IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 6, 2020, accepted December 24, 2020, date of publication December 31, 2020,

date of current version January 12, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3048421

Flow-Aware Service Function Embedding
Algorithm in Programmable Data Plane

JAEWOOK LEE"", HANEUL KO“2, (Member, IEEE),
HOCHAN LEE ', (Graduate Student Member, IEEE),
AND SANGHEON PACK 1, (Senior Member, IEEE)

!School of Electrical Engineering, Korea University, Seoul 02841, South Korea

2Department of Computer Convergence Software, Korea University, Sejong 30019, South Korea

Corresponding author: Sangheon Pack (shpack @korea.ac.kr)

This work was supported in part by the National Research Foundation (NRF) of Korea through the Korean Government under Grant
2020R1A2C3006786, and in part by the Ministry of Science and ICT (MSIT), Korea, through the Information Technology Research
Center (ITRC) support program supervised by the Institute for Information and Communications Technology Planning and Evaluation

(IITP) under Grant IITP-2020-2017-0-01633.

ABSTRACT Service function chaining (SFC) is an indispensable technique for Internet service providers
to efficiently manage their networks. However, SFC poses requirements of additional processing time of
service functions (SFs) and increased routing time owing to detoured paths. In this paper, we introduce
the use of a programmable data plane (PDP) to reduce the additional processing and routing times in SFC.
We first classify the existing PDP-empowered SFC schemes and analyze their pros and cons. An optimization
problem, to find the optimal SF embedding strategy minimizing the SFC completion time while efficiently
utilizing the PDP switch resources, is formulated and a flow-aware SF embedding (FASE) algorithm that
complementarily combines the redundant SF and re-circulation approaches is devised. FASE is implemented
over a commercial PDP switch and experimental results demonstrate that FASE can reduce the SFC
completion time by up to 33% compared with conventional approaches while utilizing the switch resources

efficiently.

INDEX TERMS Service function chaining, programmable data plane, in-network computing.

I. INTRODUCTION

Service function chaining (SFC) [1] is a prevalent tech-
nique for connecting a sequence of service functions (SFs)
(e.g., load balancer (LB), firewall (FW), and deep packet
inspection (DPI)) and for steering packets to different SFs [2],
[3]. In SFC, softwarized SFs (i.e., virtualized network func-
tion (VNF)) can be flexibly provisioned on general-purpose
servers through network function virtualization (NFV), and
software-defined networking (SDN) efficiently constructs
a routing path according to the provisioned locations of
the softwarized SFs [4]. Therefore, SDN/NFV-based SFC
is perceived as an indispensable technique for network
management and operation of Internet service providers
(ISPs).

However, despite the flexible provision and efficient path
management, detoured paths in SFC are inevitable because
softwarized SFs should be provisioned on off-path servers.
Such detoured paths prolong the SFC completion time and

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangjie Han

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

can be an obstacle for supporting latency-sensitive services.
Moreover, the processing performance of softwarized SFs
is one or two orders of magnitude lower than that of hard-
warized SFs [5] owing to the huge performance gap between
virtualized processors (of softwarized SFs) and dedicated
processors (of hardwarized SFs). Consequently, it is critical to
accelerate the processing of softwarized SFs and to reduce the
SFC completion time and to realize the low-latency service.
Recently, programmable data planes (PDPs) have attracted
considerable attention because of their easily reconfigurable
data planes and line-rate packet processing performance.
Moreover, PDP has also been instrumental in enabling a new
computing paradigm in which parts of an application’s logic
run within the network core (i.e., in-network computing) [15].
This salient feature can mitigate the above-mentioned limita-
tions of softwarized SFs owing to its high performance and
reconfiguration. For example, several types of SFs, such as
layer-4 LBs [5] and network cache [7], can be implemented
on PDP switches and the implemented SFs shows the higher
performance than that of softwarized SFs. In addition, several
approaches for the implementation of SFC in the PDP switch

6113

https://orcid.org/0000-0003-0422-280X
https://orcid.org/0000-0002-9067-445X
https://orcid.org/0000-0002-3664-2537
https://orcid.org/0000-0002-1085-1568
https://orcid.org/0000-0002-6921-7369

IEEE Access

J. Lee et al.: FASE Algorithm in PDP

IETF SFC architecture

SFC control plane

Chaining list
Path for SFC1: FW1 =) LB 2

Chain List Chain request

PDP with embedded SFs

=]] Inspect
pﬁig-- the source P
address

Firewall +

(PI:1, 51:255 = 51:254) Chaini: ,ﬁ;, g

Path for SFC2: FW2 -

(SPI:2, 51:255) Chain2: ’g
A A A
1 | T
1 V. - -
! Er]
! < s S
: N SO e [}
i S & !]
i 1
: m| ==
y 1

“ Y [54 1

< b
fepy | © —
6%2?2 O G e
Ingcr‘ess rf\ode/ SFF1 SFF 2 (Egfess node)
assifier
v 1) RRs i

@-—-s

il

—— W2

SFC data plane

FIGURE 1. The IETF SFC and PDP architectures.

that can satisfy the requested SF processing orders have
been studied, which can be categorized into: 1) redundant
SF approach [9] and 2) re-circulation approach [3], [10].
Chen et al. [9] allowed redundant SF embedding to a PDP
switch, and thus, the SF processing order of the requested
SFCs could be easily satisfied at the line rate. However,
as more than one SF is redundantly embedded, the resources
of the PDP switch can be abused and only a few SFCs
can be supported at a time. In contrast, Lee ef al. [10] and
Wu et al. [3] employed a packet re-circulation function to
satisfy the requested SF processing order. Specifically, if the
embedded SF order was different from the requested SF
processing order, the packet was recirculated from the egress
port to the ingress port. Thus, the requested SF processing
order could be satisfied; however, the line-rate performance
could not be guaranteed owing to the re-circulation. In sum-
mary, the redundant SF and re-circulation approaches have
contrasting advantages and disadvantages.

By achieving a balance between these approaches,
we attempt to find the optimal SF embedding strategy
that minimizes the SFC completion time while utilizing
the PDP switch resource efficiently. A flow-aware SF
embedding (FASE) algorithm that complementary combines
the redundant SF and re-circulation approaches is devised
to solve the formulated optimization problem with low-
complexity. However, not all requested SFCs can be sup-
ported without re-circulation owing to the limited resources
of the PDP switch. Thus, in FASE, SFC flows with higher
incoming rates are first processed by the redundantly embed-
ded SFs. Subsequently, SFC flows with lower incoming rates
are processed by employing re-circulation. Consequently,
SFC flows with higher incoming rates can be supported with-
out re-circulation, which contributes to the reduction of the
overall SFC completion time. FASE has been implemented
on a commercial PDP switch (i.e., a Tofino switch supporting
a processing performance of 3.2 Tbps with 32 ports).!

IThe implemented code of FASE and its test code on the Tofino switch
can be found at https://github.com/jaewook2/FASE.

6114

Load balancer
Program Distribute packets
based on IP

address and TCP

port

Network Operator

Runtime API

p——

Distribute
packets
i based on IP

hianseey address and

3 TCP port

Inspect
the source IP
address

— ==
Match-action tables
egress Pipeline

]
o=
55 < F

—— ==
Parser Match-action tables
Ingress Pipeline

Protocol-independent switch architecture

Programmable data plane

Experimental results demonstrate that FASE can reduce the
SFC completion time by up to 33% compared with the
redundant SF and re-circulation approaches while utilizing
the given switch resource efficiently.

The remainder of this paper is organized as follows.
In Section II, we provide the background knowledge on
SFC and PDP. After that, we review the conventional
PDP-empowered SFC approaches in Section III and propose
the FASE algorithm in Section IV. We then describe the
experimental results in Section V and present open research
topics in Section VI. Finally, Section VII concludes this

paper.

Il. BACKGROUND

In this section, we first describe the IETF SFC architec-
ture [1] and introduce a representative PDP architecture
(i.e., protocol-independent switch architecture (PISA)).

A. SERVICE FUNCTION CHAINING
Figure 1 compares the IETF SFC architecture and PDP with
embedded SFs. As shown in Figure 1, the IETF SFC archi-
tecture [4] consists of 1) an SFC control plane and 2) an SFC
data plane. The SFC data plane has four SFC entities: an
ingress node (or classifier), service function forwarder (SFF),
SF, and egress node. The ingress node performs classification
to apply an appropriate SFC for an incoming packet according
to the classification rules. Then, the incoming packet is encap-
sulated by adding a network service header (NSH) [2], which
includes two identifiers: 1) a service path identifier (SPI) and
2) a service index (SI). The SPI and SI represent the path ID
of an instantiated SFC and the number of SFs that processed
the packets, respectively. Generally, the initial value of the SI
is set to 255, and the value is decremented by one when the
packet is processed by an SF. According to the SPI and SI,
the SFF creates a forwarding table and forwards the incom-
ing packets to satisfy the SF processing order. For instance,
in Figure 1, the SF processing orders of SFC1 and SFC2 are
defined to [FW — LB] and [FW], respectively. The SPIs
of SFC1 and SFC2 are assumed as 1 and 2, respectively.
VOLUME 9, 2021

https://github.com/jaewook2/FASE

J. Lee et al.: FASE Algorithm in PDP

IEEE Access

A packet of SFCI is classified as an NSH of SPI= 1 and
SI= 255 at the ingress node. The packet is forwarded to FW1
by SFF1, and the SI is decremented by one after processing
at FW1. Subsequently, SFF2 forwards the packet to LB1, and
the SI of the packet will be set to 253 after LB1 processes the
packet. In contrast, a packet of SFC2 is forwarded to FW2
by SFF2. Finally, the egress node decapsulates the received
packets by removing the NSH if they are processed by all the
SFs defined in SFC.

Moreover, the control plane manages the data plane and
constructs paths for the requested SFCs. To construct a path,
the control plane selects the SFs that are involved in the
path. To this end, it determines the SPI to deliver the packets
according to the selected SFs and constructs the paths by
building the packet-forwarding table in the SFFs. As shown
in Figure 1, in the conventional SFC framework, the pack-
ets need to be detoured to be processed by the SFs provi-
sioned on off-path servers, which incurs an inevitable delay
in SFC.

B. PROGRAMMABLE DATA PLANE

The aforementioned detoured path can be avoided by embed-
ding SFs on on-path switches. Moreover, the processing
time of SFs can be significantly reduced because the switch
can provide line-rate processing performance. Owing to
its programming capability for packet processing oper-
ations through high-level and domain-specific languages
(e.g., P4 [11]), SFs can be easily embedded in the PDP
switch with high performance. Moreover, PDP is considered
a promising approach to enable the in-network computing [6].
A representative PDP switch model (i.e., PISA) that general-
izes reconfigurable match-action tables (RMT) [12], has sev-
eral programmable components (i.e., parser, ingress/egress
pipeline, and de-parser). The header fields that the user wants
to process can be extracted and assembled by programming
the parser and de-parser. In contrast, the extracted header field
can be processed using programmed match-action tables in
the pipelines.

Several SFs (e.g., LB [5], cache [7], and FW [8]) have
been implemented based on the PDP switch. The right part
in Figure 1 shows a PDP switch in which an LB and FW are
embedded. Before embedding the SFs, the network operator
writes programs that define how programmable components
process the packets to provide the LB and FW functions.
For instance, to define an FW, a parser is programmed to
extract the header fields that are inspected (e.g., IP address),
and match-action tables are defined to inspect the extracted
header fields and the appropriate actions (e.g., drop or pass).
In contrast, a de-parser is programmed to assemble the
extracted headers. Based on the written program, the LB
and FW are embedded, and the packets can be processed
by the embedded LB and FW while passing through the
PDP switch. Compared with the conventional SFC, as shown
in Figure 1, PDP-based SFs can significantly reduce the SFC
completion time because of the high performance of the PDP
switch and the absence of the detoured path.

VOLUME 9, 2021

| @ LCs-based Algorithm

O @ SFC requests

SFC1: FW>NAT= LB
SFC2: LB FW->NAT

Generator
Program of SFS

® program e
Frontend/ Backend Run-time API
Compiler .
=P Processing rﬁ\ ;
=+*® Passing ®F ’{7 om
= X = =
Of | |Embedded LB Embedded FW Embedded NAT Embedded LB
W Oh DFEW. @NAT BLB —
O‘ \V |
LB FW
Ly ©) @ GONAT_ [. i
| |
Parser Pipe‘line Deparser

FIGURE 2. P4SC architecture.

lll. PDP-EMPOWERED SFC APPROACHES

In this section, we analyze recent PDP-empowered SFC
approaches, which can be classified into the redundant SF
approach [9] and re-circulation approach [3], [10].

A. REDUNDANT SF APPROACH
In the redundant SF approach, SF tables are redundantly
embedded in the PDP switch. The processing order of the
requested SFCs can be easily satisfied at the line rate because
of the redundant embedding. Chen et al. [9] proposed a
P4 service chaining (P4SC) framework that allows redun-
dant SF embedding. Figure 2 shows the P4SC framework
consisting of control and data planes. The control plane is
responsible for determining the SFs that will be redundantly
embedded and mapping the requested SFC to the embed-
ded SFs. To this end, PASC employs the longest common
sub-sequence (LCS) based algorithm. In the proposed algo-
rithm, intermediate representation (IR) is generated as an SF
sequence that represents the embedding order and mapping
result. To generate IR, the LCS-based algorithm first extracts
the common SF processing order in the SFC requests and
accordingly determines the embedding order. At this step,
the SFs that do not exist in the common processing order
can be redundantly embedded to satisfy the processing order.
After determining the embedding order, the mapping result is
determined by the processing order of the SFC requests.
The overall procedure for embedding SFs in P4SC is
depicted in Figure 2. First, the control plane receives SFC
requests (i.e., SFC1 and SFC2) from the network operator
(step 1). Then, the converter merges the SFC requests and
generates IR (step 2). In this step, the IR is initially set to
SFC1, that is, the IR is represented as [FW — NAT —
LB]. To insert SFC2 (i.e., [LB — FW — NAT]) to the
IR, the algorithm determines the longest common processing
order as [FW — NAT]. Based on the common processing
order, the first SF (i.e., LB) of SFC2 is inserted at the front
of the IR, which is then updated as [LB — FW — NAT —
LB]. After determining the embedding order, the embedded

6115

IEEE Access

J. Lee et al.: FASE Algorithm in PDP

SFs are mapped to the SFC requests. Thus, the former and
the latter LBs are mapped to SFC1 and SFC2, respectively.
In contrast, FW and NAT are mapped to both SFC1 and
SFC2. Subsequently, the generator embeds the SFs according
to the determined embedding order through the compiler
(steps 3-4). Using the run-time API, the control plane man-
ages the packet processing according to the mapped SFs
(step 5).

P4SC can significantly reduce the SFC completion time
compared with the conventional software-based SFC, as the
packets can be processed according to the requested pro-
cessing orders while passing through the PDP switch [9].
However, inefficient resource usage of the PDP switch cannot
be avoided because of the redundant SF embedding. In addi-
tion, as all the packets should be processed by the embedding
order, the accommodation of a new SFC request cannot be
guaranteed even if the SFs in the requested SFC have already
been embedded. For instance, we assume that SFC3 having
[NAT — FW] is requested at PASC in Figure 2. P4SC
cannot support SFC3 although NAT and FW have already
been embedded because none of the embedding orders can be
matched to [NAT — FW]. In addition, if all the resources of
the PDP switch are fully used, no more SFs can be embedded
to support SFC3. Therefore, supporting diverse SFC requests
and improving the resource usage of the PDP switch are the
remaining challenges of the redundant SF approach.

B. RE-CIRCULATION APPROACH

Most switch ASICs support the packet re-circulation function
to repeat the ingress processing on a packet after completing
the egress processing [11]. Several studies have used the
re-circulation function [3], [10]. As their ideas are almost the
same, we describe the re-circulation approach of the Dejavu
framework proposed in [3].

Figure 3 shows the Dejavu framework with a single
pipeline PDP switch. The main role of the control plane is
to determine the embedding order and the SFCs that need
re-circulation to satisfy the processing order. The overall
procedure is described as follows. First, the control plane
receives SFC requests (i.e., SFC1 and SFC2) from the net-
work operator and maintains the incoming rates of each
requested SFC (step 1). Then, it determines the embedding
order as [LB — FW — NAT] by considering the incoming
rates. In this case, as SFC2 has a higher incoming rate than
SFEC1, the control plane prefers an embedding order that
can support SFC2 without any re-circulation. However, such
an embedding order does not match with the SF processing
order of SFC1; therefore, re-circulations need to be employed
to support SFC1 (step 2). Subsequently, the control plane
embeds SFs to the data plane according to the embedding
order and creates the run-time API to manage the embedded
SFs (step 3). Finally, it manages the embedded SFs and the
re-circulation through the run-time API (step 4).

In the re-circulation approach, arbitrary SF processing
orders can be supported if the requested SFs can be embed-
ded. However, as re-circulation causes a prolonged SFC

6116

O @®SFC requests

QIS SFC1: FWSNATD LB
SFC2: LB FW-NAT

@ Determine
the embedding order
and re-circulation
method

In-coming rates
SFC1 : 1flow/sec
SFC2 : 2flow/sec

Frontend/ Backend Run-time
Compiler API

® hd @ Management -
=P Processing
Embedded LB Embedded FW Embedded NAT === ¥ Passing
O\ @DFW @NAT
O i, [| =,
SO T ' p=iij
in\ @8 QW GNAL R "ﬁ"
= s v 1
Parser Pipeline Deparser

FIGURE 3. Dejavu architecture.

completion time, an embedding order with a lower num-
ber of re-circulations should be determined. For instance,
as SFC1 and SFC2 in Figure 3 have reverse processing
orders, re-circulation is inevitable for either SFC1 or SFC2.
In this case, as SFC2 has a higher incoming rate than
SFC1, the overall SFC completion time can be further
reduced when the packets of SFC2 are processed without
re-circulation. To summarize, an embedding order that min-
imizes the SFC completion time needs to be determined,
and the under-utilization of PDF switch resources should be
avoided.

IV. FLOW-AWARE SERVICE FUNCTION EMBEDDING
ALGORITHM

In this section, we propose the FASE algorithm to minimize
the SFC completion time while providing efficient resource
usage. We first present the underlying system architecture
and formulate an optimization problem to find the optimal
embedding strategy. Subsequently, we provide the details and
an illustrative example of FASE.

A. ARCHITECTURE OF FASE

Figure 4 shows the architecture of FASE consisting of a
control plane and a data plane. In the control plane, the SFC
manager (SFCM) and PDP manager (PDPM) collaboratively
operate to support all the requested SFCs. In detail, the SFCM
maintains the incoming rates of the requested SFCs and
requests appropriate SF embedding from the PDPM. In addi-
tion, it manages the embedded SFs to process packets accord-
ing to the SF processing order. To manage the embed-
ded SFs, the SFCM determines identifiers (i.e., SPI and
SI) for SFCs and inserts the determined identifiers as the
match key in the embedded SF tables. Moreover, it manages
the re-circulation operation for each SFC by interacting
with the SFF table in the PDP switch via the run-time APL
On the other hand, the PDPM is responsible for embedding
the SFs and mapping the requested SFCs to the embedded
SFs. To this end, it solves an optimization problem using

VOLUME 9, 2021

J. Lee et al.: FASE Algorithm in PDP

IEEE Access

SFC requests

(® manage the SFC

SFC1: FW>NAT= LB / L
SFC2: NATS FW . . .
SFC3: LB NAT Service Function Chain Manager (SFCM)
% maintains SFCs (® Determines (SP1/SI)
Oe::vaz:kr SFC1 : 3flow/sec SFC1: (FW:1/255),(NAT:1/254),(LB:1/253)
P SFC2 : 2flow/sec SFC2: (NAT:2/255),(FW:2/254)
SFC3 : 1flow/sec SFC3: (LB:3/255),(NAT:3/254)
@ Embedding @) Report

Request

v

Mapping result,

Y

Programable Data Plane Manger (PDPM)

Program|of
SFs & SKF

FASE algorithm

® Determine the embedding order (X) and
processing policy (Y)

n
D ass I
bedding SFs according to X AI;

| @
[Frontend/ Backend Compiler }—-[Run-time API] /
—>Pr0ce;sing i i ’ ‘\\ 1
*+® Passing SFC data- plane
A Embedded FW| | Embedded NAT || Embedded LB | [Embedded FW ([SFF,
m e ERE
S ~ DFW ®LB 1 | 252 | Decapu
— m @FW 2 |23 Tolds
- e | IS o
I S ONAT T | Deapaion

FIGURE 4. FASE architecture.

the FASE algorithm.? Then, it embeds the SFs according to
the determined embedding order and notifies the determined

mapping result to the SFCM.
B. DESCRIPTION OF FASE

In FASE, the SFC completion time is considerably affected
by the number of re-circulations, which is determined by
the embedding order of SFs and the mapping result of SFC
requests. Therefore, we formulate an optimization problem
on the embedding order and the mapping result to mini-
mize the number of re-circulations while satisfying the SF
processing order. Specially, we define the objective function

as
Cc fe N N
min ZIC Z Z Z Yk—1,¢,n'Yk,c,n
c=1 k=2n=1n'=n

where C and I, represent the number of required SFCs and

the incoming rate of SFC c, respectively. On the other hand,

fz and N denote the number of SFs in SFC ¢ and the number

of stages in the PDP switch, respectively.® In contrast, ..,

is a binary decision variable to indicate whether the kth SF

in SFC ¢ is mapped to the embedded SF in the nth stage.
N N

Thus, Y > Yk—1.c.wYk,c.n denotes whether a re-circulation

n=1n'=n

is required to process the kth SF in SFC ¢ for the mapping

results (i.€., Yk,c,n and Yx_1,c.n')-

Because of differently requested processing orders and the
limited resource of a PDP switch, we need to consider several
constraints on the embedding order and mapping results.

2The details of the optimization problem and FASE algorithm will be

elaborated in the next sub-section.

3The stage is the resource of the PDP switch for embedding
match-action table.

VOLUME 9, 2021

ey

: NSH

First, since all SF types in the requested SFCs should be
embedded at least once, we define the corresponding con-

straint as
N
sz,n >1, Vs
n=1

where x; , is a binary decision variable to indicate whether
the nth stage is the first one where the SF type s is embedded.
Meanwhile, each stage cannot be simultaneously used by
more than one SF and thus the corresponding constraint is

denoted by
N
Zam <1, Vn
s=1

where aj ;, is an auxiliary binary variable to represent whether
SF s is embedded at the nth stage.

Since each SF requires a different number of stages,
SF should be consecutively embedded over the required
number of stages. The corresponding constraints are defined

@

3)

as
N N
Zas,n =Ty sz,n’ Vs, @
n=1 n=1

and

Xson < Asptl = - oo = Asntre—1s Vs,n <N —ry+1 4

where 7; is the required number of stages to embed SF s. On
the other hand, due to the limited stages of a PDP switch,
the number of used stages to embed SFs cannot be bigger
than the total number of available stages, and thus we have
the corresponding constraint of

S N
Zzas,n <N.

s=1 n=1

(6)

the

6117

IEEE Access

J. Lee et al.: FASE Algorithm in PDP

Finally, each SF in the requested SFCs should be mapped
to one of the stages where the corresponding SF type is
embedded and therefore the corresponding constraints are
represented by

Yk,eon = Xs,n» Vs = k. cs k,c,n, @)

and
N
D Veem =1, Vk.c ®)
n=1

where #; . represents the type of the kth SF in SFC c.

Since the formulated optimization problem is an inte-
ger non-linear programming (INLP) with high complexity,
we devise the FASE algorithm to find out a practical solu-
tion to the formulated problem. The detailed FASE algo-
rithm can be described as follows. The FASE algorithm
first determines the embedding order and mapping result
without any redundant SF and re-circulation to minimize
the SFC completion time under the available resources. At
this step, all the SFC requests are sorted according to their
incoming rates. Subsequently, the SFs in the sorted SFCs
are included in the embedding order, and the SFCs are first
mapped to the included SFs. Note that an SF can be included
only when it does not exist in the embedding order. As
all the SFs are embedded at once, all the requested SFCs
can be supported. However, if several SFs are redundantly
embedded, the SFC completion time can be further reduced.
Thus, if some resources remain, several SFs are redundantly
embedded in the FASE. To reduce the SFC completion time,
it is intuitive to allow redundant SFs for the SFC requests
with high incoming rates. Therefore, after sorting all the SFC
requests according to their incoming rates, redundant SFs are
embedded one-by-one until no resources remain in the PDP
switch. When no more SFs can be embedded owing to limited
resources, the embedding order is determined. In contrast,
if not all SFs in the requested SFCs are not mapped to
the embedded SFs, the remaining SFCs are supported by
re-circulation.

Figure 4 shows an example of FASE with three SFCs:
1) SFC1 of [FW — NAT — LB],2) SFC2 of [NAT — FW],
and 3) SFC3 of [LB — NAT]. SFC1 and SFC3 have the
highest and lowest incoming rates, respectively. As SFC1
has the highest incoming rate, the embedding order is first
determined as [FW — NAT — LB], and the required
SFs of SFC1 are mapped to the embedded FW, NAT, and
LB. At this step, all types of SFs are now embedded in the
PDP switch, and thus FASE needs to determine the SFs that
will be redundantly embedded to the remaining resources.
In Figure 4, as SFC2 has a higher incoming rate than SFC3
and itrequires NAT — FW, an FW is additionally embedded,
and the embedding order is updated as [FW — NAT —
LB — FW]. As no more resources exist in the PDP switch to
embed the other SFs, [FW — NAT — LB — FW]is finally
determined as the embedding order. As this embedding order
cannot support SFC3, re-circulation from the egress port to
the ingress port is allowed for SFC3. To summarize, the PDP

6118

switch can support SFC1 and SFC2 without any re-circulation
while supporting SFC3 only with one re-circulation.

V. EXPERIMENTAL RESULTS

For performance evaluation, we implemented FASE,
P4SC [9], and Dejavu [3] over a representative PDP switch
(i.e., Tofino switch) and compared their average SFC com-
pletion times, 7', and the required resource ratio to the total
resource of the switch, R. Note that as Dejavu does not specify
a detailed algorithm for the embedding order, it is assumed
that its embedding order is determined without redundant SF
embedding after sorting all the SFC requests according to
their incoming rates.

We consider four types of SFCs that have been widely
used in mobile networks and data center networks [9],
[14]. Specifically, SFC1 and SFC2 require [FW —
NAT — L3 routing (L3) — LB] and [LB — FW],
respectively. Whereas, SFC3 and SFC4 require [NAT —
L2 switching (L2) - LB — L3 — FW]and [LB — NAT],
respectively. In addition, we randomly set the incoming rates
of SFC1, SFC2, SFC3, and SFC4 to a value in [1, 2, 3, 4]
mega packets per second (Mpps).

A. REQUIRED RESOURCE RATIO

Figure 5 shows the required resource ratio, R, to support
all the requested SFCs under different numbers of requested
SFCs, n. R > 1 indicates that the switch cannot embed all
the required SFs and only some of the requested SFCs can
be supported. As Dejavu does not allow any redundant SF
embedding, it has the lowest R regardless of n, as shown
in Figure 5. In contrast, the R values of P4SC and FASE
increase apparently as n increases. This is because P4SC
and FASE can redundantly embed SFs. In particular, P4ASC
requires excessive resources to support all requested SFCs,
and thus, its R exceeds 1 when n > 3. That is, P4SC cannot
support all the requested SFCs when n > 3 owing to exces-
sive resource usage. In contrast, FASE utilizes re-circulations
adequately, and therefore, the R of FASE can be bounded to a
value less than 1, regardless of n. In other words, if all the SF
types are embedded at least once, FASE can support all the
requested SFCs by re-circulations.

B. SFC COMPLETION TIME

Figure 5(b) shows the average SFC completion time T as a
function of the number of requested SFCs, n. The average
SFC completion time T is calculated based on the packets
that can be correctly processed according to the SF processing
order.

Regardless of n, it can be observed that the T value
of Dejavu is much higher than those of PASC and FASE.
From Figure 5(b), it can also be observed that the 7 val-
ues of Dejavu and FASE increase with the increase in n.
In particular, the increase in 7 in Dejavu is significant.
This is because Dejavu employs re-circulations to process
the requested SFCs. In this experiment, more SFs need
to be embedded as n increases, and more re-circulations

VOLUME 9, 2021

J. Lee et al.: FASE Algorithm in PDP

IEEE Access

[lpr4sc
[IDejavu
T\ Fase 1

0.8]

0.2 7

0 L L L

n

(a) Required resources ratio, R.

ook L__lpssc
’ [IDejavu
0.8 FI[CIFASE 1

0 L L L

n
(b) SFC completion time, 7"
FIGURE 5. Experimental results.

are triggered in Dejavu accordingly. Although FASE also
employs re-circulations, the impact of n is not as remark-
able as that in Dejavu because FASE also allows redundant
SFs. Moreover, as FASE employs re-circulations for the SFC
requests with a lower incoming rate, the increment of 7' due
to re-circulations can be limited.

As shown in Figure 5(b), when n = 2, FASE has a
slightly lower T than that of P4SC. This is because P4SC uses
the switch resources (for redundant SFs) more aggressively
than FASE, which contributes to an increase in the internal
processing time at the switch. Moreover, for n > 3, FASE
shows an equal or higher T compared with that of P4SC
because FASE cannot avoid several re-circulations under this
situation. However, this result does not indicate that P4SC
outperforms FASE. As demonstrated in Figure 5, PASC can-
not accommodate more than three SFC requests when n > 3
because R exceeds 1. Therefore, the T of P4SC forn > 3
in Figure 5(b) is the averaged SFC completion time of the
requested SFCs except for SFC3. In summary, the reduced
T of P4SC can be achieved only at the expense of increased

VOLUME 9, 2021

resource usage, whereas FASE can balance the reduction of
T and efficient resource usage.

VI. OPEN RESEARCH TOPICS
In this section, we present open research topics for better
embedding of SFs in the programmable data plane.

A. SUPPORT OF COMPLEX OPERATIONS

Since the packets are processed by match-action tables in
PDP instead of the software module on the CPU, the PDP
switches can conduct only limited actions (e.g., count action,
drop action, and modify header field action) [11]. Even
though these actions are sufficient for simple networking
operations (e.g., rewrite a packet header and select an out-
put port) [15], these actions are not suited for more com-
plex network operations of the stateful SFs [15], [16]. To
address this problem, a new machine model called Ban-
zai has been introduced [16]. In Banzai, an atomic unit
for packet processing can persistently modify states on the
switch. In so doing, the stateful operations can be imple-
mented. However, no implementation results of Banzai have
been reported yet. Therefore, further study to develop a
practical solution for complex and stateful operations is
required.

B. OVERCOME OF RESOURCE CONSTRAINT

Due to its limited resources, it is difficult for a single PDP
switch to accommodate a number of SFs [3]. To overcome
this limitation, novel PDP switch architectures, called disag-
gregated reconfigurable match-action table (dARMT) [17] and
table extension architecture (TEA) [18], have been proposed
in the literature.

In the conventional RMT used for commercial PDP
switches (e.g., a Tofino switch), each pipeline stage can use
only its local memory and computation resources, which
leads to poor resource utilization [17]. To improve the
resource utilization, dRMT disaggregates all memory and
computation resources of a PDP switch and make them acces-
sible by any pipelines via a crossbar. Even with its attractive
feature, dRMT has not been yet implemented over commer-
cial PDP switches. On the other hand, in TEA [18], DRAMs
on commodity servers are leveraged to mitigate the resource
constraint issue. In particular, TEA employs remote direct
memory access (RDMA) that achieves low access latency to
external DRAMs without involving any interrupts of the oper-
ating system. Even though dRMT and TEA are promising
solutions to overcome the resource constraint issue, advanced
SFs require more computation/resource-intensive operations,
and therefore how to overcome the resource constraints needs
to be further investigated.

C. PDP VIRTUALIZATION

When an SF is newly embedded in the PDP switch, the exist-
ing service needs to be interrupted to re-configure match-
action tables in the PDP switch. To mitigate the service
interruption time, PDP virtualization (or multi-tenancy) tech-
niques should be supported [19]. Several PDP virtualization

6119

IEEE Access

J. Lee et al.: FASE Algorithm in PDP

techniques have been introduced, which can be classified
into 1) hypervisor-based approach and 2) compiler-based
approach. In the hypervisor-based approach, a special pro-
gram called P4-hypervisor is first embedded to allow multiple
SFs in a PDP switch. Although the hypervisor can provide
flexibility for re-configuration, high processing performance
cannot be guaranteed due to its frequent re-circulation oper-
ations. On the other hand, in the compiler-based approach,
a compiler merges several SF programs to a single configura-
tion file while preventing interference (e.g., shared resource
usage and functionality between the SF programs). In so
doing, the several SFs can be simultaneously embedded with-
out any special P4 program (e.g., hypervisor). This approach
can provide high processing performance; however, it cannot
provide high flexibility since a new SF can be added only at
the compile time [19]. To sum up, current PDP virtualization
techniques cannot provide high performance and flexibil-
ity simultaneously, and therefore further study on the PDP
virtualization is required.

VII. CONCLUSION

In this paper, we proposed the FASE algorithm that com-
bines the redundant SF and re-circulation approaches to
use their advantages. Experimental results demonstrated
that FASE can reduce the SFC completion time by up
to 2% and 33% compared with the redundant SF and
re-circulation approaches, respectively. Furthermore, FASE
utilizes the given switch resource efficiently, and thus, more
SFC requests can be accommodated compared with the
redundant SF approach. Therefore, we believe that FASE
will be a promising algorithm for PDP-empowered SFC and
it will contribute to achieving ultra-low latency services in
future networks. In our future work, we will extend FASE
to network-wide multiple PDP switches while supporting
diverse SFCs.

REFERENCES

[1] J. Halpern and C. Pignataro, Service Function Chaining (SFC) Architec-
ture, document IETF RFC 7665, Oct. 2015.

[2] P. Quinn and J. Guichard, “Service function chaining: Creating a service
plane via network service headers,” Computer, vol. 47, no. 11, pp. 44-238,
Nov. 2014.

[3] D. Wu, A. Chen, T. Ng, G. Wang, and H. Wang, “Accelerated service
chaining on a single switch ASIC,” in Proc. ACM HotNets, Nov. 2019,
pp. 141-149.

[4] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and
T. Magedanz, “Service function chaining in next generation networks:
State of the art and research challenges,” IEEE Commun. Mag., vol. 55,
no. 2, pp. 216-223, Feb. 2017.

[5] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad:
Making stateful layer-4 load balancing fast and cheap using
switching ASICs,” in Proc. ACM SIGCOMM, Aug. 2017,
pp. 15-28.

[6] Y. Tokusashi, H. Dang, F. Pedone, R. E. Soul, and N. Zilberman, “The case
for in-network computing on demand,” in Proc. EuroSys, Mar. 2019,
pp. 1-16.

[7] X.Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“NetCache: Balancing key-value stores with fast in-network caching,” in
Proc. ACM SOSP, Oct. 2017, pp. 121-136.

[8] R. Datta, S. Choi, A. Chowdhary, and Y. Park, “P4Guard:
Designing P4 based firewall,” in Proc. IEEE MILCOM, Oct. 2018,
pp. 1-6.

6120

[9] X. Chen, D. Zhang, X. Wang, K. Zhu, and H. Zhou, ‘“P4SC:
Towards high-performance service function chain implementation
on the P4-capable device,” in Proc. IFIP/IEEE IM, Apr. 2019,
pp- 1-9.

[10] H. Lee, J. Lee, H. Ko, and S. Pack, “Resource-efficient service
function chaining in programmable data plane,” in Proc. EuroP4,
Sep. 2019. [Online]. Available: https://p4.org/events/2019-09-23-euro-p4-
workshop/

[11] The P4 Architecture Working Group. (May 2020). P416 Portable Switch
Architecture (PSA). [Online]. Available: https://p4.org/p4-spec/docs/P4-
16-working-spec.html

[12] P. Bosshart, G. Gibb, H. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for SDNs,” in Proc.
SIGCOMM, Aug. 2013, pp. 99-110.

[13] P. Emmerich, S. Gallenmiiller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A scriptable high-speed packet generator,” in Proc. ACM
IMC, Oct. 2015, pp. 275-287.

[14] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and C. Pignataro,
“Service function chaining use cases in mobile networks,” IETF, Fremont,
CA, USA, Tech. Rep. draft-ietf-sfc-use-case-mobility-09, 2019.

[15] N. Gebara, A. Lerner, M. Yang, M. Yu, P. Costa, and M. Ghobadi,
“Challenging the stateless quo of programmable switches,” in Proc. ACM
HotNets, Nov. 2020, pp. 153-159.

[16] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, and
H. Balakrishnan, ‘“‘Packet transactions: High-level programming
for line-rate switches,” in Proc. ACM SIGCOMM, Aug. 2016,
pp. 15-28.

[17] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S. Chuang, I. Keslassy, A. Orda, and T. Edsall,
Eds., “dRMT: Disaggregated programmable switching,” in Proc. ACM
SIGCOMM, Aug. 2017, pp. 1-14.

[18] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Seshan, “TEA:
Enabling state-intensive network functions on programmable switches,” in
Proc. ACM SIGCOMM, Aug. 2020, pp. 90-106.

[19] S. Han, S. Jang, H. Choi, H. Lee, and S. Pack, “Virtualization in pro-
grammable data plane: A survey and open challenges,” IEEE Open J.
Commun. Soc., vol. 1, pp. 527-534, Apr. 2020.

JAEWOOK LEE received the B.S. degree from
the School of Electrical Engineering, Korea Uni-
versity, Seoul, South Korea, in 2014, where he
is currently pursuing the M.S. and Ph.D. degrees
(integrated course). His research interests include
6G mobile networks, distributed computing, feder-
ated learning, network automation, programmable
data planes, service function chaining (SFC), and
in-network computing.

HANEUL KO (Member, IEEE) received the B.S.
and Ph.D. degrees from the School of Electri-
cal Engineering, Korea University, Seoul, South
Korea, in 2011 and 2016, respectively. He is cur-
rently an Assistant Professor with the Department
of Computer Convergence Software, Korea Uni-
versity, Sejong, South Korea. From 2016 to 2017,
he was a Postdoctoral Fellow of Mobile Network
and Communications with Korea University. From

B 2017 to 2018, he was with the Smart Quantum
Communication Research Center, Korea University, and a Visiting Post-
doctoral Fellow with The University of British Columbia, Vancouver, BC,
Canada. His research interests include 5G networks, network automation,
and mobile cloud computing.

VOLUME 9, 2021

J. Lee et al.: FASE Algorithm in PDP

IEEE Access

HOCHAN LEE (Graduate Student Member, IEEE)
received the B.S. degree from Korea Univer-
sity, Seoul, South Korea, in 2018, where he is
currently pursuing the M.S. and Ph.D. degrees
(integrated course). His research interests include
federated learning, programmable data planes,
service function chaining (SFC), and in-network
computing.

-

PEN

VOLUME 9, 2021

SANGHEON PACK (Senior Member, IEEE)
received the B.S. and Ph.D. degrees in com-
puter engineering from Seoul National University,
Seoul, South Korea, in 2000 and 2005, respec-
tively. He joined the Faculty of Korea University,
Seoul, in 2007, where he is currently a Professor
with the School of Electrical Engineering. His
research interests include softwarized network-
ing (SDN/NFV), 5G/6G mobile core networks,
mobile edge computing/programmable data plane,
and vehicular networking. He was a recipient of the IEEE ComSoc APB
Outstanding Young Researcher Award in 2009, the Haedong Young Scholar
Award from the Korean Institute of Communications and Information Sci-
ences (KICS) in 2013, the Joint Award for IT Young Engineers Award from
the IEEE/Institute of Electronics and Information Engineers (IEIE) in 2017,
and the Young Information Scientist Award from the Korean Institute of
Information Scientists and Engineers (KIISE) in 2017. He served as the
Publicity Co-Chair for the IEEE SECON 2012, the Publication Co-Chair
for the IEEE INFOCOM 2014 and ACM MobiHoc 2015, the Track Chair
for the IEEE VTC 2020-Fall/2010-Fall and the IEEE CCNC 2019, and the
TPC Vice-Chair of the Information Systems for the IEEE WCNC 2020.
He is an Editor of the IEEE INTERNET OF THINGS JOURNAL (IoT), the Journal of
Communications Networks (JCN), and IET Communications. He is a Guest
Editor of the IEEE TraNsacTIONS ON EMERGING Topics IN CompuTING (TETC)
and the IEEE TrANSACTIONS ON NETWORK SCIENCE AND ENGINEERING (TNSE).

6121

