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ABSTRACT Variational autoencoders (VAEs) are deep latent space generative models that have been
immensely successful in multiple exciting applications in biomedical informatics such as molecular design,
protein design, medical image classification and segmentation, integrated multi-omics data analyses, and
large-scale biological sequence analyses, among others. The fundamental idea in VAEs is to learn the
distribution of data in such a way that new meaningful data with more intra-class variations can be generated
from the encoded distribution. The ability of VAEs to synthesize new data with more representation variance
at state-of-art levels provides hope that the chronic scarcity of labeled data in the biomedical field can be
resolved. Furthermore, VAEs have made nonlinear latent variable models tractable for modeling complex
distributions. This has allowed for efficient extraction of relevant biomedical information from learned
features for biological data sets, referred to as unsupervised feature representation learning. In this article,
we review the various recent advancements in the development and application of VAEs for biomedical
informatics. We discuss challenges and future opportunities for biomedical research with respect to VAEs.

INDEX TERMS Deep learning, variational autoencoders (VAEs), data representation, generative models,
unsupervised learning, representation learning, latent space, biomedical informatics.

I. INTRODUCTION
Over the past decade, there has been a remarkable increase
in the amount of available large-scale biomedical data such
as molecule compound structures [1], DNA/protein sequenc-
ing [2], [3], computer tomography (CT)/magnetic reso-
nance imaging (MRI) [4], [5], and electronic health record
(EHR) [6], [7], among others. Gaining insights and knowl-
edge from heterogeneous, high-dimensional, and complex,
biomedical data remains a key challenge in transforming
bioinformatics research.

Recent advances in several factors have led to an
increased interest in the use of artificial intelligence (AI)
approaches [8], [9], that have greatly improved the per-
formance of biomedical data analyses. However, due to
the scarcity of labeled training data, data generation is a
fundamental problem in several areas of deep learning.
This is especially useful in imbalanced dataset problems
and few-shot learning where a few classes may have low
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representation in the dataset [10]–[12]. On the other hand,
due to the powerful development of deep learning techniques
in recent years, such as Convolutional Neural Networks
(CNN) [13]–[16], the ability to learn meaningful nonlinear
feature embeddings with little or no supervision has become
a key improvement toward applying AI to the enormous
unlabeled data acquired in the world, where a system, fed
with raw data, provides its own representations. However,
the CNN is mainly designed to automatically and adaptively
learn features of spatial hierarchies for object-classification
tasks [8]. Recently, Bengio et al. [17] proposed a concept of
meta-priors to learn mapping from high-dimensional space to
a meaningful low-dimensional embedding. In this concept,
the high-dimensional inputs can be reconstructed from the
low-dimensional manifold representations [18].

Recently, deep generative models have gained a lot
of attention due to numerous applications in data gener-
ation [17]. Among them, variational autoencoder (VAE)
[19]–[21] is regarded as one of the most popular approaches
to generativemodeling as well as a low-dimensional manifold
representation learning. The VAE can also be regarded as
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a mixture of an encoder and a decoder Bayesian network.
The encoder maps an input data (e.g., an image) x to a
latent vector z, and then, the decoder maps the latent vector
z back to image or data space [20]. The VAEs are able to
learn the smooth latent representations of the input data [17]
produced by the encoder and thus generate new meaningful
samples, balancing the dataset with more intra-class vari-
ants in an unsupervised manner via the decoder. In addition,
a key benefit of VAEs is the ability to control the distribu-
tion of the latent representation vector z, which can com-
bine VAEs with representation learning to further improve
the downstream tasks [18], [22]. Moreover, the generated
image quality and diversity are improved by the existing
VAE-variants such as β-VAE [23] and InfoVAE [24], which
combine VAEs with disentanglement learning, GMVAE [90]
and VaDE [91], which give the VAE the ability for classi-
fication with unsupervised clustering, f-VAEGAN-D2 [92]
and Zero-VAE-GAN [93], which combine VAEs with GANs
and few-shot learning, S-VAE [94], which combines VAEs
with spherical latent representation, VQ-VAE [95], which
combines VAEs with discrete latent representation, VAE-
GAN [96], which combines VAEs and GANs to generate a
high-quality image, and S3VAE [97], which combines VAEs
with disentangled representations of sequential data. There-
fore, apart from the VAE being used as a powerful generative
model, it is particularly important that its excellent nonlinear
latent feature representation learning idea be used to produce
a series of new research directions and various applications
in biomedical informatics.

Due to the above characteristics of VAEs, current VAE
research in biomedical informatics focuses primarily in two
directions 1) data generation approach and 2) representation
learning approach. In this article, we aim to provide a concise
and insightful discussion of the latest advances in applying
VAEs to biomedical informatics. We particularly highlight
the most important techniques in successfully applying VAEs
in this field. Table 1 shows VAE research in biomedical
informatics.

The structure of our paper is organized as follow: Section II
overviews some background work about VAEs. Section III
provides overview the application of VAEs in biomedi-
cal informatics. Conclusion and future work are given in
Section IV and references are delineated at the end.

II. OVERVIEW OF VAEs
In this part, we first present the theory behind VAE. Addi-
tionally, we introduce the data augmentation approach and
representation learning approach of VAEs. It should be
emphasized that data augmentation is also the one of the
results of representation learning. In many studies, the two
approaches can often be utilized at the same time in order to
achieve the similar goal.

A. PRELIMINARIES OF VAEs
The VAE is an unsupervised generative model that pro-
vides a principled way for performing variational inference

FIGURE 1. Architecture of Variational Autoencoder (VAE).

utilizing an Autoencoder (AE) architecture [98], [99].
As shown in Figure 1, the VAEs enhance a normal AE by
adding a Bayesian component that learns the parameters
representing the probability distribution of the data. The main
difference between AE and VAE is the AE learns the com-
pressed representation of the input, and its decompression to
match the given input. In contrast, the VAE is a Bayesian
model which learns the compressed representation of the AE,
and constructs the parameters representing the probability
distribution of the data. It can sample from this distribution
and generate new input data samples. Therefore, VAE is a
generativemodel, where as anAEwhich just does reconstruc-
tion does not have an obvious generative interpretation.

The VAEs use distribution estimation and sampling to
achieve generation of new data [100]. To explain this fur-
ther, suppose in a continuous or discrete high-dimensional
space, there is dataset is X = {xi}Ni=1, and the regenerated
dataset is X ′ = {xi}Ni=1. Suppose encoding process produces a
latent variable Z in a relatively low-dimensional space. Then,
the generated model can be divided into two processes:

1) Latent variable Z approximates posterior distribution
qφ(z|x) - the inferred network - through the inference
process:

pθ (z|x) = pθ (x|z)pθ (z)/pθ (x)

2) The generation process of the variable X ′ which the
data-likelihood can be defined as:

pθ (x) =
∫
pθ (z)pθ (x|z)dz

The distribution of the latent random variable Z cannot be
estimated directly, and the integral of the marginal likelihood
Pθ is intractable. Therefore, the EM algorithm can’t be uti-
lized to compute the variational inference. To overcome this
difficulty, VAE present an inferred model qφ(z|x) instead of
the true posterior distribution.

Specifically, the VAEs consist of the following parts: an
encoder network which parameterizes a posterior distribution
q(z|x) of discrete latent random variables z given the input
data x, a prior distribution p(z), and a decoder with a distribu-
tion p (x|z) over input data. Suppose we want to approximate
a distribution p (x|z) with some q(z|x) distribution via the
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TABLE 1. VAE research in biomedical informatics.

Kullback-Leibler (KL) divergence [101], then by definition
of KL,

DKL [q (Z |X) ‖p (Z |X) ]

=

∑
Z

q (Z |X) log
[
q (Z |X)
p (Z |X)

]
(1)

= E
[
log

[
q (Z |X)
p (Z |X)

]]
=E

[
log [q (Z |X)]−log[p (Z |X)]

]
(2)

Since DKL is always positive, we can conclude that:

log p (X) ≥ E[log p (X |Z )]− DKL [q (Z |X) ‖p (Z ) ] (3)

Equation (3) is an important result and is known as the Evi-
dence Lower Bound (ELBO) [102]. In a deep neural network
implementation of a VAE, equation (3) is used as the loss
function during training of the network. The E[ log p (X |Z )]
term denotes the reconstruction i.e., the generation of output
from the latent representation z. The DKL [q (Z |X) ‖p (Z ) ]
measures the similarity of the distribution of the latent space
with the target distribution p(z). Thus, the two components
of equation (3) try to make the output similar to the input
while keeping the distribution of the latent space as close to
the target distribution p(z) as possible.

The ELBO is tight if q (z) = p (z|x), indicating that q (z) is
optimized to approximate the true posterior. For scalability to

larger datasets, we do not optimize q (z) for every data point
X . Instead an inference network q (z|x) is introduced that is
parameterized by a neural network that outputs a probability
distribution for each data point X . Therefore, the final objec-
tive is to maximize:

3(θ, φ) = Eqφ(z|x)
[
logpθ (x|z)

]
− DKL(qφ(z|x)||pθ (z)) (4)

According to the objective described in equation (4), after
we introduced qφ (z|x) to approximate pθ (z|x), if we want
to sample Z from qφ (z|x), an easy choice is to assume that
qφ (z|x) obeys the Gaussian distribution and that the sam-
pling of Z can be done in the following reparameterization
way [103]:

zi = µi + σ i ∗ εi (5)

where ε is an auxiliary noise variable such that ε ∼ N (0, 1)
i.e., let q (z|x) be a Gaussian with parameters q(z|x) and p(z).
Then the KL divergence between q (z|x) and p(z) can be
computed in closed form as follows:

DKL[N (µ(x), 6(x))‖N (0, 1)]

=
1
2

∑
k

((exp6(x))+ µ2(x)− 1− log6(x)) (6)
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B. DATA AUGMENTATION APPROACH
The explosion of big data and the development of GPUs
provide sufficient training samples and advanced hardware
facilities, which help to enhance the performance of deep
learning. However, many applications of deep learning can
only be realized under the premise of having a massive
amounts of high-quality labeled data [100] and there still exist
many domains lacking sufficient ideal training samples.

Data augmentation is a strategy that can significantly
increase the data available for training models so that
researchers do not need to actually collect new data
and increase labor costs. In addition, insufficient or
unbalanced data distribution can lead to over-fitting and
over-parameterization problems, resulting in a significant
drop in the effectiveness of learning results. To this end,
previous research in data generation is augmented data by
modifying images via simple transformations such as basic
image processing [104]. However, naïve method has limi-
tations such as lacks intra-class variations that cannot well
represent the data variance. In order to solve these problems,
attempts have been made to convert the original data variance
into the feature variance.

In recent years, deep generativemodels have gained a lot of
attention due to numerous applications in machine learning.
A generative model aims to learn the features of the input
and recover the original data or generate similar data from
a latent space distribution, thereby increasing the variance
of the dataset [105]. VAEs [19] and Generative Adversar-
ial Networks (GANs) [106] are regarded as the two most
popular approaches to generative modeling. However, VAEs
do not suffer problems encountered in GANs, mainly: non-
convergence causing mode collapse, and are hard to evalu-
ate [105], [107]. What’s more, VAEs have decent theoretical
guarantee: first, by introducing the variational lower bound,
the complicated calculation of the marginal likelihood prob-
ability is avoided. Second, by the reparameterization trick,
the complicated Markov chain sampling process of latent
variable is avoided.

Despite the above-mentioned advantages of VAEs, they do
have some premise constraints such as compared to GANs,
the samples it generates tend to be blurry and of lower qual-
ity [108]. In order to solve the problems, researchers have
proposed many variations of the VAEs based on different
task requirements such as representation learning, disentan-
glement and deep clustering with the goal of greatly improv-
ing the intra-class variations and quality of the generated
data [109]. The ability of VAEs to synthesize images at state-
of-art levels gives hope that the chronic scarcity of labeled
data in the biomedical field can be resolved.

C. REPRESENTATION LEARNING APPROACH
The performance of models can be improved by selecting
different representations to adjust the difficulty of machine
learning [110]. Feature engineering [111] is one of the
methods that can refine the representations from raw data.

Feature engineering refers to transforming raw data into
advanced training data representations. However, in machine
learn-ing, manually selected features rely on human
and professional knowledge, which is part of the most
time-consuming and energy-intensive work, and its weakness
is the inability to extract and organize discriminant informa-
tion from the data. Moreover, although our world is inundated
with data, a large part of the data is still unlabeled and unor-
ganized. Therefore, the ability to learn meaningful nonlinear
feature embeddings with little or no supervision has become
a key improvement toward applying AI to the enormous unla-
beled data acquired in the world. Recently, many representa-
tion learning models have been proposed based on the VAEs
where the goal is to learn mapping from high-dimensional
space to a meaningful low-dimensional embedding. Fur-
thermore, they can learn useful disentangled representations
automatically. The representation learning of VAEs is done
by the meta-priors proposed by Bengio et al [17]. The goal of
representation learning is to be useful for downstream tasks.
The most important meta-prior is called ‘‘disentanglement’’
which is an unsupervised learning technique that breaks
down, or disentangles, each feature into narrowly defined
variables and encodes them as separate dimensions [17].
Assuming that the data is generated from independent factors
of variation, and if the VAE is trained to reconstruct the
sample well, then the latent space between the encoder and
decoder keeps the important information of the original
data. Intuitively, a factorial code disentangles the individual
elements that were originally mixed in the sample, just as
humans recognize complex things by disentangling inde-
pendent elements. If the dimensions of the latent vector are
independent of each other, it is factorial disentangled, i.e., a
good representation. VAEs have made such nonlinear latent
variable models tractable for modeling complex distributions,
and efficient extraction of relevant biological information
from learned features for biological data sets, referred to as
unsupervised representation learning.

III. APPLICATION OF VAEs IN BIOMEDICAL
INFORMATICS
Over the past decade, there has been a remarkable increase
in the amount of available biomedical data available. Data
types can include images [112], audio [113], textual infor-
mation [1], high-dimensional omics data [2], heterogeneous
data [114], and other information from wearable devices.
Recent advances in several factors have led to increased
interest in the use of VAE approaches within the biomedical
informatics and pharmaceutical industry [9], [115]. It is par-
ticularly important that VAE not only be used as a powerful
generativemodel but also its excellent nonlinear latent feature
representation learning. However, using VAEs for validating
and visualizing learning in biological datasets is particularly
challenging and remains in its infancy. In the following sec-
tions, we aim to provide a concise and insightful discussion
of the latest advances in applying VAEs to bioinformatics.
We particularly highlight the most important techniques in
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FIGURE 2. A diagram of the VAE used for molecular design.

successfully applying VAEs in this field: 1) molecular design;
2) sequence datasets analyses; and 3) medical imaging and
image analyses.

A. MOLECULAR DESIGN
VAEs has numerous applications in drug discovery, including
de novo molecular design. The general application of VAEs
in compound dataset is to generate new chemical/molecule
structures. Compound screening refers to the process of
selecting compounds with high activity for a specific target
through standardized experimental methods. In order to dis-
cover and optimize molecules, a chemical space of drug-like
molecules estimated to be 1023 - 1060 must be searched.
Screening out compounds that meet the activity index [116] is
a time consuming process. Moreover, during the optimization
process, adjusting one property by changing the molecular
structure often has negative effects on another property [31].
VAEs can accelerate the development of this process, with
p (x|z) learned by the decoder aiding in appropriate chemi-
cal/molecule structure generation.

In VAEs, chemicals/molecules are represented as contin-
uous and differentiable vectors residing on a probabilistic
manifold. By grouping molecules according to properties
of interest, new molecules with desired profiles could be
generated by decoding latent vectors from the organized
continuous latent space back to discrete molecules. For a
givenmolecule, we can sample nearby latent spaces to decode
similar molecules. As we increase this distance, increasingly
dissimilar molecules can be decoded. A diagram of the VAE
used for molecular design is shown in Figure 2.

The two main molecular representations used by pre-
viously reported generative models are 1) a string nota-
tion called Simplified Molecular Input Line Entry System
(SMILES) [117], and 2) graphs [118]. Figure 2 shows that
given a starting from a discrete molecular representation,
such as a SMILES string, the encoder network converts each
molecule into a vector in the latent space, which is effectively
a continuous molecular representation. Given a point in the
latent space, the decoder network produces a corresponding

FIGURE 3. A molecular represented as a string notation called Simplified
Molecular Input Line Entry System (SMILES).

FIGURE 4. Molecule represented as a graph.

SMILES string. A molecular represented as a string notation
and as graph are shown in Figure 3 and Figure 4, respectively.
Note that the sampling results are generated by the code
provided in the original papers [25], [32]. Table 2 shows
literatures for the application of VAEs in molecular design.

Initial work in generative models for chemical/molecule
compound structures focused on SMILES based methods.
Gómez-Bombarelli et al. [25] implemented a VAE-based
method that can convert discrete variables of a molecule
to multidimensional continuous variables to generate new
molecules. The encoder converts the discrete variables of the
molecule into continuous variables, and the decoder converts
these continuous variables back into discrete variables. Con-
tinuous variables of molecules can automatically generate
new chemical structures by decoding vectors from the latent
space. However, above methods often produce outputs that
are not valid. Kusner et al. [26] used SMILES grammar,
extracted from the training set, to improve the quality of the
latent space. Although they saw an improvement, the models
still struggled with invalid outputs and undesirable chem-
ical structures such as large carbon rings and uncommon
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TABLE 2. Literatures for the application of VAEs in molecular design.

functional groups. Since complex non-linear methods were
used, molecules possessing desired properties could be
located inmultiple locations in the latent space, thusmolecule
generation with an entire profile of properties is difficult.
Mohammadi et al. [31] proposed the Penalized Variational
Autoencoder (PVAE), which incorporates a penalty term on
the decoder of the VAE and operates directly on SMILES
strings. It demonstrates that the PVAE results in a signifi-
cant improvement in latent space quality and transferabil-
ity to new chemistry over all previous VAE approaches.
Schiff et al. [27] examined the latent space of a VAE trained
on molecular SMILES representations, and demonstrate how
well the VAE’s latent space encodes 3D topological structure
of molecules. Pang et al. [28] proposed a VAE to learn
energy-based prior model with SMILES molecules in latent
space. Samanta et al. [29] trained a VAE that provides a
rapid and novel metric for calculating molecular similarity.
Yan et al. [30] propose a re-balancing VAE Loss to generate
more valid SMILES molecules.

As a result of challenges encountered with SMILES-based
methods, attention has shifted to graph-based methods with
the proposal that it could be a superior molecular repre-
sentation for VAE approaches [121]. Jin et al. [32] devel-
oped a graph based VAE that operates on a vocabulary
of subgraphs extracted from the training set. Their method
greatly improved the quality of the latent space over previous

approaches. Liu et al. [33] proposed a variational autoen-
coder model in which both encoder and decoder are graph-
structured, i.e., a sequential generative model for graphs built
from a VAE with Gated Graph Neural Networks (GGNN)
for the application of molecule generation. This approach
achieved state-of-the-art generation and optimization results.
Simonovsky and Komodakis [34] addressed the problem
of generating graphs from a continuous embedding in the
context of VAEs, which combines standard graph matching
algorithm to align the output to the ground truth. Tavakoli
and Baldi [119] proposed a generative model in the form of a
VAE which operates on the 2D-graph structure of molecules
in order to continuously represent molecules. Shervani-Tabar
and Zabaras [35] presented a VAE-based framework for
computing the statistics of molecular properties given small
size training data set. Nesterov et al. [36] proposed an
extended version of the VAE, which allows to efficiently
generate 3-d molecular structures and explore molecular
domains within a continuous low-dimensional representa-
tion of the molecules. Ragoza et al. [37] proposed a VAE
based model and a fitting algorithm to generate 3Dmolecular
structures by converting continuous grids to discrete molec-
ular structures. Mahmood et al. [38] proposed a mask map
model based on VAEs, which can generate novel molecular
graphs by iteratively generating a subset of the graph com-
ponents. Kwon et al. [40] constructed a VAE-based model to
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compress graph representation for scalable molecular graph
generation. While the literature related to the creation of
novel molecules using VAE models has proliferated, similar
works that strive to do the same for inorganic crystal struc-
tures are less common but are on the rise. Court et al. [120]
present an VAE-based deep-representation learning pipeline
for geometrically optimized 3-D crystal structures that simul-
taneously predicts the values of eight target properties.
Graph-based molecule sampled from VAE Gaussian prior
distribution is shown in Figure 5. Note that the sampling
results are generated by the code provided in the original
paper [32].

FIGURE 5. Graph-based molecule sampled from VAE Gaussian prior
distribution.

In addition to generating new molecules, there are also
studies on representation learning for decision-making based
on VAEs. Koge et al. [39] proposed a method of molecular
embedding learning using a combination of VAE and metric
learning. This method can simultaneously maintain the con-
sistency of the relationship between molecular structural fea-
tures and physical properties, resulting in better predictions.

B. SEQUENCE DATASET ANALYSES
Another application of VAEs in bioinformatics is the applica-
tion to sequence data such as genetic and amino acid datasets.
Using deep learning tools for DNA/amino acid analyses usu-
ally requires converting sequences to numbers because many
deep learning algorithms cannot work with categorical data
directly. We can do this by one hot encoding our represen-
tations dataset. A one hot encoding is a representation of
categorical variables as binary vectors. Figure 6 shows an
example of a wild-type sequence represented as one-hotm×n
matrix. Herem is the number of categories and n is the length
of the sequence. Red dots correspond to a certain category at

FIGURE 6. A amino acid sequence represented as one-hot matrix.

a certain position being utilized in an amino acid. Note that
the sampling results are generated by the code provided in the
original paper [46].

As a generative model, The VAEs can be used for data
augmentation with more meaningful intra-class variations.
Therefore, the basic applications of VAEs in sequence data
are functional sequence engineering.Moreover, the VAEs can
be used as feature dimensionality reduction technique. The
main benefit of feature dimensionality reduction is to elimi-
nate any redundant features and noise, which can improve the
accuracy of prediction or generalization ability and support
the interpretability of research results. Feature dimensional-
ity reduction methods can be divided into two categories:
supervised and unsupervised techniques [122]. Supervised
techniques such as filter techniques [123], multivariate wrap-
per techniques [124] and embedded feature reduction tech-
niques [125] select relevant features based on their ability
to compute differences between groups. Unsupervised tech-
niques such as Principal Component Analysis (PCA) [126],
Independent Component Analysis (ICA) [127], AE, VAE and
Coordinate-Based Meta-Analysis (CBMA) [128] are capable
of selecting relevant features based on the results of inter-
est. VAE utilizes the AE structure as a data pre-processing
approach to generating representations that represent the
structure of input data, and reduce its complexity, but does
not reduce the quality or performance of the data.

In addition, since the structure of a VAE is a pre-
expandable structure, it can easily handle the integration of
multiple heterogeneous data. Therefore, the VAEs can be
successfully utilized in a more representation learning setting
to learn the representation in complex integrative analyses
of data, and eventually lead to more stable and accurate
results [55]. Specifically, for many sequence databases there
are different information sets besides sequence information
can be obtained. Such as The Cancer Genome Atlas (TCGA)
including gene expression levels information, so they can
be used for more in-depth biomedical analyses such as pre-
dict effects of mutations, estimate gene expression levels,
and DNA methylation analyses. A pipeline for building a
VAE-based system in specific biomedical sequences analyses
is shown in Figure 7.

The biggest strength of VAE in representation learning is
that it makes nonlinear latent variable models easy to han-
dle and can model complex distributions. This has allowed
for efficient extraction of relevant biomedical information
from learned features for biological data sets, referred to as
unsupervised feature representation learning. Since sequence
space is exponentially large, and experiments are costly and
time consuming, accurate computational methods are essen-
tial for sequence annotation and design. In sequence analyses,
every possible higher order interaction between sequences
needs explicit incorporation of a unique free parameter that
must be estimated. However, traditional methods such as pair-
wise model for sequence analyses are still unable to model
higher-order effects. Rather than describing them by explicit
inclusion of parameters for each type interaction, it is possible
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FIGURE 7. VAEs in sequence analyses Source: Adapted from [8].

to instead implicitly capture higher-order correlations by
means of latent variables. Latent variables models posit hid-
den factors of variation that explain observed data and involve
joint estimation of both hidden variables for each data point
as well as global parameters describing how these hidden
variables affect the observed. Towards this goal, numerous
machine learning models have been developed to feature
learning from evolutionary sequence data. Two widely used
models for the analyses of genetic data, PCA and admixture
analyses [129] can be cast as latent variable models with
linear dependencies. Although these linear latent variable
models are restricted in the types of correlations that they
can model, replacing their linear dependencies with flexible
nonlinear transformations can in principle allow the models
to capture arbitrary order correlations between observed
variables [57]. Learning robust predictive models based on
sequence data is a key step in the development of precision
medicine. Extracting meaningful low-dimensional feature
representations from molecular data is the key to success-
fully solving high-dimensional molecular problems. Recent
advances in VAEs have made such nonlinear latent variable
models tractable for modeling complex distributions. This
has allowed for efficient extraction of relevant biomedical
information from learned features for biological data sets,
referred to as unsupervised feature representation learning.
Figure 8 shows the contrast between traditional models that
factorize dependency in sequence families with a nonlinear
latent variable z in a VAE model that can jointly influence
many positions at the same time.

The main research areas based on the application of VAEs
on sequence datasets include:

1) functional sequence engineering [41]–[45], [46];
2) sequence structures dimensionality reduction [47],

[51]–[53];
3) integrated multi-omics data analyses [55];

FIGURE 8. A nonlinear latent variable model VAE captures higher-order
dependencies in proteins.

4) predict effects of mutations [46], [57];
5) gene expression analyses [53], [58]–[60] and
6) DNA methylation analyses [55], [63]–[65].
Table 3 shows literatures for the application of VAEs in

sequence analyses. Note that if the dataset is public, we show
the name of the data set. If the dataset can only be accessed
by the owner or needs appropriate permission, we show it as
private.

1) FUNCTIONAL SEQUENCE ENGINEERING
Protein engineering is of increasing importance in modern
therapeutics. VAEs provide an alternative and potentially
complementary approach capable of exploiting the infor-
mation available in sequence and structure databases. Such
conditional generation is of particular interest for protein
design where it is frequently desirable to maintain a par-
ticular function while modifying a property such as stabil-
ity or solubility. Guo et al. [41] proposed an approach to
generating functionally-relevant three-dimensional structures
of a protein and show the promise of generative models in
directly revealing the latent space for sampling novel tertiary
structures. Killoran et al. [42] propose VAE-based methods
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TABLE 3. Literatures for the application of VAEs in sequence analyses.
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to generate DNA sequences and adjust them to have the
required characteristics. Davidsen et al. [43] proposed a VAE
model parameterized by deep neural networks for T cell
receptor (TCR) repertoires and show that simple VAEmodels
can perform accurate cohort frequency estimation, learn the
rules of VDJ recombination, and generalize well to unseen
sequences. Another approach has been to use trained models
to directly move towards sampling sequences that have mea-
surable and desired attributes. Greener et al. [44] indicated
that CVAEs are able to carry out protein design tasks by
conditioning output sequences on desired structural prop-
erties. Hawkins-Hooker et al. [45] proposed a VAE-based
model that can be used to generate aligned sequence input
and raw sequence input, and showed that both can reproduce
the amino acid usage pattern of the family. Guo et al. [41]
proposed a VAE-based interpretative approach to generate
functionally related 3D structures of proteins.

2) SEQUENCE STRUCTURES DIMENSIONALITY REDUCTION
At present, the utilize of dimensionality reduction to explain
the structure of single-cell sequencing data is still a chal-
lenge. Sequence datasets usually have high dimensionality,
performing dimensionality reduction, followed by visual-
ization or downstream analyses has become a key strat-
egy for exploratory data analyses in sequence datasets,
e.g., Single-cell RNA sequencing (scRNA-seq) [130], [131].
Ding et al. [47] provided a VAE based computational
framework to compute low-dimensional embeddings of
scRNA-seq data while preserving global structure of the
high-dimensional measurements. Wang and Gu [51] pro-
posed the deep variational autoencoder for the unsupervised
dimensionality reduction and visualization of scRNA-seq
data and find the nonlinear hierarchical feature representa-
tions of the original data as well as provide better represen-
tations for very rare cell populations in the 2D visualization.
Hu and Greene [53] evaluated the performance of a simple
VAE model developed for bulk gene expression data under
various parameter settings and found substantial performance
differences with hyperparameter tuning. Ding and Regev [52]
introduced a hyperspherical VAE based model to embed
cells into low-dimensional hyperspherical spaces, as a more
accurate representation of the data which overcomes cell
crowding and facilitates interactive visualization of large
datasets. Rashid et al. [54] introduced a VAEs based method
converts the single-cell genome data is into a feature space
with a smaller dimension, so that the tumor subpopula-
tions can be divided more effectively. The analysis of the
encoding feature space reveals the evolutionary relation-
ship between cell subpopulations. In addition, this method
tolerates dropout of gene expression in single-cell RNA
sequencing datasets. Dony et al. [48] found that VAE with
a VAMP prior is capable of learning biologically informative
embeddings without compromising on generative proper-
ties. Oh and Zhang [49] utilized various autoencoders to
convert high-dimensional microbiome data into robust low-
dimensional representations, and apply machine learning

classification algorithms to the learned representations.
Way et al. [50] compared different methods include VAE
to compress data dimensionalities and learn complementary
biological representations.

3) INTEGRATED MULTI-OMICS DATA ANALYSES
Multi-omics data covers a wide range of data generated
from the transcriptome, proteome, genome, epigenome and
metabolome. Due to a comprehensive understanding of dis-
eases and human health, it is necessary to explain the molec-
ular intricacy and multi-level variations of the multi-omics
data. By providing an integrated system-level approach,
the availability of multi-omics data has revolutionized the
fields of biology andmedicine. Simultaneously analyzing and
integrating different data types can better help researchers
study the mechanism and internal structure of biomedical
processes at the molecular level. Simidjievski et al. [55] pro-
posed VAE-based architecture is utilized to integrate hetero-
geneous cancer data types which including multi-omics and
clinical data, and perform extensive analysis. They designed
a detailed computational framework for VAEs as a system,
which can correctly model the nonlinear representations in
the integration data, while still being able to reduce the data
dimension and acquire good representation learning. He and
Xie [56] adopt a VAE-based approach on the unlabeled het-
erogeneous omics data in predicting anti-cancer drug sen-
sitivity from somatic mutations via the assistance of gene
expressions

4) PREDICT EFFECTS OF MUTATIONS
Accurate prediction of the effects of sequence variation is
a major goal in biological research. The traditional method
is through site independent or pairwise models [132]–[135].
However, they are unable to model higher-order correlations.
The most recent improvement in model performance was
made possible by the VAE. Riesselman et al. [57] used VAEs
to infer biological sequences from large multi-sequence
alignments and predict the effects of mutations and orga-
nize sequence information, all while being grounded with
biologically motivated architecture learned in unsupervised
fashion. The accuracy achieved with the VAE approaches
exceeds the site-independent or pairwise interaction models.
Sinai et al. [46] generated protein sequences using VAEs with
the goal of predicting how mutations affect protein function.
A nonlinear latent variable model VAE captures higher-order
dependencies in proteins is shown in Figure 8.

5) GENE EXPRESSION ANALYSES
Since the VAEs model can perform meaningful representa-
tion learning in the latent space, it can generate and explore
hypothetical gene expression under the perturbation of dif-
ferent molecules and genetic sequences. As an example,
this could be used to predict a tumor’s response to spe-
cific therapies, or to characterize complex gene expression
activations existing in differential proportions in different
tumors. The low dimensional latent space generated by the
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VAEs have been used to reveal complex patterns and novel
biological signals from large-scale gene expression data and
carry out drug response predictions. Grønbech et al. [58]
proposed a novel variational auto-encoder-based method
for analyses of scRNA-seq data. It is able to estimate the
expected gene expression levels and model a latent rep-
resentation for each cell, with support for several count
likelihood functions. They use a variant of the variational
auto-encoder which has a priori clustering in the latent space.
Way et al. [59] proposed the research to which a VAE can
be trained to model cancer gene expression, and capture
biologically-relevant features. Dincer et al. [60] utilized a
VAEs-based model to extract low-dimensional features From
public unlabeled gene expression data, and the effectiveness
of these low-dimensional representations is demonstrated.
And they further demonstrate that the learned features are
related to drug response predictions. Kim et al. [61] intro-
duced a VAE-based survival prediction model to extract
genes’ significant features that can be used for patient sur-
vival prediction. Bica et al. [62] proposed a method based on
VAEs, which can model cell differentiation by constructing
low-dimensional meaningful representations from complex
and high-dimensional gene expression data.

6) DNA METHYLATION ANALYSES
DNA methylation is a well-defined epigenetic biomarker
for monitoring cancer development and its treatment effi-
cacy because of role it plays in pathways and regulation of
gene expression. DNA Methylation using VAEs have been
shown to learn latent representations of the DNAmethylation
landscape from three independent breast tumor datasets and
demonstrate the feasibility of VAEs to track representative
differential methylation patterns among clinical subtypes of
tumors. Wang and Wang [65] showed that DNA methylation
data can be used with VAEs that can learn meaningful signals
from merged datasets that credibly represent the subtype of
the samples. Qiu et al. [66] showed a representation learn-
ing framework for transcriptome and methylome data based
on VAE.

C. MEDICAL IMAGING AND IMAGE ANALYSES
Some of the popular medical imaging techniques for the
early detection and diagnosis of diseases include magnetic
resonance imaging (MRI), computed tomography (CT),
ultrasound, X-rays, mammography and positron emission
tomography (PET). Imaging enables scientists to see the phe-
notype and behavior of host, organ, tissue, cell, and subcellu-
lar components. Digital image analyses reveal hidden biology
and pathology as well as drug action mechanisms. VAEs
have also succeeded in biological image analyses, and many
studies show superior performance. The main research area
based on the VAE use in medical imaging datasets includes:

1) Medical image data augmentation for downstream tasks
include image classification [67], [70], [78], [79], image seg-
mentation [71]–[75], [86], image restoration [84], [85], and
image reconstruction [71], [80]–[82].

2) Improve the interpretability of representation learn-
ing [78], [86], [88], [89].

Table 4 shows the literatures for the application of VAEs in
medical imaging and image analyses. Note that if the dataset
is public, we show the name of the data set. If the dataset
can only be accessed by the owner or needs appropriate
permission, we show it as private.

1) MEDICAL IMAGE AUGMENTATION FOR DOWNSTREAM
TASKS
Deep learning models have shown significant success in
analyzing clinical images and utilizing them for downstream
tasks such as medical image classification. However, many
applications of deep learning can only be realized on the
premise of having a large amount of labeled data, and it
is impractical to obtain large amounts of data in clinical
medicine. Inspired by humans’ ability to learn quickly from
a small number of samples, few-sample learning has become
a hot topic in artificial intelligence. The few-sample learning
solves the problem of the limited training data set through
the process of imitating human brain, thus getting closer to
the application scenario. Data augmentation is a strategy that
allows researchers to have a significantly increased amount of
data available for training models without actually collecting
new data. The easiest way for data generation is through
simple image transformation [104] such as rotation, color
jittering, noise addition, and image translation. However,
these methods only generate duplicate versions of the original
data, so the entire data set still lacks intra-class variation.
Since VAEs learn variations in the data, they can be used for
data augmentation to effectively improve performance of the
downstream tasks [136], [137]. This is especially useful in
imbalanced dataset problems and few-shot learning where a
few classes may have low representation in the dataset [138].

To themedical image classification tasks, Pesteie et al. [67]
proposed conditional generative model based on VAEs that
learns the latent space independent of the labels to further
improve the image classification task. Biffi et al. [70] pro-
posed a 3D convolution generation model based on VAEs,
which can be utilized to automatically classify images of
cardiac disease patients related to structural remodeling
and also improves the interpretability of the VAEs to fur-
ther enhancing the clinical value. Uzunova et al. [78] pro-
posed learns the meaningful perturbations of pathological
regions by defining plausible pathology perturbation based
on replacing the pixel values with healthy looking tissue
learned by VAEs, which also improve the interpretability
of the black box classifiers. Uzunova et al. [79] learns
the entire variability of healthy data and detect patholo-
gies by a conditional VAE. Díaz Berenguer et al. [68] pro-
posed explainable semi-supervised representation learning
based on VAE for COVID-19 diagnosis from CT Imaging.
Thiagarajan et al. [69] proposed a VAE-based model to pre-
dict the type of lesion. This model is used to distinguish
different types of lesions by extracting interpretable features.
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TABLE 4. Literatures for the application of VAEs in medical imaging and image analyses.

To the medical image segmentation tasks, Myronenko [74]
proposed a semantic segmentation network for automatically
segmenting brain tumors based on the VAE architecture and
3D MRI data sets. This network not only improves the per-
formance of automated segmentation but also consistently
acquires excellent training accuracy for random initialization.
To the few shot learning problem in medical image segmen-
tation, Ouyang et al. [75] proposed a method that combines

VAEs and domain adaptation of transfer learning techniques
to learn the feature latent space shared by both the source
domain and the target domain, which can be utilized in the
segmentation process with only a few target set. Another
approach for few shot learning is the used of semi-supervised
learning in segmentation with VAEs: Sedai et al. [72] pro-
posed a semi-supervised VAEs-based method to segment
optical cup, and utilized a small number of labeled data to
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accurately localize the anatomical structure. Chen et al. [73]
proposed a VAEs-based semi-supervised image segmentation
method for Brain tumor and white matter hyperintensities
segmentation. Qian et al. [76] build a novel VAE for estimat-
ing object shape uncertainty in medical images.

To the medical image reconstruction tasks, Biffi et al. [71]
proposed a CVAE based model, which can reconstruct a
high-resolution 3D segmentation image of LV myocardium
from three segmentations of a 2D cardiac image. Edupu-
ganti et al. [80] introduced a VAEs-based method to ana-
lyze the uncertainty in compressed MR image recovery.
Gomez et al. [81] proposed an image reconstruction archi-
tecture based on β-VAE, which can combine numerous over-
lapping image patches into a fusion reconstruction of the
real fetal ultrasound images. Mostapha et al. [82] proposed
VAEGAN-based framework to the automatic quality con-
trol of structural MR images. Tudosiu et al. [83] proposed
a model based on VQ-VAE, which can effectively encode
full-resolution 3D brain volume, compressing data to 0.825%
of the original size, while maintaining image fidelity. Volok-
itin et al. [77] proposed a method to model the 3D MR brain
volumes distribution by combining the 2D samples obtained
by VAEs and the Gaussian model.

Image restoration is the task of removing unwanted noise
and distortions, giving us clean images that are closer to the
true but unknown signal. Prakash et al. [85] introduced a
fully-convolutional VAE to generate diverse and plausible
denoising solutions, sampled from a learned posterior. It can-
not only produce diverse results, but can also be leveraged for
downstream processing. Zilvan et al. [84] proposed denoising
convolutional VAE as feature extractor and also as a denoiser
for disease detection tasks.

2) REPRESENTATION LEARNING FOR DECISION-MAKING
The VAEs can apply to large dataset with high dimensional
features, due to high computational complexity. And it can
learn meaningful fixed-size low-dimensional feature repre-
sentation in unsupervised manner. Lafarge et al. [87] pro-
posed the VAE-based framework to learn orientation-wise
disentangled generative factors of histopathology images.
The result shows the aggregated representation of sub-
populations of cells produces higher performances in subse-
quent tasks.

However, due to the scarcity of labelled training data of
medical datasets, one drawback of such unsupervised deep
neural networks is the lack of interpretability. Since many
neurons in neural networks turns into a many-to-many entan-
gled mess, the learned latent representations are usually not
directly interpretable. In medical research area, model inter-
pretability is not only important but also necessary, since
clinicians are increasingly relying on data-driven solutions
for patient monitoring and decision-making.

Established methods like guided backpropagation [139]
and gradCAMs [140] try to gain an insight into how neu-
ral networks learn and create intuitive visualizations based
on the learned network weights. However, they are mostly

heuristic and depend on the architecture of the neural net-
work. Another possibility is by using perturbations [141].
e.g., Uzunova et al. [78] tackle the interpretability problem
of generating plausible explanations by meaningful perturba-
tions using VAEs. Recent scientific advances have combined
the interpretability of supervised settings with the power
of VAEs. Zhao et al. [88] proposed a VAEs based unified
probabilistic model for learning the latent space of imag-
ing data and performing supervised regression. Their results
allow for intuitive interpretation of the structural develop-
mental patterns of the human brain. Puyol-Antón et al. [89]
proposed to use a VAE featuring a regression loss in the
latent space to simultaneously learn efficient representations
of cardiac function andmap their changewith regard to differ-
ences in systolic blood pressure (a measure of hypertension).
Chartsias et al. [86] proposed VAE based model to learn
decomposed meaningful spatial disentangled representation
of cardiac imaging data, and leveraging these for improved
semi-supervised segmentation results.

IV. CONCLUSION AND FUTURE OPPORTUNITIES
In this article, we comprehensively summarized the essential
concepts of VAEs and its applications in the areas of molecu-
lar design, sequence dataset analyses, and medical imaging
analyses. It is particularly important that VAE not only be
used as a powerful generative model, but also its excellent
nonlinear latent feature representation learning capability be
used to produce a series of new research directions, and vari-
ous applications in biomedical informatics. We particularly
highlighted the most important techniques in successfully
applying VAEs in the following fields: 1)molecular design,
2) sequence dataset analyses, and 3) medical imaging and
image analyses.

In molecular design, VAEs can produce molecular gener-
ation in both the SMILES string, and graphs of molecular
representations. The encoder converts the discrete variables
of the molecule into continuous variables, and the decoder
converts these continuous variables back into discrete vari-
ables. However, since molecules possessing desired proper-
ties could be located in multiple locations in the latent space,
molecular generation with an entire profile of properties is
difficult. Therefore, future work may include an extension to
tune VAEs to have desired properties and further experimen-
tal validation. In addition, compared with sequence dataset
analyses, medical imaging and image analyses, there are
few studies on representation learning for decision-making
approach using VAEs on the molecular dataset. We hope that
more research will appear in this field in the future.

In sequence dataset analyses, VAE can assert not only its
advantages as a generative model and feature dimension-
ality reduction technique, but also its benefits in nonlin-
ear representation learning. In particular, VAEs provide an
alternative and potentially complementary approach capable
of exploiting the information available in sequences and
tune them to have desired properties. Moreover, VAEs can
be used for more in-depth biomedical analyses, such as
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integrated multi-omics data analyses, prediction of the effects
of mutations, gene expression analyses, and DNA methyla-
tion analyses, so that more accurate and stable results can
be achieved. In addition, the VAEs can be used as a feature
dimensionality reduction technique. The main benefit of fea-
ture dimensionality reduction is to eliminate any redundant
features and noise, which can improve the accuracy of predic-
tion or generalization ability and support the interpretability
of research results. Although the VAEmodel in sequence data
set analysis has challenges, such as lack of interpretability
and increased potential for overfitting, VAE may be increas-
ingly important in the high-throughput design and biological
sequence annotation. The applications of VAEs in sequence
dataset analyses are currently in a relatively early stage of
development. Therefore, its application in this area as well as
the improvement of its generality such as increase in quality
of feature reduction approaches [142], and interpretability
will be more extensive in the future.

In medical imaging and image analyses, since VAEs
learn variations in the data, therefore, they can be used for
image augmentation to effectively improve the performance
of downstream tasks such as medical image classification,
segmentation, image restoration, and reconstruction. This
is especially useful in imbalanced dataset problems, and
few-shot learning where a few classes may have low repre-
sentation in the dataset. However, high sensitivity to input
parameters and high running time are some disadvantages of
the deep learning based VAEs [143]. In the future, we expect
that there will be more research achieving high classification
accuracy with low computational complexity by the use of
VAEs. On the other hand, even though the VAE can learn
meaningful fixed-size low-dimensional feature representa-
tion in an unsupervised manner, one drawback of such unsu-
pervised deep neural networks is the lack of interpretability.

Currently, the application of deep learning in EHR data
for clinical informatics research has increased. Compared
to traditional methods in clinical informatics, deep learning
methods offer better performance and require less time, data
preprocessing, and representation learning costs. However,
there is no research on the application of VAEs in EHR data
yet [7]. EHR data is very heterogeneous and can include
multiple data types. This is in sharp contrast to the homo-
geneity of the original input data type with only image pixels
or only Neuro-Linguistic Programming (NLP) characters.
However, the key requirement of EHR dataset analyses is to
acquire recognized and meaningful findings from such high-
dimensional, sparse, and complex clinical data. The feature
representation learning ability in a higher-level abstraction
of VAEs mentioned in this article may be utilized to acquire
meaningful and powerful research results from EHRs. In the
future, we expect that there will be more research focusing on
the application of VAEs in EHR data analyses.

One of the most important goals of representation learning
for biomedical informatics research is to make decisions
based on VAEs. There are many biomedical applications
that require decisions. In this survey, we have described

researchers have accordingly attempted to use VAEs for
decision-making applications, such as mutation-effect pre-
diction for genomic sequences [57]. To make decisions based
on VAEs, researchers implicitly appeal to Bayesian decision
theory, such as taking the action that minimizes expected
loss under the posterior distribution [144]. Lopez et al. [145]
proposed a three-step procedure for using VAE for decision-
making.

One drawback of such unsupervised deep neural networks
is the lack of interpretability. Since many neurons in neural
networks turn into a many-to-many entangled complexity,
the learned latent representations are usually not directly
interpretable. In medical research, model interpretability is
not only important but also necessary, as clinicians are
increasingly relying on data-driven solutions for patient mon-
itoring and decision making. Recent scientific advances have
combined the interpretability of supervised settings with
the power of VAEs. However, more research is needed to
ensure the worst-case performance of VAE-based models
in diagnostic problems before they are used in high-stakes
decision-making scenarios.

We provided a comprehensive review of the VAEs and its
current representation learning research directions in biomed-
ical informatics. We also provided an interactive visual code
on GitHub for some papers to make this survey beneficial.
We hope that this will be useful in improving the state-of-
the-art leading to research breakthroughs in related fields.
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