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ABSTRACT Bridge condition assessment (BCA) plays an important role in modern bridge management.
Existing assessment methods are time-consuming, labor-intensive and error-prone. The use of machine
learning for BCA can effectively solve the above problems. However, the large amount of label noise in
the dataset severely affected the performance of the BCA model. In this paper, we present an effective
label ranking approach for BCA (LR-BCA). Our proposed LR-BCA method considers the natural order
relationship between bridge condition ratings. Moreover, a heuristic data cleaning (HDC) approach is
proposed for cleaning bridge condition dataset. The HDC method firstly identifies all the label conflict
examples, then iteratively filters out the noise. Experimental results on real-world dataset confirm the
effectiveness of the HDC method and demonstrate that our proposed LR-BCA method achieves 99% Top-2
accuracy, which is highly competitive compared to baseline methods.

INDEX TERMS Bridge condition assessment, data cleaning, machine learning, label ranking.

I. INTRODUCTION
Bridges play an important role in societies as they assist the
daily movement of people and wares. However, the collapses
of bridges happen occasionally because of the deteriorating of
bridge components along time. Due to the crucial importance
of bridges, some countries used bridge management sys-
tems (BMS) and intelligent transportation systems (ITS) to
manage and to utilize bridge condition information for traffic
management [1]. Bridge management aims to determine the
optimal strategy for operating bridges under the consideration
of adequate security, thereby minimizing operational costs
during the bridge’s life cycle. Therefore, BCA is an important
part of BMS and ITS. It is possible to provide decision
support for bridge management through BCA.

Table 1 illustrates the attributes of bridge condition data.
Generally, the bridge is subdivided into several components
in inspection phase. Bridge inspectors observe at site to
record bridge components condition data and assess compo-
nents conditionwith visual inspection. However, the accuracy
of the recorded bridge condition data is not high because of
the involvement of inspectors’ experience and amounts of
fuzzy bridge condition information [2]. Inaccurate recorded
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TABLE 1. Bridge condition data attributes list. There are 418 defect
attributes and each attribute is described as ‘‘type of defects+span
length+defect property’’.

data may make it difficult to evaluate bridge condition
correctly. BCA is a data-driven operation, which needs
high-quality data. On the one hand, the wrong assessment of
bridges can lead to unnecessary maintenance and reinforce-
ment. On the other hand, any delay or erroneous assessment
of bridge conditions may lead to higher maintenance costs
and significant safety hazards in the future.
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We observe that there are numerous noise in the bridge
dataset. Based on the reasons above, it is vital to eliminate
‘‘incorrectly labelled’’ data (or noise) in the data cleaning
process after the acquisition of bridge condition data. This
paper constructs conflict-pairs to determine noise, and then
iteratively filters out them based on the values of the number
of conflicts ranking. The cleaning method works well in
real-world datasets with significant improvements in model
performance. Besides, this paper models the BCA problem as
a label ranking problem, which is able to effectively evaluate
the bridge condition. The main contributions of this paper are
summarized as follows.

• We propose an effective label ranking approach for
bridge condition assessment (LR-BCA), which models
the bridge rating problem as a label ranking task, and
it can effectively evaluate bridge condition and improve
error-tolerance ability of the model. To handle conflict
examples in BCA dataset, a heuristic data cleaning
(HDC) approach is also developed.

• Based on a real-world bridge condition dataset,
we experimentally evaluate our LR-BCA approach and
HDC approach. Extensive experimental results show
that our LR-BCA approach is highly competitive com-
pared to baseline methods. Also, our proposed HDC
approach can effectively reduce conflict examples in
BCA dataset, thus improving assessment performance.

The rest of the paper is organized as follows. After a
brief literature review on existing BCAmethods and cleaning
methods in Section II, we present a heuristic data cleaning
method based on conflict-pairs in Section III. Section IV
introduces a label ranking method for bridge condition
assessment. Section V provides a set of experiments, as well
as the experimental results and analysis. Finally, conclud-
ing remarks and potential research directions are given in
Section VI.

II. RELATED WORK
A. DATA CLEANING METHODS
The noise in this paper refers to the data with incorrect
class labels, i.e. label noise. Data cleaning techniques aims to
detect and repair the noise in datasets. Existing methods can
be divided into three categories, andwe address them as label-
noise-robust, datasets-cleaning, and threshold-based filtering
approaches, respectively.

1) LABEL-NOISE-ROBUST APPROACHES
The goal of these methods was to modify existing algorithms
such that they are less sensitive to noise. An example was
C4.5 algorithm [3], which reduced the complexity of the deci-
sion tree by pruning strategies. It decreased the probability
of decision tree being over-fitting. However, C4.5 algorithm
achieved poor performance on datasets with large numbers
of attributes. Fürnkranz and Widmer [4] proposed an incre-
mental reduced error pruning (IREP) algorithm in 1994,
which could effectively deal with large noise datasets, but its

classification accuracy was lower than C4.5 algorithm.
Subsequently, Cohen [5] proposed a repeated incremental
pruning to produce error reduction (RIPPER) algorithm,
which was an improved IREP algorithm. Compared with
C4.5, RIPPER was not only competitive in classification
accuracy but also more robust to noise. Nettleton et al. [6]
experimentally compared the robustness of several algo-
rithms for handling label noise. Experimental results showed
that naive Bayes was the most robust algorithm, and support
vector machine (SVM) [7] could be easily altered by noise.

2) DATASET-CLEANING APPROACHES
These methods aimed to eliminate noise from training set
and train classifiers with ‘‘clean’’ data. These approaches,
also known as noise filters [8], were based on the idea that
the learning algorithms would benefit from the separation
of noise detection and model learning. A standard approach
was to use a classification algorithm as the ‘filter’ in noise
detection and to use another algorithm as the ‘learner’ in
the learning phase. Owing to the fact that k-nearest neigh-
bors (KNN) is highly sensitive to label noise, there were
many KNN-based filters where KNN was used to detect
noise [9]. Ensemble filters were known to detect noise by
the voting result of several different classifiers. Brodley and
Friedl [10] proved that detecting noise by the voting results of
different classifiers are more effective than collecting noise
detection result from a single classifier. Consequently, they
proposed an ensemble filter based on C4.5, 1-NN, and linear
machine. Similarly, some researchers [11], [12] proposed
iterative partition filters that iteratively removed detected
noise. In these methods, N filters were learned based on
N group of N − 1 partitions and voted to detect noise
on the entire dataset. García-Gil et al. [13] proposed an
homogeneous ensemble method (HME) and an heteroge-
neous ensemble method (HTE) to deal with noise in big
data. HMEwas based on a partition scheme and implemented
random forest as a single classifier. HTE, inspired by [10],
used random forest, a linear model, and KNN as base classi-
fiers. Consensus Voting Scheme (CVS) and Majority Voting
Scheme (MVS) were two classical ensemble settings [14].
The CVS setting is known to achieve a high precision, but
it tends to missing a lot of noisy instances. However, The
MVS setting often yields high recall, but typically falsely
classify numerous clean instances as noise. Samami et al. [15]
proposed to use a mixed scheme, namely High Agreement
Voting Filtering to compensate for the drawbacks of the two
settings. They removed the detected strong and semi-strong
noise, and then relabeled the weak noise instead of deleting
them.

3) THRESHOLD-BASED FILTERING APPROACHES
This category of methods tried to find a way to measure
the estimated noise level of examples. For example,
Sluban et al. [16] used random forest algorithm to identify
noise. The agreement levels of decision trees in the forest
were used for noise detection. The more the trees had the
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same predictions for an example, the more likely it is a
clean example. Garcia et al. [17] decomposed the multi-class
problems into binary sub-problems, and binary filter was
used for each sub-problem to calculate the confidence of
examples. The confidence levels of examples which were
predicted by binary filters were combined. They were used
to remove the examples whose confidence levels were higher
than the threshold. The threshold-based filters were believed
to allow the practitioner to control the removal level. Inspired
by the above methods, Sáez et al. [8] proposed an iterative
noise filter (INFFC) based on the combination of classifiers
and noise sensitivity control. The method mainly utilized
the ability of k-nearest neighbors based metric approaches
with a variety of thresholds. Zerhari et al. [18] modified
INFFC by using partitioning strategies and removing portion
of good examples in each iteration. Sabzevari et al. [19]
proposed a two stages noise detection method based on the
sampling rate of bootstrapping and the degree of disagree-
ment between the individual ensemble members. After deter-
mining the optimal sampling rate and the optimal threshold
of disagreement, an ensemblemethodwas constructed afresh.
Nematzadeh et al. [20] proposed to adopt an ensemble filter
for noisy instances detection. They computed the average
euclidean distance between the suspected noise detected by
the ensemble filter and the K -nearest neighbors in the clean
set. Finally, they removed and relabeled the suspected noise
based on the distance scores. Guan et al. [21] introduced to
utilize feature selection for better noise filtering performance.
They adoptMVS to obtain a noise score for each instance, and
then generated noise candidates based on the noise scores.
The noise scores and noise candidates were used as the target
values and the input instances respectively in the feature
selection phase.

The first type of approach depends on the particular mod-
ifications of the learning algorithm, and the modification
varied from one algorithm to another. The second type often
consists of sub-classifiers. They can be either trained on the
same dataset using different algorithms, or initialized on dif-
ferent subset of the training set using the same algorithm. As a
result, the samples that are indistinguishable to the filter are
labeled as noise and removed from the dataset. In other words,
the filter only removes the samples that does not match the
classification patterns of the sub-classifiers. Problems may
rise when the samples are mislabeled as noise when they are
hard to distinguish by the filter. As for the third type, a key
feature is the removal level, which is subjectively set to select
noise sample. This type of method is similar with the ones
using noise filter. Therefore, some researchers also refer it as
threshold based filter.

To improve the performance of classifiers, different type
of methods can often be used together in practical applica-
tions. For example, one may use a filter for cleaning in the
preprocessing stage, and then use the adapted algorithm in
the learning phase. Although noise filters could achieve good
performances in some datasets, there are also deficiencies.
In real-world scenarios, cleaning through filters may remove

a large amount of normal data, resulting severe information
loss when building analytical models. Owing to the same
reason, filter related methods did not perform well in bridge
condition datasets.

B. BRIDGE CONDITION ASSESSMENT METHODS
Bridge condition assessment (BCA) has attracted enormous
attentions from both academia and industry. Various methods
have been proposed in the past few decades, and they can be
roughly divided into two categories:

Domain knowledge based approaches. This type of
method evaluated bridge condition using criteria and indica-
tors based on expert knowledge. For example, Mitsuru and
Sinha [22] used Delphi study to develop unified guidelines
of bridge condition assessment for inspectors. However, their
discussion was limited to bridge deck, i.e. a component of
bridge. Kushida and Miyamoto [23] proposed an effective
method for correlating empirical knowledge with member-
ship functions based on fuzzy theory to express expert knowl-
edge of bridge condition assessment. Wang and Elhag [24]
proposed an evidential reasoning (ER)method for bridge con-
dition assessment to model uncertainties in human subjective
assessment. Lately, Dabous and Al-Khayyat [25] introduced
a method of combining Monte Carlo simulation with ER,
which used pairwise comparison to determine the weights of
bridge component condition ratings in whole bridge condi-
tion. Alsharqawi et al. [26] introduced the extended quality
function deployment theory into bridge condition assessment
based on visual inspection and ground penetrating radar data.
Björnsson et al. [27] considered to use the Bayesian decision
theory for decisions of bridge condition assessment based on
three domain knowledge, namely, modelling sophistication,
consideration of uncertainty, and knowledge content. In addi-
tion, analytic hierarchy process [28] was also widely used in
bridge condition assessment. In the type of methods, a bridge
was divided into multiple components to evaluate the whole
condition.

Soft computing based approaches. Soft computing tech-
nology mainly includes fuzzy logic, genetic algorithm and
artificial neural network. These methods were able to directly
process the input data without the need to build logical struc-
tures. Some researchers [29], [30] introduced the artificial
neural network for the bridge condition assessment using the
dataset selected from the National Bridge Inventory database.
Liu and Zhang [29] considered three primary components as
input features of the Convolutional Neural Network, while
Nguyen and Dinh [30] utilized Forward Neural Network as
the model with eight input features. Flintsch and Chen [31]
summarized the applications of the three most common soft
computing techniques in infrastructure management, namely
artificial neural networks, simulation systems and genetic
algorithms. Liu et al. [32] used fuzzy c-mean clustering
algorithm to evaluate the condition of bridge superstructure,
and particle swarm optimization was used to optimize the
algorithm. Yusuf and Hamid [33] used artificial neural net-
work and multiple regression analysis to model limited data,
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respectively. By comparing and analyzing the performance
of two models under various conditions, it concluded that the
artificial neural network wasmore suitable for the bridge con-
dition assessment. Lu et al. [34] proposed an ordinal logistic
regression algorithm for bridge condition assessment. The
algorithm had the advantage of handling the ordinal nature
of bridge condition ratings. Li and Burgueño [35] devel-
oped four models (i.e. multi-layer perceptron, support vector
machine, supervised self-organizing machine and radial basis
function network) for the assessment of damage in bridge
abutment. Martinez et al. [36] studied the performance of
five types of predictive models in bridge condition assess-
ment, and concluded that decision tree outperformed the other
models including linear regression model, KNN, and neural
networks.

Compared to soft computing based approaches, domain
knowledge based approaches generally required more expert
knowledge. However, expert knowledge was usually very
expensive. The soft computing based approaches required
enough bridge condition data to learn an adequate model.
Although, with the passage of time, a large number of bridge
condition data has been accumulated. Due to the subjective
factors and the errors in the observations of bridges, there was
plenty of incorrect data in the existing dataset, which severely
affected the performances of bridge condition assessment
models.

III. A HEURISTIC APPROACH FOR DATA CLEANING
Generally, structure of bridge is described by its components,
and the main structure includes a series of basic components,
such as the main deck, hanging beam, and girder. Owing to
defects and damages such as rust, cracks, and deformation,
the components condition deteriorated over time. The rating
of bridge condition can be determined through the severity
of defects and damages. In this section, we introduce the fea-
tures of bridge condition data, and then illustrate the general
form of the heuristic approach proposed in this paper.

A. THE ELEMENT OF BRIDGE CONDITION DATA
An example of data that is used for bridge condition assess-
ment has numbers of attributes and a discrete label.

The attributes include basic bridge information (e.g. year
of completion, traffic per data, andwhether prestressed bridge
or not) and defects (e.g. rust, crak, and deformation). The
label is the rating of bridge condition. For the k-th sam-
ple in the dataset, the relation between attributes and label
can be formulated as equation (1), where X k1 ,X

k
2 , . . . ,X

k
M1

are defects attributes, X kM1+1
,X kM1+2

, . . . ,X kM1+M2
are basic

bridge information, and Rk is the condition rating.

Rk = f (X k1 ,X
k
2 , . . . ,X

k
M1
,X kM1+1, . . . ,X

k
M1+M2

) (1)

Symbolically, dataset of bridge condition can be orga-
nized in Table 2. Without basic bridge information attributes,
the bridge condition data can be regarded as monotonic
ordinal data.

TABLE 2. The structure of bridge condition dataset.

In conventional assessment, human inspectors divide the
entire bridge into several main components, and combine
the assessment results of components to compute the rating.
A main component of bridge contains a number of minor
structures, and human inspectors assess the main component
based on all minor structures. Each main component condi-
tion is categorized into five levels, each of which indicates a
distinct level of defects and damages. However, discrete con-
dition levels tend to cause wrong assessment. For instance,
the main beam transverse cracks that are opined as slight by
one human inspector may not be slight for another.

It is difficult to acquire a clean test set because of the com-
plexity of bridge condition assessment. Moreover, a major
problem with state-of-the-art cleaning methods is that they
always require a clean test set to evaluate its cleaning effec-
tiveness. It makes the state-of-the-art methods inapplicable
to the bridge condition assessment, since we cannot easily
acquire a clean test set. If we implemented noise filters in test
set, we might risk removing the clean data just because it can-
not be classified correctly by classifiers. To clean label noise
in the dataset, we propose a heuristic data cleaning (HDC)
approach, which is model-agnostic.

B. HEURISTIC DATA CLEANING
The HDC includes three main steps, which are detailed in the
following subsections, i.e. subsection III-C, III-D, and III-E.
Fig. 1 shows the scheme of our approach to filter noisy data.
Firstly, the approach does a pairwise comparison in the entire
dataset to form a conflict-pairs group. Secondly, the approach
counts the number of times that examples appear in the
conflict-pairs group and then eliminates noise iteratively
based on conflict frequencies. We stop the iteration when the
cleaning ratio ≥ 0.3 or the number of conflict examples is
equal to zero. Finally, this work uses LR algorithm to evaluate
HDC by comparing the performance of the model trained in
clean dataset with the one initialized in noisy data.

In the rest of the section, D1 represents the initial dataset,
D2 represents the dataset at the beginning of the cleaning, and
D3 represents the new dataset after cleaning noisy data. The
three main steps are summarized as follows.

• Constructing conflict-pairs. It preprocesses the dataset
D1 to obtainD2 by deleting useless attributes. Consider-
ing the examples in D2, a conflict-pair is formed when
they conform with a given condition by pairwise com-
parison. All conflict-pairs form a conflict-pairs group.

• Filtering noise examples. It counts the frequencies of
examples’ appearance in the group and constructs a
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FIGURE 1. Schematic diagram of our proposed HDC method.We stop the
iteration when the cleaning ratio ≥ 0.3 or the number of conflict
examples is equal to zero.

{Example No. : Frequency} dictionary. Examples in the
dictionary are sorted by frequency in descending order,
and the top-ranked examples are eliminated iteratively
to obtain a new cleaner dataset denoted as D3.

• Trainingmodels. In this step, LR algorithms are used to
generate an ordered set of bridge labels to strengthen the
models’ error-tolerance ability. The LR models M1 and
M2 are trained in the dataset D2 and the new dataset D3,
respectively. The effectiveness of the cleaning method is
evaluated by the comparison of two models.

Note that the noise filtered out by HDC are merely sus-
pected label noise. In other words, these identified noise
may contain clean examples. In this paper, HDC is based on
following important judgements and observations:

1) There are pairwise conflicts between bridge examples.
According to simple domain knowledge, the more seri-
ous the defect level is, the higher the bridge condition
rating is. However, for some examples in the dataset,
they have higher defects levels, but lower bridge con-
dition ratings. The phenomenon of examples conflicts
is very common. As a matter of fact, there are 183, 166
conflict-pairs in our dataset, which accounts for 0.59%
of the total example-pairs.

2) The attributes of bridge defects are ordinal attributes.
Specifically, a bigger defect attribute value indicates a
more serious bridge condition, if other attributes hold
still.

3) The more frequent a bridge example conflicts with
others, the more likely it is label noise. For instance,
given a bridge example A, if it is conflicted with n
examples, the number of conflicts is recorded as n. The
bigger n is, the more likely it is label noise.

4) Label noise has a negative influence on the perfor-
mance of models. Apart from decreasing the test

accuracy of algorithms, label noise also prolongs the
training time and increases model complexity. The
model gains better performance when training in a
clean set.

C. CONSTRUCTING CONFLICT-PAIRS
We construct the conflict-pairs group G using initial
datasetD1. Firstly, preprocessing is conducted onD1, includ-
ing recovering missing values and removing useless columns.
The missing values are mostly from basic bridge information
attributes. The hot deck method is used to fill the missing
basic information attributes with the corresponding values of
the nearest bridge sample. The process can be formulated as
Formula 2:

i0← argmin
i

∑M1+M2
j=j0

|ei,j − eq,j|

M1 +M2 − 1
(2)

where ei,j is the j-th variable value of i-th example, eq,j
is the j-th variable value of the missing example, i0 is the
serial number of the nearest example, M1 is the number of
the defects attributes, and M2 is the number of the basic
bridge information attributes. As for the defects attributes,
we merely fill the missing values with zeroes in case the
process produces propagating noise.

Then, categorical type of attributes are deleted temporarily
to obtain D2. Obviously, with the purpose of traversing the
entire dataset, HDC is required to compare

(N
2

)
times where

N is the size of dataset. The concept of conflict-pair is defined
as follows:
Definition 1: Given two examples A and B, where the

rating of A’s condition is RA and the rating of B’s condition
is RB. Assume that RA > RB, for all the defects attributes
values XAi , i = 1, 2, . . .M1 of A, if the values XBi , i =
1, 2, . . .M1 corresponding to one-to-one in the example B all
satisfy xAi ≤ x

B
i , i = 1, 2, . . .M , then(A,B) is a conflict-pair.

Specifically, the construction of conflict-pairs can be for-
mulated as follow:

f (A,B) =

{⋂M1
i=1[(X

A
i − X

B
i ) ≥ 0] if RA < RB⋂M1

i=1[(X
B
i − X

A
i ) ≥ 0] if RA > RB

(3)

where A and B form a conflict-pair (A,B), if f (A,B) is true.
To better explain conflict-pairs, a positive example and a

counterexample are introduced in Table 3 and 4.

TABLE 3. An example of two examples in a conflict-pair.

Example 1: (Positive Example). As shown in Table 3,
the example No. 15 has a higher condition rating than the
example No. 720, while the defects attributes values of No. 15
are smaller than that of No. 720. This inconsistency between
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TABLE 4. An example of two examples not in a conflict-pair.

condition rating and attributes values leads to a conflict. Thus,
(15, 720) constitutes a conflict-pair.
Example 2: (Negative Example). As shown in Table 4,

No. 32 has a higher condition rating than that of No. 65.
Meanwhile, the defect attribute value X43 of No. 32 is higher
than that of No. 65, while situationswith other attribute values
are opposite. In this case, No. 32 and No. 65 do not form a
conflict-pair.

To detect all conflict-pairs according to Definition 1,
we traverse all example-pairs of the dataset. Note that,
the construction of conflict-pairs group G ensures that there
is no identical conflict-pair.

D. FILTERING OUT NOISE EXAMPLES
In a conflict-pair (A,B), at least one of the examples has a
wrong label according to the Definition 1. Suppose that there
are Nk conflict-pairs contain the k-th example. To compute
the probability that the label of k-th example is correct,
the probability is formulated as follow:

Pk =
Nk∏
i=1

pk,i (4)

where pk,i is the probability that the label of k-th example is
correct when it belongs to the i-th conflict-pair.
Note that Pk decreases as the increment of Nk . It illustrates

that the more times an example appears in conflict-pairs,
the more likely it is label noise.

The bottom of Figure 1 illustrates the process of iteratively
filtering out label noise. In the i-th iteration, we count the
occurrence frequency fk of the k-th example in G and con-
struct the dictionary Dict = {k : fk}, k = 1, 2, . . . ,N . The
examples in Dict are sorted in descending order of frequency
fk . If the stop condition is not satisfied, the top t% examples
are recorded as label noise and then eliminated from D2.
At the same time, the relevant conflict-pairs in G are elim-
inated to update G. The next iteration is performed until the
stop condition is triggered. New clean dataset D3 is obtained
after the iterations.

Note that the stop condition used in this paper is not unique.
In the process of filtering noisy data, users can flexibly set
stop conditions according to actual needs.

E. MODEL TRAINING
Since this paper models bridge rating as a LR problem,
this work mainly applies LR algorithms. LR algorithms
can reveal tendency of examples at bridge condition rat-
ings. Besides, it also increases the error-tolerance abilities of

models. We discuss the effect of label ranking detailedly in
Section IV.

To illustrate the effectiveness of HDC, we uses different
algorithms and initializes the training on D2 and D3, respec-
tively. Stacking, the integrated learning strategy, is used to
learn the model. The stacking algorithm learns data distribu-
tion from different data spaces through various base models,
and then integrates predictions of the models to obtain the
final results. The first layer used in this paper adopts random
forest (RF), k-nearest neighbor (KNN), and support vector
machine (SVM). The second layer meta-model adopts RF.
We use stacking algorithm to prove that HDC can benefit
both from single learning and integrated learning algorithms.
Furthermore, stacking is a kind of noise-robust algorithm.
As discussed in section II.A, different types of noise-dealing
methods can often be used together.

Considering the difficulty of obtaining a clean test set,
this paper cannot deliberately create some label noise exam-
ples to evaluate the proposed cleaning methods, which
other papers [37] often do. They compared the deter-
mined suspicious noise with the standard set to evaluate the
cleaning accuracy. Therefore, in this paper, We utilize the
cleaned dataset and the noisy initial dataset to train models
M1 and M2, respectively. The performances of M1 and M2
are compared to evaluate the effectiveness of HDC.

IV. LABEL RANKING FOR BRIDGE CONDITION
ASSESSMENT
The bridge condition assessment (BCA) problem is generally
regarded as a classification problem, where a rating is treated
as a bridge label. However, the bridge condition ratings are
ordinal. The higher the rating of bridge condition is, the more
serious the bridge defects condition is. Label ranking problem
extends the conventional classification and multi-label clas-
sification in the sense that it needs to predict a ranking of all
class labels instead of only one or several class labels [38].
A ranking contains more label information than a single label
or several unordered labels.

A. BRIDGE CONDITION ASSESSMENT MODEL
In real-world scenarios, predicting a single bridge condition
rating is not enough to describe the bridge condition. Bridges
with similar conditions may be assessed as different ratings
because of a slight difference in attribute values. Meanwhile,
noisy data can easily lead to erroneous predictions. The LR
method predicts a set of ordered labels of a bridge example
so that the above problem can be effectively solved.

For a sample whose bridge condition is adjacent to the
rating boundary, as long as the real label appears in the
first N labels in the set of the ordered labels (even if the first
ranked label is wrong), it benefits the decision-making after
the bridge condition rating process. The probability that the
real label ranks in the top N labels can be compute as follow:

Pn =
N∑
i=1

p(M (X )i = λ) (5)
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where M (X )i is the i-th ranked label that predicted by the
ranker model M with the input instance X .
Fig. 2 demonstrates the architecture of the label ranking

for bridge condition assessment (LR-BCA). Specifically,
it applies HDC to clean the bridge condition data, and then
utilizes LR as the learning algorithms. To increase robustness
to residual noisy data, an ensemble model is constructed.
Given a single bridge example, an ordered of labels will be
predicted.

FIGURE 2. Label ranking for the bridge condition assessment.

B. LABEL RANKING
Label ranking (LR) is a key task of preference learning and its
goal is to map instances into a set of ordered finite labels [38].
LR aims to learn a ‘‘label ranker’’ in the form of a mapping
from the instance spaceχ to the label space `. It can be seen as
an extension of the traditional classification task. Unlike the
traditional classification task, LR tries to map instances to an
ordered set of all class labels, instead of mapping instances in
instance space χ to one or more labels in label space `.
In LR, λi �x λj denotes that instance x prefers label λi

to λj, i.e., the ordering of λi on the instance x precedes λj.
This preference relationship is transitive and asymmetric.
Therefore, ranking can be considered as a special preference
relationship. Fig. 3 shows the differences between three types
of tasks, where instances space χ is {x1, x2, . . . , xn} and label
space ` is {λ1, λ2, . . . , λc}.

FIGURE 3. Comparison of the multi-class classification, multi-label
classification and label ranking.

For example, it is possible to assume all bridges can be
described in an instance space (including three attributes:

completion time, daily traffic volume, and maximum pres-
sure). Similarly, bridge condition ratings can be described
in a label space (including four labels λ1, λ2, λ3, and λ4).
For a bridge instance x (2006, 76,321, 15) in instance space
(years, vehicles, tons), its preference for each rating may be
λ2 �x λ1 �x λ3 �x λ4. Similarly, the other bridge instances
have their unique preferences (i.e., a set of well-ordered
labels). By training the model with different attribute values
and preferences, a mapping from instances to bridge labels
can be obtained.

C. SOLVE BRIDGE CONDITION ASSESSMENT AS A LABEL
RANKING TASK
Given the ranking (λ2 �x λ1 �x λ3 �x λ4), it is easy to know
that the condition rating of the bridge instance x is located
between λ1 and λ2 and deviates to λ2. For example, assume
that the scores of λ1, λ2, λ3, λ4 are 1, 2, 3, 4, respectively.
Given the real score of the bridge condition as 1.7. If the
bridge condition rating is only predicted as λ2, the infor-
mation that the bridge score is 1.7 may not be obtained.
Meanwhile, if the true rating of the bridge condition is λ1,
even if the optimal label is predicted to be λ2, the sub-optimal
label is still the correct rating λ1.

There is an order relation λ3 � λ2 � λ1 among three
bridge ratings. Table 5 shows the transformation from a single
label to a set of ordered labels. It is easy to know that bridge
instance xi with rating λ2 prefers λ2 comparing to λ1 and λ3,
but its preference between λ1 and λ3 cannot be determined.
Due to natural order relation between bridge ratings, it is easy
to know the preference of instances whose labels are λ1 or λ3
as shown in Table 5.

TABLE 5. Transformation between the bridge ratings and ordered labels.

Label ranking has been widely-studied in the litera-
ture [39]. Existing LR algorithms can be classified into three
categories: reduction approaches, probabilistic approaches
and tree-based approaches [40]. The reduction approaches
convert the LR problem into multiple simple binary classi-
fication problems. The probabilistic approaches aim to cal-
culates the probability of a label belonging to the instance
to determine an order of all class labels. The tree-based
approaches use decision tree as base algorithm. Considering
the characteristic of our bridge condition assessment and the
Ockham’s razor principle, we use a reduction approach in this
work.

We model the BCA problem as a label ranking task,
and solve it by a well-known pairwise comparison ranking
algorithm. Table 6 shows the preferences of each instance,
and the preference is split into three pairs of comparison
labels. x5 is the instance to be predicted. Fig. 4 shows the
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TABLE 6. Examples of the bridge and its preference rating.

FIGURE 4. Schematic diagram of ranking by pairwise comparison.

pairwise comparison ranking algorithm on bridge condition
assessment tasks. Firstly, three classifiers are trained sepa-
rately using the examples with corresponding preferences.
And the second step is to combine the prediction results of the
three classifiers to form an ordered label set. The first label of
each set of sorted labels is the rating of the bridge instance.

V. EXPERIMENTAL STUDIES
This section details the experimental studies carried out to
investigate the performance of HDC and LR-BCA.

A. DATASET AND EXPERIMENTAL SETTINGS
The BCA data is provided by several highway bridge inspec-
tion agencies in China (e.g., Jiangsu Huatong Engineering
Testing Co., Ltd. and Jiangsu Modern Road and Bridge Co.,
Ltd.). It is composed of condition data from sixteen compo-
nents, such as upperparts, supports, piers, abutments, expan-
sion joints, and drainage systems. The whole bridge condition
dataset consists of 7,870 examples with 422 attributes and
3 labels.

Our proposed methods1 are implemented by Python 3.65
32-bit running on a server with Intel(R) Core(TM) i7-6800K
CPU @ 3.40GHz. We use scikit-learn 0.20 in our exper-
iments. The algorithms and main parameters settings are
shown in Table 7. While for other parameters of scikit-
learn, default values are used. In the following experiments,
all experiments results are obtained based on five runs
of a six-fold cross-validation on the dataset. For the sim-
plicity of expression, we record an average of the results.
The widely-used metric F1-score is used to evaluate the
performance of algorithms.

1Both source codes and dataset will be made available in our website.

TABLE 7. Classification algorithms and corresponding parameters
settings.

B. COMPUTATIONAL RESULTS ON HDC
To evaluate the performance of our HDC method, we have
performed two groups of experiments. The goal of these
experiments is to answer the following questions: (1) How
does the F1-score vary with the cleaning ratio increases?
(2) Can the HDC method still provide an advantage when it
is only applied to the training set or the test set?

1) INFLUENCE OF CLEANING RATIO ON HDC
Cleaning ratio cr is an important parameter of HDC which
indicates the proportion of the removed examples. This exper-
iment aims to investigate the F1-score of models according
to various levels of cr in the cleaning phase. We evaluate
the performance of HDC by implementing four algorithms,
including RF, SVM, KNN and Stacking. To demonstrate that
the increase of F1-score is not caused by the over-fitting
of maximum class, we focus on the F1-score of all labels.
Since only few examples are available with the label λ3,
we only consider the cases that distinguishing examples with
label λ1 and λ2.

Fig. 5 shows the computational results (in terms of
F1-score) obtained from four classification algorithms. For
every algorithm, HDC has an advancement of the perfor-
mance on every cr level with respect to no data cleaning.
Furthermore, as we can observe from Fig. 5, the increase
of cr level helps the progress of F1-scores of both labels.

FIGURE 5. Comparative performance of classification algorithms with
various cleaning ratios. The sub-figures (a) and (b) respectively present
the experimental results by distinguishing the label λ1 from other labels
and distinguishing label λ2 from other labels.
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It indicates that HDC is not to be over-fitting on any label.
Conclusion can be drawn from these results that HDC pro-
motes the performance of models compared to no data
cleaning.

2) EFFECTIVENESS OF HDC
The purpose of this group of experiments is to check that
whether HDC still performs effectively when it is only
applied to the training set or the testing set. We conduct
two experiments (denoted as exp1 and exp2) to evaluate the
effectiveness of HDC. In exp1, we only apply HDC to the test
set; In exp2, we only apply it to the training set. Since both the
training set and testing set were noisy, if we did not clean the
testing set, the incorrectly labelled examples would influence
the evaluation results in test set. In a real world scenario, HDC
would be applied in labelled data to generalize a clean dataset
as training set, and the rating of unlabelled data would be
predict by trained models.

As illustrated in Fig. 6 (a), compared with the testing accu-
racywithout applyingHDC to any dataset, the one of exp1 has
been significantly improved, up to 5.77%, 3.99%, 8.29%, and
6.15%, respectively. SVM is a noise-sensitive algorithm [6],
and its predictive accuracy is greatly improved by 8.29%. The
advancement of testing accuracy in exp1 implies that in spite
of the noisy training dataset, the learning algorithms can learn
the spatial distribution characteristics of clean data to a certain
extent because of their noise tolerance abilities. However,
compared with cleaning from the entire dataset, only cleaning
from the test set has a limited impact on the test accuracy.

FIGURE 6. Prediction performance of various classifiers under different
cleaning ratios in two cases. The sub-figures (a) and (b) presents the test
accuracy of exp1 and the test accuracy of exp2, respectively.

Only cleaning from the training set harms the testing
accuracy of the learning algorithms as shown in Fig. 6 (b).
It appears that it is counter-productive to only eliminate noise
from the training set. Zhu and Wu [42] executed experi-
ments on sixteen benchmark datasets, testing accuracy were
reported to decrease on four datasets when only eliminate
noise data from training set. The evidence from Fig. 6 (b) may
suggest that classifiers only learn the spatial distribution of
data in the training set (which is clean) while the testing set
is noisy. The classifiers can identify the clean data in test

set accurately while the noise data in the test set reduce the
performance of the classifiers. Moreover, it is inevitable to
eliminate a small amount of clean data in training set when
performing HDC. In other words, it affects the performance
of models indirectly.

In brief, the HDC method performs effectively when only
cleaning from the test set and it decreases the testing accuracy
when only cleaning from the training set.

C. COMPUTATIONAL RESULTS ON LR-BCA
This section presents two groups of experiments to evaluate
the effectiveness of the HDC method under LR tasks, and the
benefit of LR method for BCA.

1) COMPARISONS BETWEEN OUR LR METHODS UNDER
VARIOUS BASELINE CLASSIFIERS
To evaluate the effectiveness of HDC in LR task, we compare
the performance under three different baseline classifiers.
Table 8 indicates the testing accuracy of various algorithms
(Stacking, RF, KNN, SVM) in distinguishing the preference
of examples between λi and λj, regarding to different cr levels
(0%, 5%, 10%, 15%, 20%, 25%, and 30%) in the context
of LR task. It is worth noting that there are a small number
of examples with label λ3, so the result related to λ3 may
not be convincing. As illustrated in Table 8, when the cr

TABLE 8. Prediction performance of various classifiers under different
cleaning ratios.
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level increases, the performance of classifiers increases as
well. Among these base classifiers, RF achieves the best
performance in all ratios of cleaning and stacking combined
the advantages of three classifiers with achieving the best per-
formance.With the application of the HDCmethod, all binary
sub-classifiers have achieved an advancement on the perfor-
mance and the final ranking accuracy has also increased.

2) BENEFIT OF LR METHOD
To demonstrate the benefit of LR, we present the Top-N test
accuracy of LR with various cr level. Table 9 shows the
Top-N testing accuracy of the label ranker under different
levels of cr and the Top-2 testing accuracy are as high as 99%.
For a bridge example that is indistinguishable between two
labels, LR can indicate the rank of its preference. Considering
the existence of noise data and the fuzzy boundary of two
ratings, the first ranked label of the example may be wrongly
predicted. However, the second ranked label is likely to be a
true condition assessment label. With the implementation of
LR, the error-tolerance ability of bridge condition assessment
model has strengthened.

TABLE 9. Top-N test accuracy under different cleaning ratios in label
ranking task.

VI. CONCLUSION AND FUTURE WORK
Bridge condition assessment (BCA) is an important part of
bridge management systems and intelligent transportation
systems. In this paper, we propose an effective label rank-
ing approach for bridge condition assessment (LR-BCA).
In addition, a heuristic data cleaning (HDC) approach is
developed for filtering BCA data. Extensive experimental
results on real-world dataset confirm the effectiveness of
our proposed LR-BCA and HDC method. Since HDC does
not use any classification algorithm as a filter, it can be
combined with existing noise filters and noise-tolerant algo-
rithms. By modeling the bridge condition assessment prob-
lem as a label ranking task, the bridge condition ratings can
be predicted effectively, and the Top-2 accuracy rate is able to
reach 99%. For future work, a potential research direction is
to verify the effectiveness of HDC on cleaning noisy datesets
in other domains.
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