int. J. Antennas Propag., vol. 2018, pp. 1–17, Jan. 2018, doi:
10.1155/2018/2642904.

[40] J.-Y. Lee, J.-H. Lee, and S.-C. Kim, ‘‘Improving the accuracy of
millimeter-wave ray-tracing simulations by modeling roadside trees,’’
IEEE Antennas Wireless Propag. Lett., vol. 18, no. 1, pp. 162–166,
Jan. 2019.

[41] S. J. Pan andQ. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[42] L. Prechelt, ‘‘Automatic early stopping using cross validation: Quan-
tifying the criteria,’’ Neural Netw., vol. 11, no. 4, pp. 761–767,
Jun. 1998. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0893608098000100

[43] G. Durgin, N. Patwari, and T. S. Rappaport, ‘‘An advanced 3D ray launch-
ing method for wireless propagation prediction,’’ in Proc. IEEE 47th Veh.
Technol. Conf. Technol. Motion, May 1997, pp. 785–789.

[44] S. Geman, E. Bienenstock, and R. Doursat, ‘‘Neural networks and the
bias/variance dilemma,’’Neural Comput., vol. 4, no. 1, pp. 1–58, Jan. 1992.

[45] Technical Specification Group Radio Access Network, Study on New
Radio Access Technology; Physical Layer Aspects, document 3GPP TR
38.802, Tech. Rep. Release 14, Sep. 2017.

VISHNU V. RATNAM (Member, IEEE) received
the B.Tech. degree (Hons.) in electronics and
electrical communication engineering from IIT
Kharagpur, Kharagpur, India, in 2012, where he
graduated as the Salutatorian for the class of 2012,
and the Ph.D. degree in electrical engineering
from the University of Southern California, Los
Angeles, CA, USA, in 2018. He currently works
as a Senior Research Engineer with the Stan-
dards and Mobility Innovation Laboratory, Sam-

sung Research America, Plano, TX, USA. His research interests include AI
for wireless, mm-Wave and Terahertz communication, massive MIMO, and
resource allocation problems in multi-antenna networks.

HAO CHEN (Member, IEEE) received the B.S.
and M.S. degrees in information engineering from
Xi’an Jiaotong University, Xi’an, in 2010 and
2013, respectively, and the Ph.D. degree in elec-
trical engineering from the University of Kansas,
Lawrence, KS, USA, in 2017. Since 2016, he has
been a Research Engineer with the Standards
and Mobility Innovation Laboratory, Samsung
Research America. His research interests include
network optimization, machine learning, and
5G cellular systems.

SAMEER PAWAR received the Ph.D. degree in
electrical engineering and computer science from
the University of California at Berkeley, in 2013.
His research interests include machine learning
and information theory. He is currently working as
a ML Research Scientist at Facebook.

BINGWEN ZHANG received the B.E. degree from the University of Science
and Technology of China, Hefei, China, in 2011, and the M.S. degree and
the Ph.D. degree in electrical and computer engineering from Worcester
Polytechnic Institute,MA,USA, in 2013 and 2017, respectively. His research
interests include statistical learning and data mining.

CHARLIE JIANZHONG ZHANG (Fellow, IEEE)
received the Ph.D. degree from the University
of Wisconsin, Madison, WI, USA. He was with
the Nokia Research Center, from 2001 to 2006,
where he was involved in the IEEE 802.16e
(WiMAX) standard and EDGE/CDMA receivers,
and from 2006 to 2007, he was with Motorola,
where he was involved in 3GPP HSPA standards.
From 2009 to 2013, he served as the Vice Chair-
man of the 3GPP RAN1 Group and led the devel-

opment of LTE and LTE-advanced technologies, such as 3-D channel mod-
eling, UL-MIMO and CoMP, and carrier aggregation for TD-LTE. He is
currently the Senior Vice President and Head of the Standards and Mobil-
ity Innovation Laboratory, Samsung Research America, where he leads
research, prototyping, and standards for 5G cellular systems and future
multimedia networks.

YOUNG-JIN KIM received the B.S. and Ph.D.
degrees in electronic and electrical engineer-
ing from the Pohang University of Science and
Technology (POSTECH), South Korea, in 2007
and 2013, respectively. He currently works as
a Senior Research Engineer with the Network
Division, Samsung Electronics, South Korea.
His research interests include RAN optimiza-
tion, admission control, and congestion manage-
ment with machine learning for end-to-end service

assurance in 5G network slicing.

VOLUME 9, 2021 3289

http://dx.doi.org/10.1145/1412228.1412233
http://dx.doi.org/10.1155/2018/2642904


V. V. Ratnam et al.: FadeNet: DL-Based mm-Wave Large-Scale Channel Fading Prediction and Its Applications

SOONYOUNG LEE received the B.S. degree in
electrical engineering and the M.S. and Ph.D.
degrees in electrical engineering and computer sci-
ence from Seoul National University, Seoul, South
Korea, in 2005, 2007, and 2012, respectively.
He is currently working with Samsung Electronics
Company Ltd. His research interests include com-
puter vision, data analysis, and AI.

MINSUNG CHO received theM.S. degree in elec-
trical and telecommunication engineering from
Sungkyunkwan University, South Korea, in 2000.
He currently works as a Principal Research
Engineer with the Network Division, Samsung
Electronics Company Ltd. His research interests
include RAN architecture, RAN network design
and optimization, radio planning tool design, and
air interface analysis.

SUNG-ROK YOON received the B.S. degree in
electrical engineering and the M.S. and Ph.D.
degrees in information and communications engi-
neering from the Korea Advanced Institute of
Science and Technology (KAIST), South Korea,
in 2002, 2006, and 2011, respectively. He has been
working with Samsung Electronics, South Korea,
since 2011. His research interests include channel
modeling, system KPI prediction, RAN optimiza-
tion, RAN virtualization, and network automation
of 5G cellular systems.

3290 VOLUME 9, 2021


