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ABSTRACT Traffic classification is widely used in various network functions such as software-defined
networking and network intrusion detection systems. Many traffic classification methods have been pro-
posed for classifying encrypted traffic by utilizing a deep learning model without inspecting the packet
payload. However, they have an important challenge in that the mechanism of deep learning is inexplicable.
A malfunction of the deep learning model may occur if the training dataset includes malicious or erroneous
data. Explainable artificial intelligence (XAI) can give some insight for improving the deep learning model
by explaining the cause of the malfunction. In this paper, we propose a method for explaining the working
mechanism of deep-learning-based traffic classification as a method of XAI based on a genetic algorithm.
We describe the mechanism of the deep-learning-based traffic classifier by quantifying the importance
of each feature. In addition, we leverage the genetic algorithm to generate a feature selection mask that
selects important features in the entire feature set. To demonstrate the proposed explanation method,
we implemented a deep-learning-based traffic classifier with an accuracy of approximately 97.24%. In
addition, we present the importance of each feature derived from the proposed explanation method by
defining the dominance rate.

INDEX TERMS Traffic classification, deep learning, explainable artificial intelligence (XAI), genetic

algorithm.

I. INTRODUCTION

With the proliferation of Internet-connected devices and vari-
ous Internet services, it is important to control the tremendous
traffic volume in an efficient manner. Traffic classification
can be used to control various types of traffic in software-
defined networking (SDN) or to detect malicious traffic in
network intrusion detection system (NIDS) [1]. In the case of
SDN, QoS management is important to mitigate the burden
of the entire network and to fulfill the requirements of each
type of service [2]. As the Internet services are more diverse,
It is important to give each Internet service the differen-
tial QoS. Dynamic QoS can provide the differential QoS
by subdividing the QoS class to support a more elaborate
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QoS. In addition, because numerous devices are connected
to the Internet, the importance of technologies for detecting
and defending against various attacks that may occur on the
network has been emphasized. NIDS works as a core function
in network security by detecting attacks such as the denial of
service (DoS) attack based on traffic classification.
Traditional traffic classifications (TCs) are usually based
on a payload-inspection, which is called a payload-based TC.
A payload-based TC directly inspects the payload of packets
and matches the pre-defined patterns. Although a payload-
based TC shows a high performance, there are two critical
problems. One problem is that payload-based TC cannot
inspect the encrypted payload. Because secure communica-
tion schemes such as SSH and TLS encrypt the payload,
the payload-based approaches cannot inspect the payload
scrambled by the encryption scheme. Another problem is
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that inspecting the payload of packets requires enormous
computational resources.

A flow-behavior-based TC has been proposed to address
critical problems of a traditional TC. A flow-behavior-based
TC is based on machine-learning technologies that can rec-
ognize patterns without inspecting the payload. In a flow-
behavior-based TC, the machine-learning model learns var-
ious statistical features appearing in the network, such as
the inter-arrival time or packet size. The statistical features
show differences in each application because the network
applications use different protocols and the patterns of behav-
ior vary for each application user. Consequently, a flow-
behavior-based TC has advantages that can operate within
the encrypted traffic and satisfy the requirements of mission-
critical applications requiring low latency.

However, there is a severe challenge to a flow-behavior-
based TC that occurs based on the nature of machine-
learning. The black-box problem is derived from the
difficulty of explaining the results of the machine-learning
model. With a lack of reliability of the results, the black-box
problem has become a crucial issue in machine-learning [3].
As a crucial vulnerability owing to the black-box problem,
a flow-behavior-based TC can be compromised by a black-
box adversarial attack [4]. In a black-box adversarial attack
scenario, an attacker deceives the machine-learning model by
injecting adversarial perturbations, which is a type of noise,
in the input data. When the compromised data are given to
the machine-learning model, a serious attack scenario can
occur by misclassifying the data. For example, in a case of
traffic classification, an attacker can hijack high-priority QoS
from victim traffic, such as the QoS of an autonomous driving
application, which requires low latency [5]. The adversarial
application can acquire high-priority QoS, which is supposed
to be guaranteed for mission-critical applications. Conse-
quently, the resources for applications that require high-
priority QoS can be exhausted and no further normal oper-
ations of mission-critical applications are available without
proper QoS requirements.

Detecting abnormal data in the dataset can produce
significant clues for network engineers to improve the traffic
classification model based on machine-learning. Explainable
artificial intelligence (XAI) is a technology that describes
the way machine-learning models operate [6]. Traditional
machine-learning models work by comparing distributions
of training and test dataset by formulating metrics such as
the distance or score. After sufficient training, these met-
rics build the classification criteria formed as hyper-planes
that distinguish data. For example, the mechanism of tra-
ditional machine-learning models such as a decision tree
and support vector machine can be explained by visualiz-
ing or formulating classification criteria [7]. By contrast,
explaining the mechanism of deep learning is more difficult
than that of a traditional machine-learning model. Because
deep learning models are based on multi-layer perceptrons
and are trained by simply updating the parameters defined
to each neuron, it is difficult to define a certain score or
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distance used to compare hyper-planes and data. Therefore,
explaining the mechanism of deep learning is more difficult
than explaining that of traditional machine-learning. Eventu-
ally, flow-behavior-based approaches also face the black-box
problem along with the introduction of deep learning in traffic
classification.

We propose a dominant feature selection method to explain
how the proposed deep learning-based traffic classifier oper-
ates. We define a fitting score as a feature importance quan-
tification and create a feature selection mask that finds the
optimal trade-off between the high classification accuracy
and a reduction of the unnecessary features based on a genetic
algorithm. A genetic algorithm is an evolutionary algorithm
that can solve the various NP-hard problems such as the
traveling salesman problem (TSP) or the design of very
large scale integration (VLSI). Finally, we describe the deep-
learning-based traffic classifier by defining a dominance rate
indicating the extent to which each deep learning model refers
to each feature. In conclusion, the proposed method has two
technical contributions.

o We propose a dominant feature selection method using
a genetic algorithm to explain how the deep-learning-
based traffic classifier operates. In particular, the pro-
posed method can determine which part of the entire
feature the classifier focuses on by quantifying the
importance of each feature.

« We implement the flow-behavior-based traffic classi-
fier as the evaluation method that classifies the traf-
fic and produces the accuracy to compute the fitting
score. Although the proposed method also works well
in any granularity of the types of traffic, we implement
a service-specific traffic classification model to figure
out the characteristics of internet services.

The rest of this paper is organized into four sections.
Related works on traffic classification and XAl are intro-
duced in Section II. The construction of deep-learning-based
traffic classifier and dominant feature selection method are
introduced in Section III. Experimental results and a perfor-
mance evaluation are presented in Section IV. An analysis
of how the traffic can be classified into each service is also
described in Sub-section c of Section IV. Finally, we provide
some concluding remarks in Section V.

Il. RELATED WORKS

A. FLOW BEHAVIOR-BASED TRAFFIC CLASSIFICATION

The most crucial issue of recent studies in traffic classifica-
tion is to classify the encrypted traffic. Directly inspecting
the payload was a barrier to encrypted traffic classification.
Behavior statistics became a clue for classifying encrypted
traffic because the statistics can be extracted without inspect-
ing a scrambled payload. Flow-behavior-based approaches
enable encrypted traffic to be classified by leveraging the
behavior statistics. The authors of [8] introduced three repre-
sentative encryption mechanisms of traffic and extracted the
statistics from the encrypted traffic. Moreover, they evaluated
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the performance of several machine-learning algorithms such
as a support vector machine, random forest, naive Bayes,
logistic regression, and neural networks. They presented the
practicality of flow-behavior-based approaches by evaluating
various machine-learning technologies.

With the significant advances in deep learning, many stud-
ies on traffic classification have adopted its strengths. The
core advantage of deep learning over traditional machine-
learning technologies is to enable the classifier to automati-
cally extract features from the raw data. The authors of [9]
adopted a convolutional neural network (CNN) for traffic
classification. Representation learning is a method used to
automatically extract features from raw data and the CNN is
a typical method of representation learning in deep learning.
The convolution layer enables a CNN to extract the local
features from the raw data. The authors integrate feature
extraction and training by leveraging the advantages of the
CNN. In [10], the authors evaluated the two different types of
typical deep learning models, a CNN and a recurrent neural
network (RNN). An RNN is designed to handle sequential
data such as time-series data. Several types of statistics can
present the time-related nature, and the authors deal with the
time-related statistics using an RNN. The authors of [11] pro-
posed a deep learning-based traffic classification scheme for
mobile encrypted traffic. The authors suggested that traffic
classification schemes using a manually extracted feature set
for mobile traffic generated by a moving target are imprac-
tical. In addition, they address the limitations of traditional
traffic classification schemes by leveraging the advantages of
deep learning, which can automatically extract the feature set.

Although deep learning shows an incredible performance,
introducing deep learning directly can result in a deterio-
rated performance. Revising and applying a novel model
is necessary because of the nature of features shown by
behavior statistics. In [12], the authors described an issue in
which many studies on deep learning-based traffic classifi-
cation have usually adopted all the features equally without
considering the type of statistics. The authors reflect the
multimodality of behavioral statistics using a multimodal
deep learning model. Consideration of traffic generated by
anonymity tools (ATs) was introduced in [13]. Because
it becomes important to preserve the privacy of users on
the Internet, several ATs have been developed, including
Tor. Consequently, several malicious usages of ATs produce
crucial issues. The authors proposed an AT-specific traffic
classification by leveraging a hierarchical classification that
enables an efficient fine-grained tuning. The authors of [14]
proposed a traffic classification scheme using a hierarchi-
cal classification. Flow-behavior-based approaches have a
disadvantage in that they cannot classify unknown traffic
classes because of the nature of machine-learning. More-
over, increasing the granularity of the traffic class exacer-
bates the classification performance. The authors compose
the sub-classifier hierarchically based on the granularity of
the traffic class. In [15], the authors addressed a problem in
which an unknown traffic class cannot be classified using
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meta-learning. Deep learning needs sufficient dataset for the
fine-tuning when an unknown traffic class appears. However,
it is difficult to collect a sufficient dataset of an unknown traf-
fic class. Few-shot learning, namely meta-learning, enables
deep learning to train the relationship of each data.

B. EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI)
Explainable artificial intelligence (XAI) techniques have
been studied to demonstrate the mechanism of the machine-
learning model. In [6], the authors proposed the concept of
explainable artificial intelligence (XAI), and devised a novel
explainable model that allows the machine learning model to
derive such classification results based on the feature subset
of the input data. In [16], the authors visualized the impor-
tant features that are used for classifying certain input data
and explained why the deep learning model can recognize
such data. To explain this, the authors proposed a sensitivity
analysis (SA) that explains the impact of the transition of
each pixel. Moreover, the authors also proposed layer-wise
relevance propagation (LRP), which explains the importance
of each pixel. In [17], the authors proposed EXPLAIN-IT, a
framework that explains how to cluster an unlabeled YouTube
traffic dataset acquired from the network using an unsuper-
vised learning technique. EXPLAIN-IT explains the clus-
tering method using LIME, which selects the feature most
relevant to a specific decision from the input data. Hence,
the key feature selection can explain why the deep learn-
ing model classifies the data. In [18], the authors describe
the relationship between the input and output by inserting
artificial perturbations in certain features. The input-output
relationship can provide some interpretation rules for black-
box predictors such as deep learning. Neural image caption
generation with a visual attention scheme is proposed in [19].
The authors extracted the key features in the image using
convolutional feature extraction. The extracted features are
used to train the RNN for image captioning. During this
procedure, the attention mechanism implemented through a
convolutional feature extraction can highlight an important
part of the image.

TABLE 1. The comparison of existing studies on XAI.

Methods

Importance of features

Key feature selection in unsuper-
vised learning

Inserting artificial perturbation
Attention mechanism

Ref. | Objectives
[16] Image classification

[17] Traffic classification

[18] Image classification
[19] | Image caption generation

Table 1 describes the comparison of existing studies on
XAI Many studies on XAI aim to explain the machine
learning model for image classification. However, the traf-
fic classification problem has different characteristics from
the image classification problem. In the image classification
problem, all elements of the data have the same semantic
such as RGB color value. The attention mechanism proposed
in [19] selects a feature subset by detecting an object from
data composed of pixels having the same meaning. In the
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traffic classification problem, the dimension of the data is
smaller than that of the image data. In addition, since each
element of the data has different meanings, a feature selection
method that can reflect all of these characteristics is required.
We designed a dominant feature selection method that is
suitable for the low-dimensional behavioral statistics based
on a genetic algorithm.

ill. THE PROPOSED METHOD

The overview of the proposed dominant feature selection
method is illustrated in Figure 1. The proposed method con-
sists of two parts: (1) the construction of a traffic classifier,
and (2) dominant feature selection. The traffic classifier is
designed by a residual network (ResNet), which is known
as a state-of-the-art deep learning technique [20]. The traffic
classification applies data pre-processing and training step.
The data pre-processing step collects packets from traffic
flows and extracts the statistical features of each flow. After
the pre-processing step, in which the traffic dataset is created,
the traffic classifier is trained using the dataset composed of
statistical features.

After the classifier is trained, the proposed dominant fea-
ture selection method generates a feature selection mask
based on a genetic algorithm. The dominant feature selection
conducts a mask selection and an offspring mask generation.
The mask selection evaluates the masks by counting the zero-
elements and calculating the accuracy using a masked input
dataset and a pre-trained classifier. After the evaluation, with
the mask selection picks a few masks are chosen using a
roulette wheel selection method for the mask creation of the
next generation. With the roulette wheel selection method, the
probability of selecting the masks with a higher fitting score is
higher than the others. The offspring mask generation creates
a mask pool using the selected masks and gives variety to the
mask pool through a crossover and mutation. The mask pool
generated by the offspring mask generation is inherited by the
next generation. After the iteration of two steps, the feature
selection masks for each service are made and the masks are
used to pick the features necessary to classify each service
from all statistical features. Finally, we analyze the mecha-
nism of the traffic classifier by computing the importance of
each feature using the feature selection masks.

A. THE CONSTRUCTION OF A TRAFFIC CLASSIFIER

The construction of a traffic classifier consists of three steps:
packet gathering, data pre-processing, and classifier training.
The packet gathering step collects packets and groups them
by the traffic to construct the training dataset. Because most
packets are encrypted, a packet itself cannot be used as a train-
ing dataset, although the grouped packet dataset that shares
the same end-to-end network address such as the IP address or
TCP port number is needed. The packets in a grouped dataset
may serve the same application service because they have the
same application source, and such packets form a network
flow. The packets in a network flow have a similar behavior,
which is represented by the statistical features such as the
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Algorithm 1 Procedure of Traffic Classification

Require: Training packet trace P collected with short time
duration, the traffic flow F composed of packets p;, the
function Q(F) returning the 5-tuple of the flow F.

Ensure: Pre-trained traffic classifier.

. D<o
2: Q ={Q(F1), QF2), ..., QUFN)}
3: Perform clustering packets in P by 5-tuple set 2 to form

a bidirectional flow set {F, F», ..., Fy}

fori=1— Ndo

t < U {re) — (o)

s = {sk|sk is packet size of packet py, 1 < k < n}
Compute total bytes b in the flow

Compute feature vector by using traffic flow statistical
features

® DR

Y = [mg My g ot mg Ms jug 05 1 b]

9:  Compute reverse directional feature vector ¥

10: - xi= [y, ¥l
11:  Detect the application layer /; by the packet gathering

step
122 D« DU{(xj, [;)}
13: end for

14: Normalize dataset D

15: fori =0 — N do

16:  Pick (xi,1;) € D

17:  for j = 0 — number of ResNet layers do
18: e =X

19: x; := batch_normalization (x;)
20: x; := ReLLU (x;)

21: x; := convolution (x;)

22: Xi=e+x;

23:  end for

24:  Calculate the loss between the result of ResNet and
l;, and backpropagate the gradient of the loss to the
model.

25: end for

packet size and inter-arrival time. After gathering packets
from a network flow, the data pre-processing step computes
the statistical features from the group of gathered packets.
Finally, the classifier training step trains the deep-learning-
based classifier using the dataset. Algorithm 1 shows the
procedure of the construction of a traffic classifier.

1) PACKET GATHERING

The packet gathering step is represented in lines 2 and 3 of
Algorithm 1. To create a dataset using statistical features,
the packets should be gathered from the various application
sources first and then grouped by a network address. The flow
F is defined as a 5-tuple Q2(F) that contains five elements: the
source IP address, source port number, destination IP address,
destination port number, and transport layer protocol [21]. In
general, if the packets have the same 5-tuple information in
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Pre-trained
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P2 P1
.

—

# of zeros
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P2 P

.

X 2]

Pre-trained
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P2 P1

e —
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Crossover,  Fitting score

mutation K = Aypy + A0
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Crossover,  Fitting score
mutation K = 11/71 + '12!72
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Crossover,  Fitting score

mutation K = A;p; + A0,

Truncation Truncation R Truncation .
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individuals individuals individuals
[E1E] [ HEBH
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sorted by x i-th generation sorted by k i-th generation sorted by k i-th generation £
------ Dominant Feature Selection (Service 1) === === Dominant Feature Selection (Service 2) ===~ «+-:« Dominant Feature Selection (Service 8) =++#

FIGURE 1. An overview of the traffic classification and dominant feature selection.

a certain TCP session duration, they are in the same flow.
Most of the packets in a network flow that shares the same
5-tuple can be considered to serve the same application ser-
vice because the application server provides one application
service using one port number. Therefore, the packets in a
flow that shares the same 5-tuple may have a similar behavior
in the network, as shown by similar statistical features. The
traffic classifier uses a bidirectional flow set that is composed
of both F and its reverse directional flow F because most
network architectures apply a server-client communication
approach. Note that Q(F) is the function returning the 5-tuple
of the flow F.

2) DATA PREPROCESSING

The data pre-processing step computes the statistical features
of the bidirectional flow set shown in lines 4-14 of Algorithm
1. The behaviors of the packets in the network are repre-
sented as statistical features, which are mainly revealed by
the inter-arrival time, packet size, number of packets, and
number of bytes [21]. Although the packets are encrypted,
the packets serving the same application layer protocol have
unique behaviors, and the protocols that serve a similar type
of service show similar behaviors. For example, instant mes-
saging services can cause bursty traffic, which can be shown
in the statistical features such as a relatively short inter-arrival
time and packet size. Therefore, the deep-learning-based traf-
fic classifier can classify packets by service regardless of
encryption by learning the distribution of statistical features
that are different for each service. The traffic classifier uses
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bidirectional flow features and extracts 20 types of features,
as shown in Table 2.

TABLE 2. Statistical flow features.

[ Features

Description [ Value |

The maximum, minimum, av-
erage, standard deviation of | 8
packet sizes in a flow.

The maximum, minimum, av-
erage, standard deviation of | 8
inter-packet time in a flow.
Total number of packets in a

Packet Size

Inter-Arrival Time

Packets q 2
ow.
Bytes "ggtsl amount of bytes in a 2

Data preprocessing involves feature extraction and service
labeling. The former part aims to extract features from the
flow F = {p1, p2,Pp3,...,Pn}, where F has n packets and
pi is the i-th packet. Because we deal with a bidirectional
flow, the features of the reverse direction flow F are also
needed. Therefore, 10 types of statistical features in one
direction can be extracted, and there are 20 types of features
in one bidirectional flow composed by F and F. In flow F,
we compute statistical features such as the inter-arrival time
and packet size as follows:

« Statistical features: minimum, maximum, average, stan-

dard deviation are computed from the behavior vector

f=[fifafs ... fi] as follows.
min {f1, f2, ..., fx}, M = max{f1,f2, ...

1< 1<
;Zﬁ’ Uf:zZ(fi_Mf)2

i=1 i=1

Sk

mg =

g =

VOLUME 9, 2021



S. Ahn et al.: Explaining Deep Learning-Based Traffic Classification Using a Genetic Algorithm

IEEE Access

where mg, Mg, (g, and of are the minimum, maximum,
average, and standard deviation of elements of f, respec-
tively. Note that the standard deviation is the sample
standard deviation.

o The inter-arrival time: Arrival time of one packet is
measured using UNIX time 7(p). The inter-arrival time
features between two packets are computed as follows:

ti =t(pi) — T(Pi-1)

The behavior vector of the inter-arrival time is t =
[t1 1 ... t,—1]. Thus, four types of statistical features
can be computed, i.e. m¢, My, (i, and oy.

o The packet size: the payload length field in the IP header
gives the packet size feature. The DPI can look into the
packet and search fields of the IP header. Therefore, the

behavior vector of the packet size is s = [s1 52 ... 8]
and four types of statistical features are computed: my,
Ms, ps, and o.

Finally, the input vector x is composed as follows:

Y = [mg Mgy oy ms Mg s o5 n b]
x=[y ¥l

Note that ¥ and v are input vectors of F and F, respectively.

3) TRAINING CLASSIFIER

Before training, we need to conduct additional pre-processing
steps, i.e., normalization and reshaping, because the deep-
learning-based traffic classifier has to accept the two-
dimensional input. The deep-learning-based traffic classifier
is designed based on the architecture of a CNN, which is
one of the most broadly used deep learning models, and is
mainly used for image classification. The main idea of a CNN
is to extract the local features from two-dimensional input
data using kernels that extract the different local features.
Statistical features are suitable for the method of extracting
local features because those are composed of several features
that appear in one feature. For example, the statistical fea-
tures of the inter-arrival time in one direction are represented
by four features such as minimum, maximum, average, and
standard deviation. The input data should be normalized as
[0, 1] to avoid biases because the domain of each feature is
different. The input vector is reshaped to a matrix that can
be used for the input of the CNN. Note that the rectified
linear unit (ReLU) is used as the activation function, which
is formulated as ReLU(x) = max(0, x). In addition, batch
normalization is also used for regularization in each convolu-
tion layer. To adjust the capacity of our model, we also use
the architecture of the residual network (ResNet) which is
one of the models with the highest performance among the
deep learning architectures [20]. To utilize complex data, a
larger capacity model should be used to avoid the overfit-
ting problem, and the deep-learning-based traffic classifier
applies a ResNet model to allow the use of complex input
data.
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B. DOMINANT FEATURE SELECTION
We proposed a dominant feature selection method to explain
how the deep learning model classifies traffic. In classifica-
tion problems, there are key elements within the data that are
the basis for classification. For example, in natural language
processing (NLP), the subject and verb are the key elements,
and the others are qualifiers used to explain them in the
word tokens. Utilizing data with too many or unnecessary
components for training may cause a higher complexity of
the model. In fact, data with many components may lead to
a higher accuracy. In other words, the classification accu-
racy also decreases because low-dimensional data have less
information for the decision. Therefore, there is a trade-off
between the classification accuracy and dimensions of the
data, and the classifier needs a dimension-reduction tech-
nique that maximizes the accuracy.

We propose a dominant feature selection method based on
a genetic algorithm as a dimension reduction technique. The
aim of the proposed method is to find the optimal feature
selection masks, minimizing the number of selected features
and maximizing the classification accuracy. Hence, we for-
mulated the objective function as a linear combination of
two factors, namely, the number of masked elements and the
classification accuracy. Here, p; is the number of dropped
features and pp is the classification accuracy. Moreover,
we maximize p; because maximizing the number of dropped
features is equal to minimizing the number of selected fea-
tures. This problem is formulated as follows:

maximize Ajp;+ A202
p1

subjectto o1 =0,1, ..., Lyask

0<pm=1
MA+r=1
0<xm=<10=x1m=1

where A; and A, are the weights of p; and p,, respectively,
and are hyper-parameters that should be set beforehand. In
addition, p is an integer from zero to Lk, Where Ly 1S the
total number of features. Note that p; should be normalized
in [0, 1] because p; is an integer and p; is a decimal value
with the domain of [0, 1].

It is difficult to maximize the objective function because
p1 is an integer. Moreover, p, can differ even if the number
of zeros is the same mask because the positions of the zero
components in the mask determines the key component of
the data for classifying the traffic. In other words, it can be
difficult to maximize the objective function using optimiza-
tion methods that simply adjust p;. Therefore, the proposed
method finds the feature selection masks using a genetic
algorithm, which can maximize the accuracy by considering
the position of the zero components. A genetic algorithm
is a meta-heuristic algorithm inspired by inheriting the best
chromosomes through the generations to allow the fittest to
survive. With the proposed method, the chromosomes are
considered as the feature selection masks, and the algorithm
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generates a mask pool to maximize the objective function.
Based on the algorithm, the proposed method generates an
optimal feature selection mask that selects the least number
of features without significantly compromising the classifi-
cation accuracy.

The feature selection method is conducted as several itera-
tions consisting of two steps, namely, best mask selection and
offspring mask generation. The best mask selection step eval-
uates the fitting score of the parent masks and selects a few of
the best masks through a roulette-wheel selection. After mask
selection, the offsprings are created through a crossover and
mutation. The optimal masks are created through sufficient
iterations of the above steps toward a maximization of the
objective function represented by the fitting score. Note that
the fitting score is an indicator that represents the optimality.
Algorithm 2 shows the entire procedure of the feature selec-
tion.

1) BEST MASK SELECTION

The best mask selection aims to pick a few best feature selec-
tion masks leaving the next generation. The genetic algorithm
defines the chromosome with several genes composed of
binary encoding for the expression of solutions. The proposed
feature selection mask is presented as a chromosome shown
as a binary string. The elements of the mask represented by
genes choose the important features, as indicated by a "1" and
remove the other features, as indicated by a "0". Therefore,
the optimal feature vector x is computed as the element-wise
multiplication of the optimal feature selection mask and the
original input vector.

X =6*ox

where x is the original feature vector and 6* is the mask.

During the initial generation, the proposed method ran-
domly creates M chromosomes composing the population
and measures the fitting score. The chromosomes that are
passed to the next generation are selected from the popula-
tion through a roulette-wheel selection. The roulette-wheel
selection is one of the methods used to pass on chromosomes
with high fitting scores to the next generation. To avoid con-
vergence to the local minimum in chromosome exploration,
the method gives all candidate chromosomes a chance to be
passed on to the next generation but gives a high probability
of selection of chromosomes with high fitting scores.

In the i-th generation, the fitting score evaluation and best
chromosome selection are conducted. The proposed method
evaluates the fitting score of chromosomes in the parent
population. The optimal feature selection mask should select
the least number of features to maximize the accuracy. That s,
the optimal masks consider the number of dropped features p;
and classification accuracy p;, which is derived using a pre-
trained traffic classifier. The fitting score « is formulated as
the objective function to be maximized. The proposed method
computes the fitting score « as follows:

Kk =A1p1+ A202
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Algorithm 2 Procedure of Dominant Feature Selection

Require: Pre-trained traffic classifier, flow statistical feature
dataset x, the weight of dropped feature numbers A1, the
weight of classification accuracy X,, the number of whole
generation N, the number of individuals in a population
M.

Ensure: Optimal feature selection mask 6* of a service.

1: Randomly generates the initial population 8y.

2: fori=0— N —1do

3: Ki=O

4: forj=1—->Mdo

5: Pick a individual 9[’ from the i-th generation popu-

lation 6;.
6: Compute p{, which is the number of zeros in 9{ .
7: x = 6’{ oX
8: Compute the accuracy pé from the pre-trained traf-

fic classifier using x'. .
9: Compute K‘l] = )»1/7; + )ijz
10: ki =Kk; U {K‘l]}
11:  end for
12: Compute best individuals 6; by truncating the popula-
tion based on k;
132 O =9
14: forj=1— Mdo

15: Decide to perform elitism, crossover and mutation
operation in Monte-Carlo manners.

16: if Perform elitism operation then

17: Random}y pick a individual Qil from 6;

18: 0l =6

19: end if

20: if Perform crossover operation then

21: Randomly pick two individuals Gil , 6‘,.2 from 6;

22: Compute 6{ 1 by crossover operation.

23: end if

24: if Perform mutation operation then

25: Randomly pick two individuals Gil, 012 from éi

26: Compute 6/, | by mutation operation.

27: end if )

28: 0i+1 = 9i+1 U { ,'_;,_1}

29:  end for

30: end for

31: 0* =6y

where A1 and A, are the weights of p; and p;, respectively,
and they are hyper-parameters that should be set beforehand.
If p; is high, the number of dropped features is more impor-
tant than the accuracy. The minimum features are selected,
although the accuracy is slightly low. However, if A; is high,
the accuracy is more important and the number of zeros in
the mask is relatively small. Therefore, there is a trade-off
between the number of dropped features and accuracy.

After the measurement of the fitting score, the best
chromosome selection is conducted to select chromosomes
evaluated with high fitting scores through a roulette-wheel
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selection. The population of selected chromosomes consists
mostly of masks evaluated with a high fitting score and is
inherited by the next generation. The masks converged to the
optimal masks that have a high fitting score from sufficient
iterations of the survival of the fittest.

2) OFFSPRING MASK GENERATION

The second step aims to generate offspring masks based on
the selected masks. Basically, offspring masks are generated
by two transformation techniques, i.e., crossover and muta-
tion. These techniques are a process used to explore the entire
possible chromosome pool and find better chromosomes. For
example, if the number of components of the input data is
Lnask, the number of possible masks that can apply the input
data is 2/mesk . When the dimensions of the input data are more
complex, the possible mask pool is exponentially expanded
and the exhausting search method has extreme difficulty
finding the optimal masks.

A crossover is an operation that merges a portion of the
genes of parents. Specifically, a crossover chooses one ran-
dom gene « in the parent chromosomes g1, g2 and separates
each chromosome into two parts g1[0, «], g1 [, 201, g2[0, «],
and g [«, 20], where g[«, B] is a sub-array of array g from «
to B — 1. It swaps parts of g1 and g» as follows:

g1 = &10, a] + g2[a, 20]
g2 = 200, o] + gila, 20]

A mutation is an operation that changes a few genes in a
chromosome. A bit flipping operation is used as the mutation
operation because the proposed method uses binary-encoded
chromosomes.

The proposed method has two hyper-parameters that have
a probability of operating a crossover and mutation, such as
the crossover and mutation rates. It operates a crossover and
mutation with a certain probability, and thus some chromo-
somes have been changed, although some others have been
preserved. Therefore, the proposed method provides opti-
mal feature selection masks in a stochastic manner. Because
offspring mask generation method are based on the genetic
algorithm, they are of a probabilistic nature. In other words,
with the genetic algorithm, a crossover and mutation ran-
domly occur. Consequently, finding better chromosomes and
maintaining the best individuals produces the optimal feature
selection mask.

IV. PERFORMANCE EVALUATION AND EMPIRICAL
ANALYSIS

In this section, we describe the performance of the deep-
learning-based traffic classifier used to evaluate the accuracy,
learning cost. To evaluate the performance of the proposed
method, we carried out numerous experiments using real-
world data.

A. EXPERIMENT SETTINGS
For fair evaluations, the public pcap datasets are used to build
the training dataset. We adopted public pcap datasets from
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TABLE 3. Applications and services for the training dataset.

Services Applications Flows Total
MSN 1,381
Instant messaging E:ckezi)o(;{ikMessenger ?5159 5,940
Jabber 1,119
SMTP 751
IMAP 751
SMTPS 751
E-mail o L 5,546
POPS 751
GMail 751
LotusNote 289
HTTP_Download 731
FTP_Control 731
FTP_DATA 731
File transfer ingc ;g} 5,848
GoogleDrive 731
MS_OneDrive 731
Dropbox 731
Bitcoin mining 1,856
P2P BitTorrent 948 5,193
Gnutella 2,389
SSH 951
RDP 951
Remote access EIIZISC gg } 5,706
Telnet 951
TeamViewer 951
YouTube 1,801
RTSP 1,801
Streaming ?\ffti}t:clLXTV 36‘03 U 5,667
SoundCloud 105
RTP 123
Skype 2,906
SMPP 718
VoIP SIP 1,568 5,563
H323 173
CiscoSkinny 198
Amazon 901
Google 901
Twitter 901
Facebook 901
Web surfing Yahoo 617 5,729
eBay 190
Wikipedia 901
Instagram 104
LinkedIn 313
Total 45,192

ISCX VPN-nonVPN, MACCDC, and WRCCDC, which
have also been frequently used in other studies in traffic
classification and include both encrypted and non-encrypted
packets. Although the public pcap dataset has many packets
that operate various protocols, the number of flows grouped
by packets that share the same 5-tuple is insufficient to train
deep-learning-based traffic classification model. To supply
more training data, we gather the additional pcap data utiliz-
ing the server which generates packets of various protocols
from a campus network. As a result, the entire dataset is
composed of 49 applications, as shown in Table 3. In Table
3, a number column represents the number of flows. We set
the number of data by each service similar to avoid biased
training. Moreover, for practical use, packets of one flow are
gathered for 900 seconds without considering a TCP session
timeout. To create a training dataset, we implemented the
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data pre-processing program using the nDPI library, which
can detect the application. The nDPI is an open-source DPI
library that provides information on both the payload and
header of the packet. Based on the nDPI, we gather informa-
tion about the application layer protocol, IP address, and TCP
port number. Although the public pcap dataset applies the
preassigned labels, we need to assign labels to the additional
dataset collected by our campus networks. We leverage the
nDPI library to assign the additional dataset collected by our
campus networks. After gathering the information, we imple-
mented the rest of the pre-processing program that groups
the packets into the flow and extracts the flow statistics.
The deep-learning-based traffic classifier is implemented
using TensorFlow. The entire experiments are conducted by
a server with an Intel 19-8980XE CPU, 64GB of RAM, and
an NVIDIA GeForce GTX 2080.

B. PERFORMANCE EVALUATIONS OF SERVICE-SPECIFIC
TRAFFIC CLASSIFICATION

For training the deep learning model, we divided the 70% of
the dataset into training dataset and 30% into test dataset, and
all evaluations are based on the test dataset. The parameters
are initialized at random, and a batch normalization layer is
used to mitigate the effort required to regularize the param-
eters by forming a similar distribution in each layer. There
are some hyper-parameters to be tuned before the training,
such as batch size and number of epochs. We found the
two hyper-parameters above through an adequate number of
experiments with a batch size of 300 and 5,000 epochs. More-
over, we conducted experiments by adjusting other hyper-
parameters such as the number of filters in the convolution
layer and the number of layers in the residual block. Note
that one residual block consists of several convolution lay-
ers and batch normalization layers, and the entire model is
constructed by stacking several residual blocks. Figures 2(a)
and 2(b) show the test cost and test accuracy according to
the iterations. We conducted experiments by changing the
number of layers from 4 to 8 and using 64 and 128 filters.
It can be seen that the greater the number of filters and the
number of layers, the higher the classification accuracy, and
the faster the cost convergence. In general, if the data has
a high dimension, a more complex deep learning model is
required [22]. ResNet has an advantage that easily controls
the complexity of the model by tuning the number of residual
blocks and convolution filters. Hence, the model should have
sufficient complexity to adequately describe the dataset by
increasing the number of layers and filters.

Figures 3(a) and 3(b) show the test cost and test accuracy
according to hyper-parameters such as the layers and filters.
As shown in the figures, the model with 128 filters shows
the maximum accuracy and minimum cost. It can be seen
that when the deep learning model is trained by 128 filters,
the classifier can achieve a sufficient performance. Hence,
we use a sufficiently trained model whose numbers of layers
and filters are 16 and 128, respectively.
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The confusion matrix shows how much of the data are
correctly classified and helps to calculate several metrics
such as true positive, true negative, false positive, and false
negative. Figure 4(a) shows the confusion matrix according
to the classes. In the confusion matrix, it can be seen that the
overall classification accuracy of the model is approximately
97.24%. Moreover, the precision, recall, and F1-score of each
service can also be calculated based on the confusion matrix,
as shown in Figure 4(b). Precision is the ratio of the amount
of actual data *A’ from the total amount of data predicted as
’A’, and recall is the ratio of the amount of data predicted
as A’ from the total amount of actual data ’A’. However,
evaluating the performance based on precision and recall may
be complicated because an imbalanced dataset may cause
different trends in the precision and recall. The F1-score is the
harmonic mean of precision and recall, and thus the F1-score
can explain the performance of the model, which has different
trends in the precision and recall.

C. EMPIRICAL ANALYSIS OF SERVICE-SPECIFIC TRAFFIC
CLASSIFICATION

In this section, we analyze how deep-learning-based traf-
fic classifier classifies traffic into services. We conducted
experiments by adjusting the two hyper-parameters, A; and
Az, of the proposed genetic algorithm-based explanatory
method and evaluated the performance according to the
hyper-parameters. Note that we set the sum of A; and Ap
as 1 to fairly measure the effects of both variables p; and
p2. Based on the feature selection masks generated by each
experiment, we define the dominance rate, which represents
the importance of features and analyzes the statistical features
of each service.

Figure 5 shows how the fitting score, accuracy, and num-
ber of dropped features change throughout the generations
depending on the weights A1 and X,. From each service, it can
be observed that, as A; increases, the number of dropped
features increases. At the same time, as A, decreases, the
average accuracy of the mask pool decreases. The first col-
umn is the result in which A; is set to 0.1 and A, is set to
0.9, where the proposed method aims to search for masks
with a higher classification accuracy. Because it is generally
better to have more data for a deep learning model with
respect to classifying the services, a higher accuracy and more
robustness in the classification are shown. The second column
shows the results in which both A; and A, are set to 0.5,
meaning that the approach aims to find masks with both a
higher accuracy and a larger number of dropped features.
It can be observed that the proposed method tends to show
a balanced and complementary behavior between accuracy
and the number of dropped features. The third column shows
that, when A is set to 0.9 and X, is set to 0.1, it indicates
that the proposed method aims to find masks with a larger
number of dropped features, rather than achieving a higher
accuracy. Therefore, the result shows that the number of
dropped features is much higher than that of the other two
results with different weights. However, it shows the lowest
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FIGURE 2. (a) Test cost according to iterations and (b) test accuracy according to number of iterations.
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FIGURE 3. (a) Test cost and (b) test accuracy according to the number of layers and filters.

accuracy result in general. In addition, it can be observed that
the result of a "web surfing" service shows a relatively higher
accuracy even when the weight A is higher and A, is lower.
That is because a web surfing service is a generic class and
therefore has more general characteristics than other specific
services, it allows the deep learning model to require much
fewer features to classify the "web surfing" than the other
services.

Figure 6 shows the fitting score, accuracy, and number
of dropped features in the last generation of the proposed
method. From each service, it can be observed that the aver-
age accuracy and number of dropped features are dependent
on the weight values A1 and A;. The fitting scores tend to be
higher when the weight A is higher because it requires less
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exploration when finding masks with more dropped features.
By contrast, when A, is higher, relatively lower fitting scores
are shown because a much more thorough exploration is
required to find the proper masks with higher accuracy.

In general, the CNN model operates the classification pro-
cess by collecting several local features. It is important to
discover key features that are used as criteria used for the
deep learning model to classify. The XAl is an explanatory
method that describes how the deep learning model can clas-
sify the characteristics of a certain object by extracting the
key features such as eyes, nose, and ear [16]. We found the
key features of the flow by designing the dominant feature
selection method based on a genetic algorithm as a method of
the XAl We applied the proposed dominant feature selection
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FIGURE 4. (a) Confusion matrix according to traffic classes (the ratio of predicted results to the true traffic class). (b) Precision, recall, and F1-score
according to each service. Services 1-8 are as follows: (1) instant messaging, (2) E-mail, (3) file transfer, (4) P2P, (5) remote access, (6) streaming, (7)

VolIP, and (8) Web surfing.
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FIGURE 5. Fitting score, accuracy, and number of zeros per generation for 3 services: email, remote access, and web surfing. The X-axis indicates the
generations. The Y-axis on the left indicates the fitting score and accuracy. The Y-axis on the right indicates the number of zeros, which equals to the

number of dropped features.

method by changing the hyper-parameters such as the weight
of the dropped features A and the accuracy A;. We defined
the dominance rate to illustrate the extent to which each
feature is dominant in classifying the traffic. The dominance
rate is defined according to the proportion of the number of
selected key features to the number of features in the entire
experiment as follows:

K
I=—x100, 0<K <N,
N
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where [ is the dominance rate of each feature, and K repre-
sents the number of times a key feature is selected in each
experiment. The experiment was conducted starting from X
at 0.1, and A was gradually increased by 0.1, until reaching
0.9. Then, X, is determined depending on A1, starting from
0.9 to 0.1, making A1 + Ap = 1. Consequently, the entire
experiments were conducted 10 times and N was set to 10.
Figure 7 shows the dominance rate of each statistical flow
feature for each service.
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Service e Mm@ | e @ | o | a1 | (| as3) | 4 | as5) | as) | 7 | (18) [ (19) | (20)
Chat 22% | 11% | 39% | 37% | 33% 24% | 23% 24% | 14% | 27% | 41% [ 37% | 34% | oo 12% | 53%
Email 54% | 30% | 8% | 52% | 26% 56% | 38% | 56% | 36% | 119 | 3% [EE 54% | 2% [Seel| 38% | 0%

File Transfer | 57%& | 12% | Zo 0000 34% 56% | 0% | 6% | 22% | 4% | 41% | 22% [t 14%
P2P 7% | 38% | 49% | 22% | 48% UL 13% | 26% [ 38% [ 9% | 0% | 5¥% | 0% | 2%

Remote Access| 27% | 27% | 13% m 36% 1% | 13% | 379% | 46% | 229 | 53% | 3% ([ 0% | 24%
Streaming 16% | 24% | 509 | 0% | 19% [ 14% | 22% | 22% | 0% | 11% | 28% | 23% | 0% Gl 3% | 0% | 2%

VolP 12% | 18% | 26% | 119% | 14% | 6% | 34% | 21% | 0% | 0% | 14% | 39% | 22% | 0| 44% | 22% | 26%

Web 1% | 1% | 22% | 22% | 1% [11% [ 11% | 0% | 0% | 0% | 7% | 11% | 279% | 21% | 39% | 9% | 41%

FIGURE 7. Importance of features for each service. Note that (1) is the number of packets, (2) is the amount of bytes, (3), (4), (5). and (6) are the
minimum, maximum, average, standard deviation of inter-arrival time, respectively, and (7), (8), (9), and (10) are the minimum, maximum, average,
standard deviation of packet size, and (11), (12), (13), (14), (15), (16), (17), (18), (19), and (20) is the features of reverse direction, respectively.

It can be seen that the deep-learning-based traffic classifier
does not classify traffic into a service using all features,
but classifies it using only specific features. We conducted
nine experiments by changing the A and A, and averaged
the results of the experiments. When the proposed method
completes a sufficient number of iterations, it generates 200
feature selection masks of each service for one experiment
and picks the top-10 masks, wihch achieve the highest accu-
racy. Figure 7 shows the dominance rate for each statistical
feature that affects the accuracy. If the dominance rate is
high, it can help increase the classification accuracy or fitting
score, namely, it can be a candidate for the key feature.
Otherwise, these features have less influence on the traffic
classification, and thus they can be candidates of unnecessary
features. A dominance rate of 100% implies that the classifier
always uses the features to classify the traffic into the service,
namely, the feature is used as the core feature of the service.
Because the 0% dominance rate implies that the feature does
not affect the classification, it indicates that the feature is
irrelevant for classification.
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To measure how much each feature contributes to the
classification accuracy, we define the elimination threshold
and measure the accuracy of each elimination threshold. If
the dominance rate of a feature is lower than the elimina-
tion threshold, the feature is removed. Figure 8§ shows the
accuracy according to the elimination threshold. As the elim-
ination threshold increases, the number of features removed
increases, and thus the overall classification accuracy tends
to decrease. Because features with a low dominance rate are
simply removed through the elimination threshold, the cor-
relations between features are not considered. Consequently,
when removing a feature that is related to other features,
a fluctuation that temporarily decreases the accuracy may
occur. In the case of the "instant messaging” class, the rela-
tionship between the number of removed features and accu-
racy has a monotonous decrease, which means that there is
little correlation for each feature. In the case of the "web
surfing" class, there may be slight fluctuations in accuracy,
although the overall accuracy does not decrease significantly
as the number of removed features increases because most of
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FIGURE 8. Test accuracy according to the elimination threshold of the dominance rate. The X-axis indicates the elimination threshold. The Y-axis
indicates the accuracy in the measurements using features having a dominance rate of a certain threshold or higher.

the features have a low dominance rate. Most of the services
have several key features, although the "web surfing" class
has few candidates. In other words, the deep learning model
of our method tends to classify traffic that it cannot classify
into the "web surfing" class. This can be explained by the
fact that the traffic of "web surfing" services tends to show
a universal property that represents the general behaviors
of Internet services. For example, most Internet services are
based on the hyper-text transfer protocol (HTTP), and thus the
traffic of a "web surfing" service based on HTTP can show
various behaviors in the network. Therefore, all of the other
traffic that does not show the specific behaviors of the other
services can be classified into the "web surfing" class, which
is regarded as a generic class. By contrast, there are many
correlations between features, and thus a fluctuation in the
accuracy can frequently occur.

V. CONCLUSION

In this study, we proposed a explanatory method of the deep-
learning-based traffic classifier based on a genetic algorithm.
Further, we implemented the deep-learning-based traffic
classifier based on the ResNet model for demonstrating the
proposed explanatory method. We designed the dominant
feature selection method as a explanatory method based on
a genetic algorithm to generate an optimal feature selection
mask. The proposed explanatory method generates the opti-
mal feature selection masks by grafting the deep-learning-
based traffic classifier’s result onto the evaluation of the
chromosome in a genetic algorithm. The feature selection
masks are used to extract the key feature subset from the
entire feature set by considering the trade-off between the
classifier’s accuracy and the number of unnecessary fea-
tures. We conducted several experiments for reflecting the
stochastic property of a genetic algorithm and computed the
importance rate through the feature selection masks. Through
the importance rate, we explained the mechanism of the
deep-learning-based traffic classifier by investigating the key
features of each Internet service. In the future, we plan to
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design a key feature selection algorithm for finer-grained
application-specific traffic classifiers. In addition, we will
improve the convergence speed of the genetic algorithm to
enable real-time key feature selection.
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