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ABSTRACT This paper proposes a two-stage stochastic energy management (EM) in an isolated microgrid
(MG) to decide for the day-ahead optimal dispatch. The dispatch aims to effectively manage the MG power
sources, including intermittent renewable energy sources (RESs), battery energy storage systems (BESSs),
and diesel generators such that the expected operation costs, reactive power costs, spinning reserve, and load
shedding are minimized. The Generative Adversarial Networks (GANs) is utilized in this paper as a data
driven scenario generationmethod tomodel the uncertainties in the output power of the RESs to be used in the
stochastic programming formulation. Then, the fast forward scenario reduction algorithm is used to reduce
the number of scenarios with the help of SCENRED/GAMS software. Usually, fuel consumption costs of
diesel generators are considered to be dependent on active power generation only. However, neglecting the
related reactive power costsmight result in increased operation costs and deviations in the dispatches from the
optimal solutions. Hence, this paper co-optimizes the costs related to both active and reactive powers of diesel
generators. In addition, this study considers the reactive power capability of inverter-interfaced distributed
energy resources (DERs). Moreover, the detailed models for the different resources are presented, especially
for diesel generators where the actual capability curves are used instead of the widely used box constraints.
The problem is formulated as a nonlinear programming problem in the General Algebraic Modeling System
(GAMS) software and is solved by the CONOPT solver.

INDEX TERMS Stochastic optimization, energy management (EM), active/reactive power dispatch, gener-
ative adversarial networks (GANs), microgrids (MGs), renewable energy sources (RESs), distributed energy
resources (DERs), battery energy storage systems (BESSs), load shedding, reactive power capability curves,
uncertainty.
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BESSs Battery Energy Storage Systems
DERs Distributed Energy Resources
EC Expected Costs
EM Energy Management
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NOMENCLATURE
INDICES AND SETS
�i
g Set of generators connected to bus ‘‘i’’

�i
l Set of lines connected to bus ‘‘i’’

gεG Diesel Generator
i,jεI Indices for buses
L Set of lines
tεT Time slots in hours ‘‘h’’
xi Type of load at bus ‘‘i’’ that can be shed

(residential and commercial)

CONSTANTS AND PARAMETERS
α Load shedding percentage ε {0, 25, 50, 75,

100}
θij Phase angle of line ‘‘ij’’
ηch, ηdis Charging and discharging efficiency of

BESSs
1t Duration of a time slot ‘‘t’’ in hours ‘‘h’’
∅ Rated power factor angle of generator
9l Power factor angle of different loads
πs Probability of scenario ‘‘s’’
ag, bg,cg Active power cost coefficients of diesel

generators
a′g,b

′
g,c
′
g Reactive power cost coefficients of diesel

generators
Cd Diesel fuel cost $/L or $/gal
Emax Max induced EMF of synchronous gener-

ator ‘‘V’’
Pg,max Max active power of generator ‘‘g’’
Pg,min Min active power of generator ‘‘g’’
Pchi,max ,P

ch
i,min Max and min charging power of BESSs at

bus ‘‘i’’
Pdisi,max Max discharging power of BESSs at bus

‘‘i’’
Pdisi,min Min discharging power of BESSs at bus

‘‘i’’
PPV ,forecasti,t Forecasted PV power connected to bus ‘‘i’’

at time ‘‘t’’
PW ,forecasti,t Forecasted WT power connected to bus

‘‘i’’ at time ‘‘t’’
Rup,maxg Max spinning reserve capacity for genera-

tor ‘‘g’’
Rdn,ming Min spinning reserve capacity for genera-

tor ‘‘g’’
Sg,rating VA rating of Generator ‘‘g’’
Sij,max Max VA rating capacity of line ‘‘ij’’
Sij,min Min VA rating capacity of line ‘‘ij’’
SOC i,max Max state of charge of BESSs connected to

bus ‘‘i’’
SOC i,min Min state of charge of BESSs connected to

bus ‘‘i’’
Vc,max Max converter voltage ‘‘V’’
VDER DERs voltage ‘‘V’’
Vi,max ,Vi,min Max and min bus voltage ‘‘V’’
Vt Synchronous generator terminal voltage

‘‘V’’

VOLLxi Value of lost load cost ‘‘$/kWh’’ for load
type ‘‘x’’

X Reactance of transformers and grid filters
‘‘�’’

Xs Synchronous reactance of synchronous
generator ‘‘�’’

Zij Impedance of line ‘‘ij’’,‘‘�’’

FIRST STAGE VARIABLES
δi,t , δj,t Voltage angle of bus ‘‘i’’ or ‘‘j’’ at time ‘‘t’’
PDER,t DERs active power scheduled dispatch at

time ‘‘t’’
For RESs (PV, Wind): PDER =

PPV , schi,t or PW ,schi,t

For BESSs: PDER = Pdis,schi,t − Pch,schi,t
Pij,t Active power flow through line ‘‘ij’’ at time

‘‘t’’

Pch,schi,t Scheduled BESSs active power charging at
bus ‘‘i’’ & time ‘‘t’’

Pdis,schi,t Scheduled BESSs active power discharging
at bus ‘‘i’’ & time ‘‘t’’

Pli,t Active load at bus ‘‘i’’ at time ‘‘t’’

PPV , schi,t Scheduled PV active power at bus ‘‘i’’ and
time ‘‘t’’

QDER,t DERs reactive power scheduled dispatch at
time ‘‘ t’’
For RESs (PV, Wind): QDER =

QPV , schi,t or QW ,schi,t

For BESSs: QDER = QBESS,schi,t
Qg,t Scheduled Reactive power of generator‘‘g’’

at time ‘‘t’’
Qij,t Reactive power flow through line ‘‘ij’’ at

time ‘‘t’’

QBESS,schi,t Scheduled BESS reactive power at bus ‘‘i’’
& time ‘‘t’’

Qli,t Reactive load at bus ‘‘i’’ at time ‘‘t’’
QPV , Schi,t Scheduled PV reactive power at bus ‘‘i’’ and

time ‘‘ t’’
QW ,schi,t Scheduled Wind reactive power at bus ‘‘i’’

and time ‘‘ t ’’
Rupg,t Scheduled up spinning reserve for generator

‘‘g’’ at time ‘‘t’’
Rdng,t Scheduled down spinning reserve for gener-

ator ‘‘g’’ at time ‘‘t’’
Sij,t Apparent power flow through line ‘‘ij’’ at

time ‘‘t’’
SOCi,t Scheduled State of charge of BESSs at bus

‘‘i’’ and time ‘‘t’’

SECOND STAGE VARIABLES
δi,t,s, δj,t,s Voltage angle of bus ‘‘i’’ or ‘‘j’’ at time ‘‘t’’

at scenario‘‘s’’
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PDER,t,s DERs active power dispatch at time ‘‘t’’ at
scenario‘‘s’’
For RESs (PV, Wind): PDER =

PPVi,t,s or P
W
i,t,s

For BESSs: PDER = Pdisi,t,s − P
ch
i,t,s

Pij,t,s Active power flow through line ‘‘ij’’ at time
‘‘t’’ at scenario ‘‘s’’

Pchi,t,s BESSs active power charging at bus ‘‘i’’ &
time ‘‘t’’ & scenario ‘‘s’’

Pdisi,t,s BESSs active power discharging at bus ‘‘i’’
& time ‘‘t’’ at scenario ‘‘s’’

PPVi,t,s PV active power at bus ‘‘i’’ and time ‘‘t’’ at
scenario ‘‘s’’

PWi,t,s wind active power at bus ‘‘i’’ and time ‘‘t’’
at scenario ‘‘s’’

Plshi,t,s Active load shed at bus ‘‘i’’ & time ‘‘t’’&
scenario‘‘s’’ (= 0 for industrial load)

QDER,t,s DERs reactive power dispatch at time ‘‘t’’
at scenario ‘‘s’’
For RESs (PV, Wind): QDER =

QWi,t,s or Q
PV
i,t,s

For BESSs: QDER = QBESSi,t,s
Qg,t,s Reactive power of generator ‘‘g’’ at time

‘‘t’’ at scenario ‘‘s’’
Qij,t,s Reactive power flow through line ‘‘ij’’ at

time ‘‘t’’ at scenario ‘‘s’’
QBESSi,t,s BESSs reactive power at bus ‘‘i’’ & time

‘‘t’’ at scenario ‘‘s’’
QPVi,t,s PV reactive power at bus ‘‘i’’ and time ‘‘t’’

at scenario ‘‘s’’
QWi,t,s Wind reactive power at bus ‘‘i’’ and time ‘‘

t ’’ at scenario ‘‘s’’
Qlshi,t,s Reactive shedding at bus ‘‘i’’ , time ‘‘t’’ &

scenario ‘‘s’’ (= 0 for industrial load)
rupg,t,s Up reserve deployment for generator ‘‘g’’

at time ‘‘t’’ at scenario ‘‘s’’
rdng,t,s Down reserve deployment for generator

‘‘g’’ at time ‘‘t’’ at scenario‘‘s’’
Sij,t Apparent power flow through line ‘‘ij’’ at

time ‘‘t’’ at scenario ‘‘s’’
SOCi,t,s State of charge of BESSs at bus ‘‘i’’ and

time ‘‘t’’ at scenario ‘‘s’’

I. INTRODUCTION
Uncertainty in power systems has a significant impact on the
optimal decisions in both the planning and operation stages.
The uncertainty has tremendously increased due to the high
penetration levels of renewable energy sources (RESs) and
increased load demands seeking for luxurious welfare with
environmental concerns. Uncertainty in modern power sys-
tems comes from various sources such as load variations, fail-
ure of components, intermittent behavior of RESs, and energy
price changes. Classical optimization techniques that prove
to be accurate under deterministic conditions fall insufficient

in computational ability in the microgrid (MG) environment
due to the wider range of uncertainties in the decision vari-
ables of MGs. In system operation, it is more complicated to
handle uncertainties than in the planning stage. Furthermore,
the impact of uncertainties in MGs is higher than that of
the conventional power systems due to the small size of
the MG which indicates that even small variations would
have a salient influence on the MG operation. Neglecting the
influence of the uncertainty can negatively affect the total
operation schedule such that the final optimal solution may
not be the best operating condition [1].

The classical approach to handle uncertainty in power
systems is adding spinning reserve that can be utilized when
needed. However, this method may not be secure as under-
estimated reserve leads to reliability issues while overesti-
mation may result in increased costs. Stochastic optimiza-
tion has a huge literature in uncertainty modeling in power
systems applications. Uncertain parameters in stochastic pro-
gramming are usually represented by scenarios. Each sce-
nario can be seen as a plausible realization of the stochastic
variable. However, large number of scenarios is required
to perfectly represent the stochastic variables which may
lead to intractability and computational complexity problems.
Therefore, scenario reduction is required to solve this prob-
lem in the expense of some information loss. Hence, in this
paper, stochastic optimization is utilized to account for uncer-
tainties in RESs as it is considered the most common method
for uncertainty handling in a wide range of applications such
as operation research, finance, economics, and engineering as
well as its advantages compared to the other methods [2].

Day-ahead energy management (EM) in MGs is widely
studied in the literature in order to optimally manage the
limited power sources to supply its load demands in the most
techno-economical way over a certain time scale. In [3], EM
model was proposed for an isolated MG with unbalanced
conditions and a novel linearization approach was proposed.
Whereas in [4], an EM model with demand response was
derived with a smart load estimator in an isolated MG. While
in [5], EM model was implemented to minimize the oper-
ation costs and emissions for different operating strategies.
Also, in [6], dynamic programming was derived to solve the
EM problem in MGs to reduce costs and emissions. In [7],
EM was used in a high RESs penetration MG to reduce
energy cost, power fluctuations, peak load, and emissions
while maximizing the reliability. A centralized EM model
was utilized in [8] for an isolated MG considering the three-
phase model to study its effect on optimal operation of the
MG. In [9], a mixed-integer linear programming model for
the optimal EM of residential MGs, modeled as unbalanced,
three-phase system was presented. Also, in [10], a power
quality constrained optimal EM for three phases residential
MG was developed in the transition mode between grid-
connected and islanded operation to minimize the operation
costs considering the outage of the main grid.

In the above studies, the uncertainties from RESs were not
considered which may affect the optimal dispatch and the
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calculated operation cost results. On the other hand, many
works have taken RESs uncertainties into consideration. For
example, in [11], a stochastic-predictive EM was proposed
in an isolated MG to account for uncertainty in the RESs
power forecast. While in [12], stochastic EM model was pre-
sented in a grid connected MG to minimize a multi objective
function of costs and emissions with demand response. The
work in [13] proposed a stochastic scheduling for an MG to
minimize the expected operation costs and power losses while
considering the intermittent behavior of RESs. The authors of
[14] developed a stochastic scheduling scheme with demand
response for an MG. Whereas in [15], the economic analysis
and EM of an MG with different battery storage technologies
with different characteristics were presented while consid-
ering the market price and load uncertainties. Finally, in
[16], the stochastic optimizationwas decomposed into several
deterministic sub problems, whose solutions were aggregated
using simulations and a cost based rule. Although in the afore-
mentioned studies, uncertainties in RESs were considered
in the EM model but the contribution of the reactive power
from inverter interfaced distributed energy resources (DERs)
was not considered. This leads to loss the opportunity to
gain benefits from the reactive power capability of DERs that
use power electronic converters. The optimization of reactive
power from DERs to allow for ancillary services such as
voltage support and reduction of power losses was considered
in [17], [18] however, these studies did not consider the costs
related to the reactive power of diesel generators. Therefore,
optimal dispatch results will be affected and errors in the
calculated total operation costs will occur. In addition, most
of these studies solved the optimal power flow (OPF) problem
either for the active power dispatch or the reactive power
dispatch, [12]–[18]. Some studies took the costs of reactive
power into account when solving the reactive power dispatch
problem, [19], [20]. However, the active power dispatch was
not considered. Simultaneous active/reactive power dispatch
in the EM problem can lead to accurate operation decisions
compared to the separate dispatch for active power or reactive
power when executed alone.

In stochastic optimization, the optimization solution is
based upon the scenario values and probabilities so the sce-
nario generation method is vital to achieve realistic results.
Many of the previous researches focused on the model based
scenario generation methods that first attempt to fit probabil-
ity distributions, then uses Monte Carlo Simulation (MCS)
as in [16], [21]–[23] or Latin Hyper cube Sampling (LHS)
as in [24], [25] to sample from these probability distributions
and generate scenarios. The probability distributions are not
guaranteed to be accurate in representing the uncertain vari-
ables. Whereas in [26], [27], copula methods were utilized
in the scenario generation process. However, it is hard to
capture the temporal and spatial dynamics of RESs power
profiles depending only on the first and second statistics
when using copula methods. Another scenario generation
method is the auto regressive moving average (ARMA) that
is used to generate scenarios of RESs power profiles from

the time series [28]. Furthermore, auto regressive integrated
moving average (ARIMA) can be used to generate RESs
scenarios for stochastic scheduling of a resilient MG [29].
Although the use of time series has the advantage of its sim-
plicity for implementation, it is prone to misidentification of
patterns [30].

Recently, machine learning approaches have been uti-
lized in RESs scenario generation as they better capture the
intermittent characteristics of renewables compared to cop-
ula or time series methods [30], [31]. In [32], [33], neural net-
work models were trained to either provide time series power
generation or occurrence probability of the RESs power sce-
narios. Compared to copula or time series approaches, these
machine learning algorithmsmay better capture the nonlinear
dynamics of RESs. But all of these techniques rely on the
careful selection of input features which makes them difficult
to be used in practice. Recently, generative adversarial net-
works (GANs) are gaining a great interest in machine learn-
ing and computer vision because they give accurate results
and can learn the distribution of the historical data without
any modeling [30], [31]. In [30], [31], GANs were used to
generate high quality RESs scenarios which correctly capture
the rapid variations and randomness in RESs and proved that
the generated scenarios have the same visual and statistical
properties as historical data.

Based on the previous review, reactive power costs from
conventional generators were usually neglected for simplifi-
cations which might lead to unexpected costs in the operation
of the MG. Moreover, the uncertain behavior of RESs is a
critical issue in MG operational planning, and thus, must
be modeled accurately. Therefore, this work investigates the
impact of the diesel reactive power costs on the overall oper-
ation costs. Additionally, the impact of utilizing the reactive
power capability of inverter interfaced DERs on the operation
costs is studied. Hence, in this paper, a stochastic energyman-
agement approach in an isolated MG is proposed based on
network-constraint multi-period AC OPF. The isolated MG
has a variety of power/energy sources; including diesel gen-
erators, wind turbines (WTs), photovoltaic (PV) systems, and
battery energy storage systems (BESSs). Therefore, the main
contributions in this paper compared to the previous literature
can be highlighted as follows:

• A two-stage stochastic optimization is proposed for
solving the network-constraint multi-period day-ahead
energy management problem in an isolated MG to
decide for the optimal dispatch and the expected re-
dispatch in the operation stage. The objective is to
minimize the total operational costs which include
active/reactive power costs, reserve cost, and load shed-
ding cost while considering the uncertainties from RESs
output powers.

• Reactive power costs from diesel generators are consid-
ered and are co-optimizedwith active power costs to give
a complete picture of the total operation costs with joint
active/reactive power dispatches.
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FIGURE 1. Generative Adversarial Network (GAN) Architecture.

• The reactive power capability of the inverter-interfaced
DERs like wind, PVs, and BESSs with consideration
of the capability curves of the inverters is taken into
account.

• Generative Adversarial Networks (GANs) technique is
utilized as a model-free scenario generation method to
model RESs uncertainties. This technique avoids the
disadvantages of the model based techniques as it does
not require specifying models or fitting probability dis-
tributions. Then, the fast forward scenario reduction
algorithm is used to reduce the number of scenarios to
provide a more tractable model.

• Detailed modeling of the synchronous diesel generators
by the consideration of their capability curves not just
the widely used box constraints to provide a realistic
behavior of these generators.

The rest of the paper is organized as follows. Section two
presents the modeling of RESs uncertainties. Thus, in this
section, the GANs approach is described to generate RESs
scenarios and the scenario reduction technique is also dis-
cussed. Section three provides the detailed problem formu-
lation of the two-stage stochastic EM model. Section four
presents the description of the MG test system while
Section five provides the results and discussions. Finally,
the conclusions are outlined in Section six.

II. UNCERTAINTY MODELING OF RENEWABLE ENERGY
RESOURCES
The uncertainty modeling of RESs in the stochastic program-
ming framework requires two processes, first the scenario
generation process and second the scenario reduction process
as follows:

1) RENEWABLE ENERGY SCENARIO GENERATION VIA
GENERATIVE ADVERSARIAL NETWORKS (GANs)
In stochastic programming, uncertain variables are character-
ized by scenarios as mentioned before. To generate scenarios
for the output power of RESs using GANs, the historical
data of RESs power profiles are used as inputs to the GANs.
The distribution of the historical data of RESs power pro-
files is unknown and hard to be modelled. Suppose a noise
vector input with a known distribution that is easily sampled
from (e.g., Gaussian) is obtained. The aim is to transform

a sample drawn from this known distribution such that it
follows the historical data distribution (without ever learning
the real data distribution explicitly). This can be achieved by
simultaneously training two deep neural networks (DNNs);
the generator network and the discriminator network, Fig. 1.
During each training period, the generator updates its weights
to generate ‘‘fake’’ samples trying to ‘‘fool’’ the discriminator
network, while the discriminator tries to tell the difference
between the real historical samples and the generated sam-
ples. After the training finishes, the generator can identify
the distribution of the real data so that the discriminator
cannot distinguish whether a scenario came from the genera-
tor or from the historical data. Therefore, the generated sce-
narios are indistinguishable from the real historical data, and
become as realistic as possible. More technical details about
GANs are explained in [30], [31]. The general architecture of
GANs is shown in Fig. 1.

2) SCENARIO REDUCTION VIA FAST FORWARD SELECTION
(FFS)
In this paper, fast forward selection (FFS) algorithm is used
to reduce the number of generated RESs power scenarios
extracted from GANs to reduce the intractability of the prob-
lem when a large set of data is used [34]–[36]. The FFS
method is the best algorithm when comparing accuracy and
it is recommended if the number of preserved scenarios is
small (strong reduction) [34]–[36]. The reduction algorithms
employ a certain probability distance between the original
and the reduced set of the generated scenarios. The probabil-
ity distance trades off scenario probabilities and distances of
scenario values. Therefore, elimination will occur if scenarios
are close or have small probabilities. Themost common prob-
ability distance utilized in the literature is the Kantorovich
distance [34]–[36]. FFS starts with empty scenario tree then
every iteration the scenario that minimizes the Kantorovich
distance between selected and initial set is selected. Then the
distance between each non-selected scenario and the selected
scenarios is calculated and the scenario that has the minimum
distance is selected and the sets of selected and non-selected
scenarios are updated. This process is repeated till it ends
when the specified number of selected scenarios is reached.
Then the probabilities of each non-selected scenario are
transferred to its closest selected scenario. Finally, a reduced
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scenario tree with associated probabilities is obtained to be
used in the stochastic EM model instead of the original RESs
power scenarios set.

III. TWO-STAGE STOCHASTIC ENERGY MANAGEMENT
PROBLEM FORMULATION
The problem objective function aims to minimize the
expected system total operation costs, which include both the
cost related to the day-ahead dispatch and the expected cost of
the anticipated balancing actions to be taken during the actual
operation of the MG. In the first stage, the scheduled day-
ahead power dispatch for diesel generators, RESs, and BESSs
are decided without considering the uncertainties. In the sec-
ond stage, the re-dispatch of the previously scheduled units
and load shedding are executed after considering the uncer-
tainties which are represented by the different scenarios.

In this paper, for diesel generators, there are two types
related to reserves that need to be considered:
• Scheduling and allocation of reserves in the first stage:

how much capacity has to be allocated for each day.
The MG operator must ensure that an adequate amount
of reserve is kept in generators to face the unpredictable
variability of RESs generation.

• Deployment or use of reserves: how the scheduled
reserves are utilized in each time period (hourly) as
the RESs uncertainty is revealed, which is executed in
the second stage.

A. PROBLEM OBJECTIVE FUNCTION
The objective is to minimize the day ahead total
active/reactive operation costs in the first stage in addition
to the expected re-dispatch and the load shedding costs in the
actual system operation i.e. the second stage as follows:

Minimize EC = C1 + C2 + C3 (1)

where

C1=Cd ∗ {
∑

tεT

∑
gεG

[(agP2g,t

+ bgPg,t+cg)+bg(RUPg,t +R
DN
g,t )]},

C2=Cd ∗
∑

tεT

∑
gεG

[a′gQ
2
g,t + b

′
gQg,t + c

′
g]}, and

C3=
∑

sεS
πs[Cd ∗

∑
tεT

∑
gεG

bg(r
up
g,t,s − r

dn
g,t,s)

+

∑
tεT

∑
iεI

(VOLLxi ∗ P
lsh
i,t,s)]

The fuel cost is a function of the fuel consumption and it
is given by the first term in the objective function. Usually,
fuel consumption data in (L/h) or (gal/h) at 25%, 50%, 70%,
and 100% of the diesel generator power rating is given by
the manufacturer. Based on this data, the fuel consumption
characteristics can be fitted to a quadratic polynomial func-
tion of the active power output and the cost coefficients can
be obtained [20]. The scheduled reserve fuel cost is assumed
to be linear and added to the fuel costs in the first term. The
reactive power costs are given in the second term. The reactive
power cost coefficients are related to their corresponding

active power cost coefficients by: a′g = agsin2∅, b′g =
bgsin∅, c′g = cg [19], [20].
The third term of the objective function is the second stage

expected cost and is composed of two sub terms; the expected
deployed reserve costs and the expected load shedding costs
depending on each scenario. Where, VOLL is a metric which
estimates the cost per unit energy not delivered to consumers.
It represents the price consumers would be willing to pay to
avoid disruptions [37].

B. FIRST STAGE PROBLEM CONSTRAINTS
These are the constraints pertaining to the first stage (schedul-
ing stage) and involving the first stage variables. These con-
straints do not depend on the scenarios.

1) FIRST STAGE EQUALITY CONSTRAINTS
These constraints include the active and reactive power bal-
ance at each bus, the active, reactive, and apparent power flow
through lines, BESSs state of charge (SOC), and preventing
the simultaneous charging/discharging of the BESSs for each
time slot.

• Active power balance for each time slot and at each bus:∑
gε�ig

Pg,t + P
W ,sch
i,t + PPV ,schi,t +Pdis,schi,t − Pch,schi,t − Pli,t

=

∑
jε�il

Pij,t (2)

• Reactive power balance for each time slot and at each
bus :∑

gε�ig
Qg,t + QW .schi,t + QPV ,schi,t +QBESS,schi,t − Qli,t

=

∑
jε�il

Qij,t (3)

• Active power flow through lines for each time slot:

Pij,t=
V 2
i,t

Zij
cosθij−

Vi,t ∗ Vj,t
Zij

cos (δi,t−δj,t+θ ij) (4)

• Reactive power flow through lines for each time slot:

Qij,t=
V 2
i,t

Zij
sinθij−

Vi,t ∗ Vj,t
Zij

sin(δi,t−δj,t+θ ij) (5)

• Apparent power flow through lines for each time slot:

S2ij,t = P2ij,t + Q
2
ij,t (6)

• BESSs state of charge for each time slot and at each bus:

SOC i,t = SOC i,t−1+(P
ch,sch
i,t ∗ ηch−P

dis,sch
i,t /ηdis)∗1t

(7)

• Prohibiting BESSs charging and discharging at the same
time for each time slot and at each bus:

Pch,schi,t ∗ Pdis,schi,t = 0 (8)
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2) FIRST STAGE INEQUALITY CONSTRAINTS
These constraints involve the capability curves and the
spinning reserve limits for diesel generators, inverter inter-
faced DERs capability curves, RESs scheduled power limits,
BESSs SOC limits, BESSs charging and discharging power
limits, line capacity limits, and bus voltage limits for each
time slot.
• Diesel generator active and reactive power limits for

each time slot (Generator capability curves) [38], [39]:
a) Prime-mover limits for each time slot:

Limits on the mechanical power input from the prime-
mover impose constraints on the active power genera-
tion and scheduled reserve.

Pg,t + RUPg,t ≤ Pg,max (9)

Pg,t − RDNg,t ≥ Pg,min (10)

b) Armature current limits for each time slot:
The armature current results in copper losses leading
to increased temperature in armature windings and the
surrounding environment. This encounters a limitation
on generator maximum current flowing in the arma-
ture without overheating. The apparent power rating is
related to the armature current and the terminal voltage
of the generator.

P2g,t + Q
2
g,t
≤ S2g,rating (11)

c) Field current limits for each time slot:
A maximum limit on the value of the field current is
imposed by the heating in the field winding due to
copper losses in the field circuit.

P2g,t + (Q
g,t
+
V 2
i,t

Xs
)
2

≤ (
Emax ∗ Vi,t

Xs
)
2

(12)

• Spinning reserve limits of each generator for each time
slot:

0 ≤ RUPg,t ≤ R
up,max
g (13)

0 ≤ RDNg,t ≤ R
dn,max
g (14)

• Inverter interfaced DERs’ capability curves for each
time slot and at each bus:
In this paper;WTs, PV systems, and BESSs are assumed
to have inverter interface with the MG so that reactive
power as well as active power could be supplied accord-
ing to the inverter capability curves. It is possible to
represent the constraints based on the converter current
and voltage limitations, similar to the synchronous gen-
erators, by the following equations [40], [41]:
a) Inverter current limits for each time slot:

P2DER,t + Q
2
DER,t ≤

(
VDER,t ∗ Ic,max

)2 (15)

b) Inverter voltage limits for each time slot:

P2DER,t+(QDER,t+
V 2
DER,t

X
)
2

≤ (
Vc,max ∗ VDER,t

X
)
2
(16)

• RESs scheduled power limits for each time slot and at
each bus:

0 ≤ PW ,schi,t ≤ PW ,forecasti,t (17)

0 ≤ PPV ,schi,t ≤ PPV ,forecasti,t (18)

• BESSs state of charge limits for each time slot and at
each bus:

SOC i,min ≤ SOC i,t ≤ SOC i,max (19)

• BESSs charging and discharging active power limits for
each time slot and at each bus:

Pchi,min ≤ Pch,schi,t ≤ Pchi,max (20)

Pdis,schi,min ≤ Pdis,schi,t ≤ Pdis,schi,max (21)

• Line capacity limits for each time slot:

Sij,min ≤ Sij,t ≤ Sij,max (22)

• Bus voltages bounds for each time slot:

Vi,min ≤ V i,t ≤ Vi,max (23)

C. SECOND STAGE PROBLEM CONSTRAINTS
These are the constraints pertaining to the actual system
operation and involving second-stage variables (depending
on each scenario).

1) SECOND STAGE EQUALITY CONSTRAINTS
These constraints include the active and reactive power bal-
ance at each bus, the active, reactive, and apparent power
flow through lines, BESSs state of charge, preventing the
simultaneous charging/discharging of the BESSs, and load
shedding for each time slot and scenario.
• Active power balance for each time slot, bus and sce-
nario:

rupg,t,s − r
dn
g,t,s + P

W
i,t,s − P

W ,sch
i,t + PPVi,t,s−P

PV ,sch
i,t + P

dis

i,t,s

−Pdis,schi,t −Pchi,t,s+P
ch,sch
i,t +Plshi,t,s

=

∑
jε�il

Pij,t,s−
∑

jε�il
Pij,t (24)

• Reactive power balance for each time slot, bus and sce-
nario :

QWi,t,s − Q
W ,sch
i,t + QPVi,t,s−Q

PV ,sch
i,t + Q

BESS

i,t,s
− QBESS,schi,t

+Qlshi,t,s =
∑

jε�il
Qij,t,s −

∑
jε�il

Qij,t (25)

• Active power flow through lines for each time slot, bus
and scenario:

Pij,t,s =
V 2
i,t,s

Zij
cosθij−

Vi,t,s ∗ Vj,t,s
Zij

cos (δi,t,s − δj,t,s + θ ij)

(26)

• Reactive power flow through lines for each time slot, bus
and scenario:
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Qij,t,s =
V 2
i,t,s

Zij
sinθij−

Vi,t,s ∗ Vj,t,s
Zij

sin(δi,t,s−δj,t,s + θ ij)

(27)

• Apparent power flow through lines for each time slot,
bus and scenario:

S2ij,t,s = P2ij,t,s + Q
2
ij,t,s (28)

• BESSs state of charge for each time slot, bus and sce-
nario:

SOC i,t,s = SOC i,t−1,s + (Pchi,t,s ∗ ηch − P
dis
i,t,s/ηdis)∗1t(29)

• Prohibiting BESSs charging and discharging at the same
time for each time slot, bus and scenario:

Pchi,t,s ∗ P
dis
i,t,s = 0 (30)

• Active and reactive load shedding at each bus, time slot
and scenario:

Plshi,t,s = αP
l
i,t (31)

Qlshi,t,s = Plshi,t,stan9l (32)

2) SECOND STAGE INEQUALITY CONSTRAINTS
These constraints involve the capability curves and the spin-
ning reserve limits for diesel generators, inverter interfaced
DERs capability curves, BESSs SOC limits, BESSs charging
and discharging power limits, line capacity limits, bus volt-
age limits, and load shedding limits for each time slot and
scenario.
• Diesel generator active and reactive power limits (Gen-
erator capability curves) at each time slot and scenario:

a) Prime-mover limits at each time slot and scenario:

Pg,t + r
up
g,t,s ≤ Pg,max (33)

Pg,t − rdng,t,s ≥ Pg,min (34)

b) Armature current limits at each time slot and scenario:

(Pg,t+r
up
g,t,s−r

dn
g,t,s)

2
+(Qg,t )

2
≤S2g,rating (35)

c) Field current limits at each time slot and scenario:

(Pg,t+r
up
g,t,s−r

dn
g,t,s)

2
+(Q

g,t
+
V 2
i,t,s

Xs
)
2

≤ (
Emax ∗ Vi,t,s

Xs
)
2

(36)

• Up/Down deployment reserve limits at each time slot
and scenario:

0 ≤ rupg,t,s ≤ R
UP
g,t (37)

0 ≤ rdng,t,s ≤ R
DN
g,t (38)

• Inverter interfaced DERs’ capability curves at each time
slot and scenario:

a) Inverter current limits at each time slot and scenario:

P2DER,t,s + Q
2
DER,t,s ≤

(
VDER,t,s ∗ Ic,max

)2 (39)

b) Inverter voltage limits at each time slot and scenario:

P2DER,t,s+(QDER,t,s+
V 2
DER,t,s

X
)
2

≤ (
Vc,max ∗ VDER,t,s

X
)
2

(40)

• BESSs state of charge limits at each time slot and sce-
nario:

SOC i,min ≤ SOC i,t,s ≤ SOC i,max (41)

• BESSs charging and discharging active power limits at
each time slot and scenario:

Pchi,min ≤ P
ch
i,t,s ≤ P

ch
i,max (42)

Pdisi,min ≤ P
dis
i,t,s ≤ P

dis
i,max (43)

• Line capacity limits at each time slot and scenario:

Sij,min ≤ Sij,t,s ≤ Sij,max (44)

• Bus voltages bounds at each bus, time slot and scenario:

Vi,min ≤ V i,t,s ≤ Vi,max (45)

• Load shedding limits at each bus, time slot and scenario:

0 ≤ Plshi,t,s ≤ P
l
i,t (46)

IV. TEST SYSTEM DESCRIPTION
The low voltage MG shown in Fig. 2, [40], [42], is used in
this paper to implement the proposed EM strategy. An 80 kW
diesel generator is connected to Bus 1 to represent the slack
bus for this isolated MG. The cost parameters for diesel
generators are obtained using the curve fitting MATLAB tool
‘‘cftool’’ to fit the fuel consumption data to a second order
polynomial function. The specification data for the diesel
generators are shown in Table. 1.While the inverter interfaced
DERs data are listed in Table. 2. The charging/discharging
efficiencies of the BESSs are assumed to be 77% [43]. The
maximum and minimum bus voltages are assumed to be
1.05 and 0.95 p.u., respectively.

Three types of loads are considered in this system; residen-
tial, commercial and industrial with their profiles taken from
[40], [42]. It is assumed that load shedding can be done for 0,
25%, 50%, 75% or 100% of the commercial and residential
loads at any bus. The cost of load shedding compensation is
included utilizing real cost data from [37] and after inflation
adjustment, the VOLL for residential and commercial loads
are obtained and shown in Table. 3. In addition, the price of
the diesel fuel is averaged and inflation adjusted as obtained
from [44], [45].

The historical data for wind speeds and solar irradiances
and temperatures are obtained from [46] for ten years. Then
the WTs and PVs power profiles are calculated with the help
of [14], [47], [48]. After that, these power profiles are used
as input for the GANs discussed in section II.1 [30], [31].
Accordingly, 500 scenarios are generated forWTs power pro-
files and another 500 scenarios for PVs power profiles. These
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FIGURE 2. The Isolated Microgrid Benchmark [40], [42].

FIGURE 3. Wind Power Reduced Scenarios and their Probabilities.

scenarios are then reduced using the FFS algorithm with the
help of SCENRED/GAMS software to 5 scenarios for WTs
power profiles and 3 scenarios for PV power profiles as the
forecast error in wind powers is generally higher than that
of PV systems [49], [50]. Therefore, a total of 15 scenarios
are utilized to model the uncertain behaviors of RESs. The
reduced set ofWTs and PVs scenarios are shown in Fig. 3 and
Fig. 4, respectively.

V. RESULTS AND DISCUSSIONS
The stochastic day-ahead EM optimization problem is mod-
eled as a nonlinear programing (NLP) problem in the General

FIGURE 4. PV Power Reduced Scenarios and their Probabilities.

Algebraic Modeling System (GAMS) environment and is
solved using the CONOPT solver. The CONOPT solver is a
feasible path solver based on the generalized reduced gradient
algorithm. It is well suited for NLP problems with large num-
ber of variables and constraints. It can give faster and better
results than other NLP solvers such as MINOS or SNOPT.
GAMS/CONOPT has many built-in tests and messages that
can indicate whether the model has any errors and whether
the solution is global or local optimum [51]. The opti-
mization problem is solved with neglecting/considering the
reactive power costs of the diesel generators while neglect-
ing/considering the reactive power capabilities from inverter
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FIGURE 5. Framework of the Proposed Two-Stage Stochastic Energy Management Model and Solution Procedure.

interfaced DERs to investigate their impact on the MG opera-
tion while considering RESs uncertainties. Furthermore, sen-
sitivity analyses are performed to investigate the impact of the
number of reduced scenarios and the RESs penetration and
uncertainty levels. The general framework of the proposed
problem formulation and solution procedure is presented in
Fig. 5.

A. IMPACT OF NEGLECTING/CONSIDERING THE
REACTIVE POWER CAPABILITIES AND COSTS
In this section the optimization problem is solved while
neglecting/considering the reactive power costs of the diesel
generators as well as neglecting/considering the reactive
power capabilities from inverter interfaced DERs to investi-
gate their impact on the MG operation.

1) CASE (1) NEGLECTING REACTIVE POWER COSTS AND
REACTIVE POWER SUPPORT FROM INVERTER INTERFACED
DERs
In this case, the diesel reactive power costs are not considered
and there is no reactive power support from inverter interfaced
DERs. Accordingly, the term related to reactive power costs
from diesel generators is omitted from the objective func-
tion and both RESs and BESSs are able to provide active
powers only. The optimized total operation costs in this case
are 242,675 $/day. However, the actual total operation costs
should be 299,164 $/day as there are 56,489 $/day (reactive
power costs) not added. The neglected reactive power costs
are calculated as follows; after the optimization is executed,
the non-optimized reactive power costs from the dispatched

FIGURE 6. Reactive Power Dispatch of Diesel Generators for Case 1.

FIGURE 7. Active Power Dispatch of Diesel Generators for Case 1.

diesel reactive power, Fig. 6, are calculated using the relevant
terms of (1), i.e., the ‘‘C2’’ term. The generators active power
dispatched are shown in Fig. 7.
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TABLE 1. Specification data for diesel generators.

TABLE 2. Inverter interfaced distributed energy resources data.

TABLE 3. Further system data.

FIGURE 8. Reactive Power Dispatch of Diesel Generators for Case 2.

2) CASE (2): NEGLECTING REACTIVE POWER COSTS WHILE
CONSIDERING REACTIVE POWER SUPPORT FROM INVERTER
INTERFACED DERs
In this case, the diesel reactive power costs are neglected
while the inverter interfaced DERs are assumed to supply
reactive power. Hence, the term related to reactive power
costs from diesel generators is omitted from the objective
function and both RESs and BESSs are able to provide active
and reactive powers. The reactive powers produced from
diesel generators are slightly decreased compared to Case 1 as
shown in Fig. 8. This is because the reactive power costs were
not optimized in both cases while in Case 2 some reactive
power is supplied from inverter interfaced DERs. In this case,
diesel generators can supply active power at a given cost and
reactive power at no costs while inverter interfaced DERs can
supply both active and reactive powers at no cost. Therefore,
the reactive power loads are supplied mainly from diesel
generators while the active power loads are mainly supplied
fromDERs. The diesel generators active power dispatches are
nearly the same as Case 1 and is shown in Fig. 9.

FIGURE 9. Active Power Dispatch of Diesel Generators for Case 2.

FIGURE 10. Reactive Power Dispatch of Diesel Generators for Case 3.

The optimized total operation costs per day in this case
are 256,153 $ without considering the reactive power costs
(31,679 $). This makes the actual total operation costs to be
287,833 $. The diesel reactive power costs in this case are less
than the previous case because some of the reactive power is
provided from DERs.

3) CASE (3): CONSIDERING REACTIVE POWER COSTS AND
REACTIVE POWER SUPPORT FROM INVERTER INTERFACED
DERs
This case verifies the impact of utilizing the reactive power
capability of inverter interfaced DERs in reducing the oper-
ation costs while taking the reactive power costs from diesel
generators into account. In other words, the term related to
reactive power costs from diesel generators is included in
the objective function and both RESs and BESSs are able to
provide active and reactive powers. In this case, the optimized
(actual) total operation costs per day are 284,537 $, with
reactive power costs of 30,589 $/day which are the lowest
costs as compared to the previous cases. The reactive power
dispatched from diesel generators is reduced compared to the
previous cases and shown in Fig. 10. The generators active
power dispatched are given in Fig. 11. The different costs for
the three cases are tabulated in Table. 4.
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TABLE 4. Costs breaking down for the different cases.

FIGURE 11. Active Power Dispatch of Diesel Generators for Case 3.

FIGURE 12. Operation costs versus number of selected scenarios.

FIGURE 13. Execution time and number of iterations versus number of
selected scenarios.

B. SENSITIVITY ANALYSES FOR THE STOCHASTIC EM
PROBLEM
In this section, the impact of the selected number of scenarios
on the isolated MG operation costs and computational com-
plexity is studied through sensitivity analysis. Furthermore,
the effect of RESs penetration level and uncertainty level is
analyzed.

1) IMPACT OF NUMBER OF SCENARIOS ON MG OPERATION
AND PROBLEM INTRACTABILITY
In this section, the effect of the selected number of scenarios
on the total operation costs and the time required to solve the
problem is analyzed. The utilized EMmodel here will be con-
sidering reactive power costs and reactive power support from
inverter interfaced DERs (as Case 3 before). The relation
between the number of selected scenarios and the operation
costs is shown in Fig. 12, where the total operation costs
have different values with the number of scenarios which
affects the solution accuracy when scenario reduction takes
place. On the other hand, the number of iterations and the
execution time are displayed in Fig. 13 as functions of the
number of selected scenarios. The number of iterations and
the execution time are increased with the increase in number
of scenarios which affects the complexity and intractability
of the decision making problem which, in practice, needs
to be solved in reasonable times to be applicable in real
situations. As shown from Fig. 12, the operation cost value
tends to be settled after increasing the number of scenarios
which means that utilization of around 35 scenarios is enough
to represent the whole uncertainty information and at this
point the optimization takes 4.2 hours and 35,092 iterations
to finish. As presented in Fig. 12, the average operation costs
are around 282,000 $/day but can be deviated by ±6,000 $
(error of 4%) according to the selected number of scenarios.
In Section V.A, the chosen number of scenarios is 15 to
reduce the computational burden as the error in the calculated
operation costs is noticed to be small as 0.8 % from the
average operation costs. From the above discussions, in the
problem of stochastic EM, tradeoffs between the number of
scenarios and tractability should be made by the operator
according to the system preferences.

2) IMPACT OF RESs PENETRATION AND UNCERTAINTY
LEVELS
In this section, the RESs uncertainties are modeled by only
three scenarios for simplicity; as forecast, high, and low
scenarios with probabilities of 0.6, 0.2, and 0.2, respectively.
The RESs power penetration level for either WTs or PVs is
defined by setting the forecast scenario to be a percentage of
the hourly total demand (x-axis in Fig. 14), while the other
two scenarios, low and high, are built as given percentages
of the RESs power forecast, below and above respectively.
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FIGURE 14. Operation Costs as a function of RESs Penetration and Uncertainty Level.

The uncertainty level is defined as a measure of how far from
the RESs power forecast scenario the low and high scenarios
are. The uncertainty level considered with 10% increments in
such a way that c % uncertainty means that the high and low
scenarios are equal to the RESs power forecast multiplied by
(1 + c/100) and (1 − c/100), respectively. The utilized EM
model here is that used for Case 3.

Fig. 14 shows the change of the total operation costs as
the RESs power penetration increases, each curve repre-
sents a different uncertainty level. A decreasing trend in the
operation costs can be noticed as the RESs power penetra-
tion increases. This intensifies the economic benefits gained
from RESs utilization. However, increased RESs penetration
level results in increasing of the uncertainties which means
scheduling more reserves from the diesel generators that are
added to the costs. At nearly the value of RESs forecast equals
35% of the total demand, the RESs power generation can
feed nearly all loads. Thus, operation costs start to settle at
a certain value while the power produced from the diesel
generators are reduced to a very low value.

VI. CONCLUSION
The operation costs of diesel generators usually include fuel
costs related to active power only without considering those
related to reactive power costs. Moreover, the reactive power
support from inverter interfaced DERs is not always utilized.
This paper investigated the impact of co-optimizing the fuel
costs related to active and reactive powers of diesel gen-
erators while considering the reactive power support from
inverter interfaced DERs to obtain the optimal dispatch for
the available resources of an isolated MG. The costs related
to load shedding were also considered in the problem formu-
lation. Moreover, the detailed models for different resources
were presented, especially for diesel generators where the
actual capability curves were used instead of the widely
used box constraints. The problem was formulated as a two-
stage stochastic optimization problem and was solved in the
GAMS environment using the CONOPT solver. The first
stage considers the dispatch of resources based on the fore-
casted data while the second stage considers the expected re-

dispatch due to uncertainties. The uncertainties from RESs
are usually modeled using scenarios in the framework of
stochastic optimization but the common scenario generation
methods require knowing the probability distributions which
is not always accurate. Therefore, GANs was utilized in this
paper as a data driven scenario generation method which can
recognize the historical data characteristics for RESs without
fitting models or probability distributions. Then, the Fast
Forward Selection is utilized to reduce the number of the
generated scenarios to prevent intractability issues.

The results presented in the paper showed the possible
deviations of the optimal dispatch results and erroneous
operation costs when neglecting the reactive power fuel
costs related to diesel generators. Accordingly, combined
active/reactive power dispatch is essential in the EM of iso-
lated MGs to provide correct results. Moreover, utilizing the
reactive power capabilities of inverter interfaced DERs can
significantly reduce the operating costs of isolated MGs.
Hence, it is recommended to allow inverter interfaced DERs
inject reactive power in case of isolated operation rather than
operating at a unity power factor.

The number of the selected scenarios affects both the
accuracy and the complexity of the EM problem, so that a
trade-off between these two should be considered precisely.
Moreover, in this paper, the total operation costs are calcu-
lated as the RESs power penetration level increases, at dif-
ferent uncertainty levels. A decreasing trend in the operation
cost can be noticed as the RESs power penetration level
increases as expected. However, this trend is less marked as
the uncertainty associated to RESs generation increases due
to the increase in the scheduled generator reserves. Hence,
the uncertainties in RESs should be accurately modeled in the
EM problem especially in small systems like isolated MGs.

Although the stochastic optimization can effectively han-
dle the RESs uncertainties, its computational complexity is
relatively high due to the large number of scenarios required
to accuratelymodel the uncertain variables evenwith scenario
reduction process that may deteriorate themodeling accuracy.
Therefore, future works will be directed to searching for other
methods that do not require probability distributions with low

VOLUME 9, 2021 5409



S. M. Sadek et al.: Data-Driven Stochastic EM for Isolated MGs Based on GANs

computational complexity. Furthermore, in addition to the
RESs uncertainties, various sources of uncertainties should
be considered such as load variations and component failures.
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