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ABSTRACT With the growing maturity of unmanned aerial vehicle (UAV) technology, its applications
have widened to many spheres of life. The prerequisite for a UAV to perform air tasks smoothly is an
accurate localization of its own position. Traditional UAVnavigation relies on theGlobal Navigation Satellite
System (GNSS) for localization; however, this system has disadvantages of instability and susceptibility to
interference. Therefore, to obtain accuracy in UAV pose estimation in GNSS-denied environments, a UAV
localization method that is assisted by deep learning features of satellite imagery is proposed. With the
inclusion of a top-view optical camera to the UAV, localization is achieved based on satellite imageries
with geographic coordinates and a digital elevation model (DEM). By utilizing the difference between
the UAV frame and satellite imagery, the convolutional neural network is used to extract deep learning
features between the two images to achieve stable registration. To improve the accuracy and robustness of the
localization method, a local optimization method based on bundle adjustment (BA) is proposed. Experiments
demonstrate that when the UAV’s relative altitude is 0.5 km, the average localization error of this method
under different trajectories is within 15 m.

INDEX TERMS Bundle adjustment, deep learning, localization, satellite imagery, unmanned aerial vehicle.

I. INTRODUCTION
With the growing maturity of unmanned aerial vehicle (UAV)
technology, UAVs are now used in various military and
civilian fields, including intelligence reconnaissance, mili-
tary strikes, search and rescue, land surveying and mapping,
precision agriculture, and environmental monitoring [1]–[4].
Similar to other types of robots, accurate localization of
their position is the prerequisite for UAVs to perform tasks
smoothly [5]. Traditional navigation technology relies on
GNSS; however, it has disadvantages, such as instabil-
ity and susceptibility to interference [6]. Carroll [7] and
Caballero et al. [8] pointed out that the number of satellites
and signal quality received by GNSS are important for cal-
culating the position of a UAV. Radio effects such as very
few satellites or multipath propagation will cause the degra-
dation of position estimation. Conte and Doherty [9] and

The associate editor coordinating the review of this manuscript and

approving it for publication was Xian Sun .

Viswanathan et al. [10] believe that GNSS jammerswill cause
signal interference, making position estimation unreliable.
UAVs rely only on GNSS signals that may be maliciously
interfered with, which will seriously affect mission execution
and even cause catastrophic consequences.

When GNSS cannot be used, additional airborne sen-
sors are required to assist navigation. Compared with laser
rangefinders, optical cameras are reduced in size, weight, and
cost, thereby making them more portable. The image cap-
tured by the camera contains a large amount of environmental
information, and comprehensive use of this information can
achieve accurate localization of the UAV.

Visual Odometry (VO) is used to study the estimation of
the pose of a UAV through a series of images [11]–[13].
However, in the absence of global corrections, the offset
accumulated by the odometer has a considerable influence on
the pose estimation of long trajectories. To reduce the impact
of drift, Liu and Zhang [14] and Glover et al. [15] proposed
the loop closure method. However, in general, the flight
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trajectory of the UAV is not closed. For the drift problem, one
possible solution is to register the UAV frame with satellite
imagery of a known geographic location and use the ground
reference to eliminate the accumulated error. This kind of
satellite imagery has a wide range of sources and almost
covers the entire surface of the earth.

Yol et al. [16] proposed a method for UAV localization
using a map stitched by a series of georeferenced images.
This method is based on a similarity function similar to
mutual information [17] and it is only suitable for localization
in a textured urban environment. Shan et al. [18] used the
histogram of oriented gradient (HOG) [19] features to register
UAV frames and satellite imageries, and subsequently used
particle filter algorithms to locate UAVs. This method is
not robust and relies heavily on clear buildings, roads, and
other textural characteristics. Jurevicius et al. [20] studied
the effect of the similarity of the image likelihood conver-
sion function on the results of the particle filter localization
algorithm [21] and proposed two parametric image similarity
of likelihood conversion functions to improve the accuracy
and robustness of the localization algorithm. This method
is more dependent on the real-time of the map, and the
use of an outdated map will increase the localization error.
Mantelli et al. [6] proposed a new binary robust independent
elementary feature (BRIEF) descriptor. Based on this descrip-
tor, the measurement method in a Monte Carlo localization
system is used for localization. The method assumes that
the flying attitude of the UAV is always horizontal, thereby
reducing the degree of freedom to four dimensions and
finally conducts experiments on satellite maps of different
years.

In the above methods, the flying environment of the UAV
was an urban area with richer textural features; however,
for areas with sparse texture, such as suburbs and rural
areas, traditional feature descriptors (such as SIFT [22] and
SURF [23]) often fail to extract effective features. In addition,
the acquisition time span of satellite imageries is large, and
it is difficult to overcome traditional feature descriptors for
changes in lighting conditions, atmospheric conditions, and
seasons.

In recent years, deep learning methods, especially the con-
volutional neural network (CNN) [24], have made tremen-
dous progress and performance improvements in computer
vision tasks such as image classification, target detection, and
segmentation. Using the continuous layers of CNN, complex
image features can be acquired easily, and specific deep
learning features can be learned [25]. Based on these stable
deep learning features, the registration of UAV frames, satel-
lite maps, and the estimation of UAV pose can improve the
robustness and adaptability of UAV visual localization.

Presently, some researchers have used the deep learning
features of satellite imageries to realize the pose estima-
tion of UAVs in various environments. Nassar et al. [26]
first used scale invariant feature transform (SIFT) to regis-
ter UAV frames and satellite maps and correlated the UAV
movement with the actual map position for preliminary

localization. A semantic shape matching algorithm was then
used to extract and match meaningful shape information from
the two images, and this information was used to improve
the localization accuracy. Shetty et al. [27] used a satellite
image-based cross-vision geolocation method to estimate
the UAV’s pose. This method is composed of two parts:
scene localization network and camera localization network.
After being combined with a VO, the defect of serious
error accumulation of VO is improved to a certain extent.
Goforth et al. [28] regard the ground as a plane and use a
CNN to solve the homography between the ground and UAV
frame to estimate theUAV’s pose. Thismethod overcomes the
difference betweenUAV frames and satellitemaps to a certain
extent, but simply regards the ground as a plane. In the case of
complex terrain, UAV localization accuracy will be seriously
reduced.

Although the above methods have made certain explo-
rations on the visual localization of the UAV, they all simplify
the flight attitude or specify a certain flight environment,
and the UAV may perform tasks in various complex envi-
ronments. This study proposes a UAV visual localization
method based on deep learning features of satellite imageries,
which overcomes the difference between UAV frames and
satellite imageries by extracting stable deep learning features.
To adapt to the complex terrain, a global digital elevation
model (DEM) is used. Finally, the local optimization method
is used to achieve higher precision positioning.

The remainder of the paper is organized as follows:
Section II presents the proposed method in detail; Section III
presents and analyzes the data and experimental results with
discussion, and conclusions are provided in Section IV.

II. MATERIALS AND METHODS
We assume that the position of the UAV is approximately
known at the time of capturing the initial frame. This is a
reasonable assumption in applications where the approximate
take-off position is known, or where a single GNSS data
point is given, before beginning the GNSS-denied flight.
UAV frames are matched to achieve inter-frame pose transfer.
To eliminate accumulated errors in the process of inter-frame
pose transfer, UAV frames need to be registered with satellite
imageries possessing known coordinates. However, the pro-
cess of feature extraction and matching based on deep
learning is computationally expensive and time-consuming.
To reduce the amount of calculation and improve real-time
performance, this study uses the concept of ORB-SLAM [29]
to define keyframes in the UAV sequence. The keyframe is a
frame which used to match the satellite imagery to obtain the
absolute pose of the UAV, to eliminate the accumulated error
in the process of transferring the pose between frames. The
precise choice of keyframes depends on many characteristics
of the particular flight hardware and the speed of the vehicle,
and must be tuned for a given application. Frames other
than the keyframe are matched with the nearest keyframe to
convey the pose. The UAV pose estimation process is shown
in Fig. 1 and Ti is the keyframe.
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FIGURE 1. Schematic diagram of the UAV pose estimation process.

A. KEYFRAME POSE ESTIMATION
First, the local satellite imagery of the corresponding area is
determined according to the initial position of the UAV. The
deep learning features of the UAV frame and local satellite
imagery are extracted for matching. To overcome the huge
difference between UAV frames and satellite imageries, this
study chooses the D2-Net [30] network that simultaneously
performs feature point detection and descriptor extraction.
This method (proposed by Mihai Dusmanu et al. of ETH
Zurich in 2019) has shown great potential in solving road
sign recognition for the visual navigation of ground vehi-
cles in changing scenarios. Most of the images processed
by D2-Net are ground close-range images. This study used
satellite imageries of different years obtained from Google
Maps to fine-tune the network. Based on the introduction
of the basic idea of D2-Net feature extraction, the robust
matching of UAV frames and satellite imageries is achieved.
The algorithm flow is shown in Fig. 2.

FIGURE 2. Matching algorithm flow.

Fine-tuning the D2-Net network only requires a few rep-
resentative UAV frames and satellite imageries of the corre-
sponding area. This article selects imageries from Dengfeng
City, Henan Province, China, covering an area of approxi-
mately 15 km2. The reason for choosing this area is that its
textural characteristics vary greatly. It is close to the Songshan
Mountains and has conspicuous terrain undulations, includ-
ing typical flying environments such as cities, suburbs, rural
areas, and jungles. The imagery is gathered during the years

2009, 2012, 2013, 2014, 2015, 2016, 2017, 2018, and 2019,
across spring, summer, fall, and winter. The size of each
imagery is 7247 × 9033 pixels, and the ground resolution
is 0.5 m. The UAV frame acquisition time is the winter
of 2019. The open source motion recovery structure (SfM)
software COLMAP [31] was used to establish an accurate
three-dimensional model, and the UAV frame and the satellite
imagery were mapped at the pixel level in geographic coor-
dinates. During training, a random selection was made from
all satellite imageries and randomly specified latitude and
longitude, and subsequently, 256× 256-pixel image patches
were centered on that location from the satellite imageries
and UAV frames, as shown in Fig. 3. Finally, the image
patches were input to the D2-Net network, and the weight
was updated according to the loss function.

FIGURE 3. Examples from the alignment training dataset. Satellite
imagery patches (top) and their corresponding UAV frame patches
(bottom).

The fine-tuned D2-Net network was used to extract fea-
ture points and descriptors from UAV frames and satellite
imageries, respectively. The feature matching method uses
the fast-approximate nearest neighbor (FLANN) method.
Due to the large image difference, there are several mis-
matches. In this study, the random sample consensus
(RANSAC) constraint is used to eliminate mismatched
points, and the geometric model chooses the affine transfor-
mation model.

After determining the two-dimensional feature matching
relationship between the keyframe and satellite imagery,
the keyframe feature points correspond well to the satellite
imagery feature points. The plane coordinates of each pixel
of the satellite imagery are known, and the elevation value
is obtained by DEM interpolation. The three-dimensional
coordinates of the satellite imagery feature points are the
ground point coordinates corresponding to the keyframe fea-
ture points. Knowing the keyframe feature point image point
coordinates and the corresponding ground point coordinates,
the efficient perspective-n-points (EPnP) [32] algorithm was
used to solve the UAV’s pose.

B. CURRENT FRAME POSE ESTIMATION
For the current frame (other than the keyframe), the ORB [33]
feature with a small calculation amount is selected to match
the keyframe to achieve the pose transfer between frames,
as shown in Fig. 4. Because the feature extraction algorithm
for inter-frame matching is different from the feature extrac-
tion algorithm for keyframe and satellite imagery matching,
the location of feature points is not repeatable, and therefore,
the feature point tracking method in ORB-SLAM [29] cannot
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FIGURE 4. Pose transfer between frames.

be used. To obtain the ground point coordinates correspond-
ing to the feature points of the current frame, this study
adopted the iterative photogrammetric method [34], [35].

After determining the two-dimensional feature match-
ing relationship between the keyframe and general frame,
the pose of the keyframe and the corresponding ground DEM
are known, and the ground point coordinates corresponding to
the keyframe feature points are obtained through the iterative
photogrammetric method.

Suppose the pixel coordinate of the feature point is (us, vs),
according to the elements of interior orientation, the normal-
ized plane coordinate (x ′, y′, 1) of the feature points can be
obtained in the image space coordinate system:

x ′ =
us − cx
fx

y′ = −
vs − cy
fy

(1)

where fx and fy are the normalized focal length on u axis
and v axis respectively, and (x, y, 1) is the pixel coordinate of
the optical center of the camera. For normalized coordinate
de-distortion, this study only considers radial distortion, and
the de-distorted coordinate (x, y, 1) is obtained:{

x = x ′
/(

1+ k1r2 + k2r4
)

y = y′
/(

1+ k1r2 + k2r4
) (2)

Among them, r2 = x ′2 + y′2, the distortion parame-
ter k1, and k2 are obtained by camera calibration. If the
elevation value of the camera’s outer azimuth elements
and the corresponding ground point coordinates are known,
the corresponding ground point plane coordinates can be
easily solved according to the collinear condition equation as
follows:

X = (Z − ZS)
a1x + a2y− a3
c1x + c2y− c3

+ XS

Y = (Z − ZS)
b1x + b2y− b3
c1x + c2y− c3

+ YS
(3)

Among them, (X ,Y ,Z ) is the coordinate of the feature
point corresponding to the ground point p in the geodetic
coordinate system, t = (XS ,YS ,ZS ) is the line element in
the elements of exterior orientation, and ai, bi, ci(i = 1, 2, 3)

is the element in the rotation matrix R composed of the corner
elements in the elements of exterior orientation.

However, the elevation value of the ground point coor-
dinates is unknown. Only the DEM of the corresponding
area is known, and therefore, an iterative solution process is
required. As shown in Fig. 5, first provide the initial elevation
value Z0 of the ground point coordinates. According to this
initial value, the plane coordinate (X1,Y1) is solved through
the collinear condition equation to obtain the initial value
position A1 of the ground point. Project A0 vertically onto
the DEM to get the projection point B1, and update the initial
elevation value Z0 with the elevation value Z1 of B1. Repeat
this process until the difference between the two iterations
before and after the iteration is less than the given threshold.
At this time, the coordinates ofAn are considered to be ground
point coordinates.

FIGURE 5. Principle of iterative photogrammetric method.

After calculating the ground point coordinates correspond-
ing to the keyframe feature points according to the iterative
photogrammetric method, the ground point coordinates cor-
responding to the current frame feature points matching the
keyframe are obtained. In the same state, the pose of the cur-
rent frame is solved according to themethod of keyframe pose
estimation. In each current frame pose estimation, two sets
of 3D–2D points are obtained: keyframe feature points and
their corresponding ground point coordinates; and current
frame feature points and their corresponding ground point
coordinates. The ground point coordinates corresponding to
the two sets of feature points are the same, and these points
will be adjusted uniformly in the subsequent optimization
process.

C. LOCAL OPTIMIZATION
In VO, BA [36] is usually used to simultaneously optimize
multiple consecutive motion poses. To improve the accuracy
and robustness of the algorithm, this study designed a local
optimization method to simultaneously optimize the poses of
all UAV frames in the local interval.

From Section 2.2, the relationship between the pixel coor-
dinate (us, vs) of the image feature point and the correspond-
ing ground point coordinate p is shown in Fig. 6.
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FIGURE 6. Schematic diagram of calculation process.

Abstractly record the entire process as an observation
equation:

z = h(ξ, p) (4)

Among them, ξ is the external orientation element of the
camera represented by Lie algebra, p is the ground point
coordinates, and the observation data is the feature point pixel
coordinates z , [us, vs]T . The observation error is as follows:

e = z− h(ξ, p) (5)

For the observations in the entire optimization interval,
let zij be the data generated by the camera observing the
ground point pj at the pose ξ i, then the overall cost function
is as follows:

min
ξ ,p

t∑
k=1

∑
i∈V (k)

n1∑
j=1

∥∥eij∥∥22 + t∑
k=1

n2∑
j=1

∥∥ekj∥∥22 (6)

The cost function is divided into two parts. The first half is
the observation error of traditional feature points, and the sec-
ond half is the observation error of keyframe deep learning
feature points. Among them, n1 is the number of traditional
feature points, and n2 is the number of deep learning feature
points. V (k) is a set of matching pairs formed by all frames
directly matching the k-th keyframe in the optimization inter-
val. For example, in Fig. 1, V (1) = {1, 2, 1, 3, 1, 4} and t are
the number of keyframes in the optimization interval.

Substituting (6) into (7), we get:
t∑

k=1

∑
i∈V (k)

n1∑
j=1

∥∥zij−h (ξ i,pj)∥∥22+ t∑
k=1

n2∑
j=1

∥∥zkj−h (ξ k ,pj)∥∥22
(7)

With the addition of a small perturbation to the parameters
ξ and p, linearize the cost function as follows:
t∑

k=1

∑
i∈V (k)

n1∑
j=1

∥∥eij + Fij1ξ i + Eij1pj
∥∥2
2

+

t∑
k=1

n2∑
j=1

∥∥ekj + Fkj1ξ k + Ekj1pj
∥∥2
2 (8)

where Fij represents the partial derivative of
t∑

k=1

∑
i∈V (k)

n1∑
j=1

∥∥eij∥∥22 with respect to the camera attitude

of the i-th frame, and Eij represents the partial derivative of
t∑

k=1

∑
i∈V (k)

n1∑
j=1

∥∥eij∥∥22 with respect to the position of the ground
point. Fkj represents the partial derivative of

t∑
k=1

n2∑
j=1

∥∥ekj∥∥22

with respect to the camera attitude of the k-th frame, and Ekj

represents the partial derivative of
t∑

k=1

n2∑
j=1

∥∥ekj∥∥22 with respect
to the position of the ground point.

Put all the pose parameters together:

xc =
[
ξ1, ξ2, . . . , ξm

]T
∈ R6m (9)

Put all ground point parameters together:

xp = [p1,p2, . . . ,pn]T ∈ R3n (10)

Formula (8) can be simplified as follows:

1
2

∥∥e+ F1xc + E1xp
∥∥2 (11)

The Jacobian matrix F and E are the derivatives of the
overall objective function to the overall parameters.

Afterwards, use Gauss–Newton iteration to solve the lin-
earized objective function. Let this formula be zero, and solve
the incremental linear equation as follows:

H1x =
[
FTF FTE
ETF ETE

] [
1xc
1xp

]
= −

[
FT

ET

]
e (12)

Thousands of feature points can be proposed on each
image, which increases the scale of this linear equation.
If you directly invert the matrix to calculate the incremental
equation, it will consume huge computing resources and is
difficult to solve quickly. However, the sparse structure of the
matrix can be used to marginalize [37] the equation and speed
up the solution process.

III. RESULTS AND DISCUSSION
The frame of the UAV used in the experiment was acquired
by the onboard top–down camera. The flying speed of the
UAV was 14 m/s, and the frame rate was 1 fps. Each frame
has accurate location information obtained by differential
GPS, which is regarded as a true value in the experiment.
The data contains two trajectories, covering sparsely textured
jungle and richly textured buildings. The first is a straight
line, as shown in Fig. 6, and the trajectory is 0.75 km long.
The second is a curve, as shown in Fig. 7, and the trajectory
is 0.54 km long. The relative altitude of the two trajectories
is 0.5 km. The UAV frame acquisition season was winter.
To verify the adaptability of the employed method to sea-
sonal changes, the 2018 summer satellite imagery with a
large difference was selected as the localization reference.
The satellite imagery was downloaded from Google Maps;
the ground resolution was 0.5 m, and the plane coordinate
accuracywas approximately 5m. DEM is the ASTERGDEM
V2 global digital elevation data jointly developed by Japan
METI and NASA and distributed to the public for free, with
a spatial resolution of 30 m.

The test was divided into four parts. First, the performance
of the D2-Net matching algorithm was evaluated. Second,
the effectiveness of the optimization algorithm was verified.
The influence of the keyframe selection interval on UAV
localization was then analyzed and the keyframe interval
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FIGURE 7. (a) Overview of the straight flight trajectory (b) Some examples
of UAV frames (left) and their corresponding satellite imagery
patches(right) for the straight flight trajectory.

FIGURE 8. (a) Overview of the curved flight trajectory (b) Some examples
of UAV frames (left) and their corresponding satellite imagery
patches(right) for the curved flight trajectory.

applicable in different environments was determined. Finally,
a comparative experiment with ORB-SLAM and the method
specified in [28] was designed. The localization error in
the experiment is the Euclidean distance between the real
position of the UAV in the three-dimensional space and the
estimated position.

The methodology in this study was implemented based
on the Python language, and the deep learning model was

constructed under the PyTorch 1.3.0 framework. The com-
puter used for the test was the MSI P65 notebook with
the i9-9880H CPU, GeForce RTX 2070Max-Q (8G video
memory) graphics card, and a memory of 32 GB. The imple-
mentation language was Python, and the operating system
used was Ubuntu 16.04.

A. MATCHING RESULTS
To evaluate the performance of the D2-Net matching algo-
rithm, this study established a test data set containing UAV
frames and their corresponding regional satellite imageries.
Image pairs with large seasonal changes and conspicuous
changes in ground features were selected from the orig-
inal data. SIFT [22], SURF [23] traditional features, and
DELF [38] deep learning features were used to conduct com-
parative experiments with this method to test its accuracy and
adaptability.

As shown by Table 1 and Fig. 9, for images with different
time phases and seasons, although traditional methods can
extract several feature points, they cannot describe the feature
stably. In contrast, deep learning features have achieved good
results. Although DELF has successfully extracted some sta-
ble features, it takes a long time and the number is limited.
Moreover, D2-Net has a greater ability to extract stable deep
learning features, higher efficiency, and more matching pairs
with more uniform distribution after matching.

TABLE 1. Matching Accuracy and Time-Consuming Statistics.

FIGURE 9. Examples of matching results: (a) SIFT; (b) SURF; (c) DELF;
(d) D2-Net.

B. OPTIMIZATION METHOD EFFECT TEST
To verify the effectiveness of the local optimization method, a
comparative test was conducted on two routes. The localiza-
tion accuracy under different keyframe selection conditions
before and after optimization were calculated separately, and
the test results are shown in Fig. 10.
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FIGURE 10. Average localization error of the entire track before and after
optimization, where Ti, (i = 1,2, · · · ,11) indicates that a keyframe is
selected for every i UAV frames: (a) Flight path 1; (b) Flight path 2.

From the experimental results, it can be concluded that
when the keyframe spacing is too large, the optimization
algorithm does not converge, and it even increases the local-
ization error. However, when the keyframe spacing is selected
appropriately, the optimization method can effectively reduce
the error and increase the localization accuracy by more
than 50 %.

C. TEST OF THE INFLUENCE OF KEYFRAME INTERVAL ON
LOCALIZATION ACCURACY
In the entire pose estimation process, deep learning feature
extraction, and matching have the most number of calcu-
lations to be performed and the longest time-consumption.
To reduce the amount of calculation, the keyframe spac-
ing should be as large as possible. However, it can be
concluded from the experiment in Section 3.2 that when
keyframe spacing is too large the optimization algorithm
fails to converge, the localization error increases rapidly, and
the localization even fails. Therefore, under the premise of
ensuring localization accuracy, it is very important to deter-
mine the universal keyframe interval for different trajecto-
ries. For this purpose, detailed experiments were conducted
on different keyframe selection methods under different tra-
jectories. The experimental results are shown in Table 2
and Fig. 11.

TABLE 2. Time-Consuming Statistics.

The experimental results reveal that the localization error
can be maintained within a relatively stable range with an ini-
tial gradual increase of keyframe spacing. When the distance
increases to a certain extent, the local optimization algorithm
fails, and the localization error increases rapidly. As shown by

FIGURE 11. Average localization error of the entire track when the
keyframe interval is different: (a) Flight path 1; (b) Flight path 2.

FIGURE 12. Localization errors of three methods under different
trajectories: (a) Flight path 1; (b) Flight path 2.

Table 2, the keyframe localization time is much longer than
the current frame localization time, which is caused by the
time-consuming process of deep learning feature extraction
and matching. When the optimization algorithm is effective,
the Average optimization time will increase rapidly as the
keyframe spacing increases. Compared with the curved tra-
jectory, the UAV can adapt to a larger keyframe interval when
flying in a straight line, but for universal applicability, it is
determined that one keyframe every four frames is the optimal
solution.

D. COMPARATIVE TEST OF DIFFERENT LOCALIZATION
METHODS
The method in this study is named DLF-PE. To fur-
ther test the performance of DLF-PE, a comparative test
between DLF-PE and ORB-SLAM and the method in liter-
ature [28] was designed. ORB-SLAM is a more advanced
method in the SLAM algorithm. The method in [28] has
achieved relatively accurate localization results in a flat
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ground environment and has strong adaptability to a sparse
texture environment. For the convenience of presentation,
the method is named ICLK-PE. Fig. 12 shows the errors
of the three localization methods. The real trajectory and
the predicted trajectories of the three methods are shown
in Fig. 13.

FIGURE 13. UAV true trajectory and estimated trajectory: (a) Flight path 1;
(b) Flight path 2.

The average localization error is shown in Table 3.
From the experimental results, it can be concluded that
the traditional ORB-SLAM method has serious error accu-
mulation and the lowest accuracy. Due to the large ter-
rain fluctuations, the accuracy of the ICLK-PE method has
decreased, and it cannot adapt to the curve trajectory well.
The average localization error of DLF-PE under the two
trajectories is controlled within 15 m, and it has the highest
accuracy and displays strong adaptability to different flight
trajectories.

TABLE 3. Average Localization Error of the Three Methods Under
Different Trajectories.

IV. CONCLUSION
The localization of UAVs in a GNSS-denied environment
is of great significance for ensuring efficiency of UAVs
performance during various tasks. This study proposes a
UAV visual localization method assisted by deep learning
features of satellite imageries with good adaptability to dif-
ferent flight environments. To further improve localization

accuracy, a local optimization method was designed to simul-
taneously optimize the poses of all UAV frames in the
local interval. Tests have verified that the optimized average
localization error can meet the UAV localization require-
ments. Although the method in this study can almost achieve
real-time performance on a laptop computer, the amount
of calculation is substantial for the processor on the UAV.
Therefore, it is necessary to further reduce the amount of
calculation and improve the real-time performance of the
algorithm. A more robust and efficient deep learning feature
extraction algorithm is required. In addition, a low-precision
internal measurement unit is also a common UAV payload.
Comprehensive utilization of the posture data provided by
the IMU to improve accuracy and real-time performance of
the algorithm is a problem that needs to be solved in future
research.
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