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ABSTRACT A novel idea is proposed to forecast lost load and time interval between power outages based
on the similarity between the series generated by a stochastic model and the actual series. The lost load
obeys a power-law distribution, which can be described as a stochastic process with long-range dependence
(LRD). Fractional Brownian motion (fBm) is a stochastic model with LRD, we discretize the stochastic
differential equation (SDE) driven by fBm and the difference iterative equation is constructed for forecasting.
By calculating the Hurst exponent of lost load series proves that it has LRD characteristics. The stochastics
series produced by fBm has a strong similarity with the actual series when the Hurst exponent is taken into
fBm model. Moreover, the forecasting accuracy is enriched by considering the appropriate sample size and
forecasting step size. The same process for the analysis of lost load can be applied to forecast the time
interval between power outages. The efficiency of the proposed model is demonstrated by a case study of
the medium voltage power grid in Shanghai compared with other approaches. Finally, the value at risk (VaR)
and the conditional value at risk (CVaR) as two system-level indices for assessment of future power outages.

INDEX TERMS Power outages, lost load forecasting, long-range dependence, fractional Brownian motion.

I. INTRODUCTION
Large-scale blackouts due to cascading outages are relatively
rare but can lead to catastrophic consequences, with con-
siderable social impact and serious economic loss [1]. The
study of the dynamic propagation of cascading failures pro-
vides useful hints for risk management. The recent research
is considering cyberattacks that may highly impact power
system operation and lost load forecasting [2], [3]. Normally,
the severity of cascading outages is measured in terms of
lost load, to quantitatively evaluate the impact of power
outages [4], [5].

The analysis of power outages and cascading events is
beneficial to reveal safety operation level and mechanism
of outages. This research can be achieved in two ways: one
is to establish a mathematical model that specifically char-
acterizes the process of the power outages for analysis and
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calculation; the other is to investigate the time series observed
from the power outages based on historical events, exploring
the spatio-temporal characteristic to provide information for
accurately forecasting.

Recently, many mathematical models and analysis tools
have been introduced, focusing on modeling the process of
cascading outages and performing risk assessment [6]. Since
the mechanism of cascading failures in complex networks is
closely related to the cascading processes leading to blackouts
in power systems, researchers are trying to analyze closely
cascading failures [7]. Models of cascading failures processes
based on complex network theory include topological mod-
els [8], stochastic simulation models [9], high-level statistic
models [10] and so on. The calculation is mostly at elements
level, with overall computational complexity that can be
extremely high.

Positively, the time series analysis method does not require
model assumptions nor simplifications, and the data truly
reflect the situation of power outages. Little research is
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done to the data of power outages to analyze and fore-
cast the dynamic behavior of outages from a statistical
perspective [11]. Carreras et al. showed evidence that lost
load data of power outages are consistent with self-organized
criticality [12], [13], which is a model proposed to explain
the origin of 1/f noise and fractals (self-similarity) in nat-
ural system with scale invariance and long-range depen-
dence (LRD) characteristics in the time domain [14]. Though
it is useful to do a detailed analysis of the specific causes
of individual outages, it is also important to consider the
global dynamic characteristics of the power transmission
system, that is, the stochastic characteristics of LRD. The
characteristics show that the past state of stochastic process
is closely related to future state, which can offer important
predictive information about the lost load series of power
outages [15]. Effectively forecasting the lost load of blackouts
allows performing risk evaluations of future power outages
and assisting the power system operators to make opera-
tional arrangements and emergency planning by electricity
reserve [16].

In power system dynamical models, exponentially accel-
erated model considered to generate the probability of the
propagation of outages. The Markov chain is adopted to
model the stochastic factors in cascading failures, which
are memoryless. However, the lost load series obey a
power-law distribution and has a long memory. As tra-
ditional forecasting models, such as the Neural Network,
can only capture short-range dependence (SRD). The Long
Short-Term Memory (LSTM) networks differ from classical
Recurrent Neural Network mainly because they have abil-
ity to learn long term dependences at the cost of higher
training time [17]. There is a data-driven model called
long-range dependent model, the accuracy of forecasting
results can be improved by taking into account the relation-
ship between the past and future state. Two representative
methods are the Fractional Auto-regressive Integrated Mov-
ing Average (FARIMA) model and the fractional Brownian
motion (fBm) model. The stronger the long-term correlation
of the FARIMA model, the better the performance achieved,
but the higher computational complexity [18], [19]. The com-
putational complexity of the fBm model is higher than the
FARIMAmodel, but exhibits better forecasting performance.
But the difference of computational efficiency between them
would not affect the use of forecasting results in practical
application. Consequently, the fBm process is more appro-
priate for lost load forecasting.

The fBm process has been used to model many natural
phenomena since it first appeared in Mandelbrot and Van
Ness [20], for instance, in hydrology [21], finance [22], [23],
network traffic [24], geophysics [25], and many other
domains. It is a nonstationary continuous stochastic process
with stationary increments, with well-known LRD character-
istics and originally proposed to describe the 1/f process.
It can be obtained as a stochastic integral from the Brownian
motion (Bm), as was already observed in [20]. The Hurst
exponent [26], [27] is a key parameter of fBm, ranging

from 0 to 1, which controls the regularity of the stochastic
series. A special case is H = 0.5, the process reduces to
standard Bm. The increments of fBm, often called fractional
Gaussian noise (fGn), are stationary and self-similarity with
parameter H. The fGn corresponds to three families of time
series: for 0.5<H<1, it exhibits positive correlation and LRD
characteristics; for 0<H<0.5, the process exhibits negative
correlation and the corresponding series is of SRD; for
H = 0.5, increments are uncorrelated.
We investigate the stochastic differential equation (SDE)

driven by fBm, for which an important example is the frac-
tional version of the Black-Scholes model proposed by Cut-
land, Kopp and Willinger [28]. The SDE is discretized into
the difference iterative equation; then, a forecasting model is
established, which fits neatly to the long memory character-
istics of the process [29]. The other two parameters µ and σ
in SDE dependent on the Hurst exponent, and are estimated
by the maximum likelihood estimation (MLE) [30].

In practice engineering, the proposed forecasting method
be used for the online application [31], [32]. The Hurst expo-
nent of actual lost load series is calculated to identify the LRD
characteristics. There are manymethods to estimate the Hurst
exponent. The time-domain methods are used to process
the series directly, including the variance time method [33],
absolute value estimation method [34] and rescaled range
(R/S) method [35]. In this paper, we use the R/S method to
estimate the Hurst exponent, because this method is robust
to heavy tails. When 0.5<H<1, the process exhibits positive
correlation. The closer H is to 1, the greater the degree of
persistence. The Hurst parameter is taken into the difference
iterative equation of fBm which generates series similar with
the actual series. The sample size can affect the LRD charac-
teristics in the series. At the same time, the longer forecasting
step size, the higher the error. Therefore, we choose the
appropriate sample size and forecasting step size to improve
the accuracy. Simulations of the lost load time series are per-
formed by the Monte Carlo method to obtain the forecasted
data. Comparisons of forecasted results with the actual lost
load data show that the accuracy of forecasting is improved.

The series of time interval between power outages also
carries LRD characteristics by calculating its Hurst exponent.
Therefore, we use the fBm model to forecasting the time
interval between power outages based on the same princi-
ple of the lost load series.Our research first developed a
long-range dependent forecasting model based on fractional
Brownian motion to forecast lost load and time interval
between power outages.

The lost load data for theoretical analysis come from gov-
ernment incident reporting requirements criteria detailed in
the U.S. Department of Energy (DOE) form EIA-417 in the
North American Electrical Reliability Council (NERC) [36].
The criteria for a power outage include that the amount of lost
load must be at least 300MW or the loss of electric service be
more than 50,000 customers for one hour or more. The main
causes of the power outage are severe weather and equipment
failure, which shows that the past and future states of the
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two major parts are closely related and correspond to LRD
characteristics. The data of case study is the power outage
events of the medium voltage power grid in Shanghai in 2017.
The accurate results indicate the adequacy of the proposed
model.

The organization of the paper is as follows. The lost load
data are normalized by generation capacity as well as verified
to obey a power-law distribution in Section II. Section III
uses the R/S method to verify its LRD characteristics in time
domain. Then, the MLE is used for parameter estimation
and the fBm forecasting model is established in section IV.
Section V describes the factors influencing forecasting per-
formance, including the length of the sample size and fore-
casting step size, and, then, provides the procedure to select
them. Case study in section VI shows the effectiveness of
the proposed model to forecast lost load and time interval
between power outages. Section VII analyzes the ideas of
VaR and CVaR within the risk assessment of complex power
outages. Finally, Section VIII concludes the paper with some
remarks.

II. POWER-LAW DISTRIBUTION OF LOST LOAD
The DOE published online records which summarize the
major power outage events that have occurred in North Amer-
ica.We analyzed 22 years of lost load data from 1996 to 2017.
Fig. 1. shows the frequency of power outages in each cause
category over time; the causes of large outagesmainly include
severe weather, equipment failure, operator error, intentional
attack, supply shortage and other external causes. Severe
weather and equipment failure account for a large portion of
them. Fig. 2. shows the lost load time series of power outage
events.

FIGURE 1. Number of power outages in each cause category over time.

In fact, the LRD properties of the power grid is mainly
related to the scale of the power grid. In order to eliminate
the impacts of the power grid scale [37], we normalize the
lost load data by generation capacity of the year 2000, C2000.
The choice of year is arbitrary and it would have little effect
on the results. Given the annual generation capacity data Cy,

FIGURE 2. Lost load times series of power outage events (not
normalized).

then

Sy = S
C2000

Cy
(1)

where C2000 is the amount of generation capacity in 2000,
Cy is the amount of generation capacity in the year that need
to be normalized, S is the amount of lost load before being
standardized and Sy is the amount of lost load after being
standardized [38]. Consequently, we standardize the data for
each year separately and the diagram is shown in Fig. 3.
If the probability density function (PDF) of a random variable
obeys a power law distribution, it would present a straight
line on the log-log plot. In many cases, it is useful to consider
the complementary cumulative distribution function (CCDF)
of a power law distributed variable, which we denote as
p(x) = p(X ≥ x). We also separately analyze the Eastern
and Western interconnections, and the CCDF, with power
law fits in log-log plot for the distribution tails, as shown
in Fig. 4. In order to distinguish the plots, North and Eastern
American data are multiplied by 104 and 102, respectively.
We show not the PDF but the CCDF, because the visual form
of the CCDF is more robust than that of the PDF against
fluctuations due to finite sample sizes, particularly in the
tail of the distribution [39]. Meanwhile, we use the MLE
in [40], [41] to estimate law exponent α, and Table 1 reports
the values of each exponent of the power tails.

TABLE 1. power law exponents of the lost load time series.

This result shows that the lost load of power outages,
indeed, obeys a power-law distribution. The power-law distri-
bution has a heavy tail characteristic, which indicates that the
occurrences of large power outages are non-independent and
have long memory [42]. Thus, the overall dynamic charac-
teristics of the system should be considered when forecasting
catastrophic events.
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FIGURE 3. Lost load times series of power outage events (normalized).

FIGURE 4. CCDF with power law fits of the lost load time series.

III. LRD CHARACTERISTICS OF THE LOST LOAD SERIES
We investigated the lost load time series of power outages
from the perspective of probability distribution. Then we
analyze it from the correlation function perspective. The
autocorrelation function (ACF) is a measure of how similar
the x(t) is to itself, and it given by [43]

rxx(τ ) = E[x(t)x(t + τ )] =
∫
∞

−∞

x(t)x(t + τ )p(x)dx (2)

where p(x) is PDF,τ is time lag. If
∫
∞

−∞
rxx(τ )dτ = ∞,

the time series x(t) can be considered to have long mem-
ory [44] and the PDF follows a power-law distribution. To test
if a process is exhibiting LRD properties, it is necessary to
calculate its Hurst exponent, which measures the degree of
self-similarity in the time series [26]:

1) When 0<H<0.5, the process exhibits negative correla-
tion, which indicates that the time series is variable;

2) WhenH= 0.5, it means that the time series is randomly
independent;

3) When 0.5<H<1, the process exhibits positive corre-
lation and LRD properties. The closer H is to 1,
the greater the degree of persistence.

The basic principles of the R/S analysis method are as
follows: (1)
1) For a discrete time series {Xt : t = 1, 2, . . . ,N }, where

N is the total number of samples, it is divided into
integer sub-intervals. ThemeanP(n) and standard devi-
ation S(n) are obtained for each sub-interval as follows,
respectively:

P(n) =
1
n

n∑
t=1

Xt (3)

S(n) =

√√√√ 1
n− 1

n∑
t=1

(Xt − P(n))2 (4)

here n(2 ≤ n ≤ N ) is the number of observed values of
each sub-interval.

2) Calculate the corresponding cumulative deviation
X (t, i) and range of variation R(n):

X (t, i) =
n∑
t=1

(Xt − P(n)) (5)

R(n) = max
1≤i≤n

X (t, i)− min
1≤i≤n

X (t, i) (6)

3) Calculate the ratio of each range to the standard
deviation:

lg(Rs(n)) = lg c+ H lg n (7)

By taking different n(2 ≤ n ≤ N ) values, Rs(n) with
different interval lengths is obtained.

4) Take the logarithm n of Rs(n) and the slope obtained by
using least squares fitting is the Hurst parameter:

lg(Rs(n)) = lg c+ H lg n (8)

where c is statistic constant, H is the Hurst parameter
of the R/S analysis method. The R/S analysis method is
used to calculate Hurst parameter of the lost load times
series in NERC power outage data, and the results are
shown in Fig. 5. In order to distinguish the plots, North
and Western American data are translated. In addition,
Table 2 shows the Hurst exponents of the lost load time
series for the Eastern and Western interconnections
and North America. It should be noted that the values
of H obtained are actually slightly above 0.5, which
indicates moderate LRD characteristics.

TABLE 2. Hurst exponents of the lost load time series.

IV. THE FORECASTING MODEL OF fBm
A. CHARACTERISTIC ANALYSIS OF fBm
The fBm model whose definition is given as follows [45].
Given the Hurst parameter H (0 < H < 1), the stochastic
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FIGURE 5. R/S analysis method to calculate the Hurst exponent of the
lost load time series.

process
{
BHt , t > 0

}
called fBm with Hurst parameter H ,

is defined as

BHt = BH0 +
1

0(1+ α)

∫ t

−∞

K (t − s)dB(s) (9)

where α = H − 0.5, 0(1+α) =
∫
∞

0 xαe−xdx, B(s) is
Brownian motion, the integral kernel in (9) is

K (t − s) =

{
(t − s)α, (0 ≤ s ≤ t)
(t − s)α − (−s)α, (s < 0)

(10)

When 0 < H < 1, fBm is always LRD, but this process
becomes the well-known Brownian motion when H = 0.5.
The fBm is a non-stationary process with the variance varying
in time. Its ACF is given by

E[BHt1B
H
t2 ] =

σ 2

2

[
t22H + t12H − (t2 − t1)2H

]
(11)

where

σ 2
=
σ 2
ω

2
cos (πH)
πH

0 (1− 2H) (12)

σ 2
ω is a known variance. For interval 0 ≤ t1 ≤ t2 ≤
t3 ≤ t4, the ACF of the increment process of fBm is defined
as follows:

E[BHt4 − B
H
t3 ][B

H
t2 − B

H
t2 ]

=
σ 2

2

[
(t4−t1)2H+(t3−t2)2H−(t4−t2)2H−(t3−t1)2H

]
(13)

which shows that the increment of fBm is a stationary Gaus-
sian process. When 0.5 < H < 1, the increments of
fBm are positively correlated. The relationship between the
future and past increments of fBm is determined by the Hurst
exponent.

B. ESTABLISHMENT OF DIFFERENCE ITERATIVE
EQUATION BASED ON fBm

In the fractional Black-Scholes model [28] for stochastic
process, the SDE driven by fBm is [46], [47]:

dXt = µXtdt + σXtdBHt (14)

From (14), it is known that the increments of fBm need
to be simulated first. Extending dBt = ω(t)(dt)

1
2 of the

Brownian motion proposed by Maruyama to the case of fBm
and using dBHt = ω(t)(dt)H to represent the increment of
fBm, the SDE becomes

dXt = µXtdt + σXtω(t)(dt)H (15)

The time period is divided into N intervals, with time step
1t , and the discrete SDE is

1Xt = µXt1t + σXtω(t)(1t)H (16)

where 1Xt = Xt+1−Xt , ω(t)is standard normal distribu-
tion. The extended formula is used to simulate the increment
of fBm, which can further obtain the difference iterative
equation as [48]–[50]

Xt+1 = Xt + µXt1t + σXtω(t)(1t)H (17)

Using Monte Carlo simulation, multiple approxima-
tion curves of the time series are obtained by multiple
simulations, from which the approximate values at each
time point can be obtained, from the most likely change
path.

C. PARAMETERS ESTIMATION OF fBm
It is not enough to get the Hurst exponent and the increment
1t of fBm as there are still two unknown parameters,µ and σ .
Given a certain time series, the MLE can be used to estimate
the specific parameters.

The general solution of (14) can be calculated

Xt = X · exp(µt + σBHt ) (18)

Consequently, the parameter estimation of (18) is actually
equivalent to the parameter estimation of fBm with drift
terms

Yt = µt + σBHt , t ≥ 0 (19)

We discretized the increment of fBm, thus solving the
parameter estimation of the fBm model by the MLE with
discrete observations. For a time series, suppose that the
interval of the acquired time series is 1t , and the obser-
vation vector of Y = (Y0,Y1t , . . . ,Yn1t)T is available,
with corresponding time vector t = (0,1t, . . . , n1t)T for
the n + 1 observation data. The LRD series formula under
fBm is derived, which makes the series formula closer to
practical application. Suppose that the fBm vector is BHt =(
BH0 ,B

H
1t , . . . ,B

H
n1t

)T , theMLE of theµ and σ in (14) can be
derived from the following [30]. The joint probability density
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function of the multidimensional normal distribution of Y is
given as:

g(Y ) = (2πσ 2)−
n
2
∣∣0H ,i,j∣∣− 1

2

× exp
(
−

1
2σ 2 (Y − µt)

T0−1H ,i,j (Y − µt)
)

(20)

where 0H ,i,j = 1
2 (1t)

2H (i2H + j2H − |i− j|2H )i,j=01,2,...,n.
Using the joint density function to obtain the logarithmic

likelihood function:

ln g(Y ) = −
n
2
(2πσ 2)−

1
2

∣∣0H ,i,j∣∣
−

1
2σ 2 (Y − µt)

T0−1H ,i,j (Y − µt) (21)

Partial derivation of (21) with respect to µ and σ , and
setting the partial derivative to zero:

∂ ln g(Y )
∂µ

=

∂
(
−
n
2 (2πσ

2)− 1
2

∣∣0H ,i,j∣∣− 1
2σ 2 (Y−µt)

T0−1H ,i,j (Y−µt)
)

∂µ

= 0 (22)

Because Y , t are real symmetric matrices, then:

tT0−1H ,i,jY + Y
T0−1H ,i,jt = (tTY + tY T )0−1H ,i,j

= 2tT0−1H ,i,jY (23)

Therefore, the MLE of µ̂ is:

µ̂

=
tT0−1H ,i,jY

tT0−1H ,i,jt
(24)

∂ ln g(Y )
∂σ 2

=

∂
(
−
n
2 (2πσ

2)− 1
2

∣∣0H ,i,j∣∣− 1
2σ 2 (Y−µt)

T0−1H ,i,j (Y−µt)
)

∂σ 2

= 0 (25)

Then bringing (25) into E
[
µ̂
]
= µ, the MLE of σ̂ is:

σ̂ 2
=

1
n

Y T0−1H ,i,jY−
(
tT0−1H ,i,jY

)2
tT0−1H ,i,jt

 (26)

Then, the difference iterative equation becomes

Xt+1 = Xt + µ̂Xt1t + σ̂Xtω(t)(1t)H (27)

The flowchart of the proposed forecasting model is pre-
sented in Fig. 6. The basic steps for the flowchart are as
follows:

1) Chose lost load historical data as sample;
2) Use R/S method to calculate its Hurst expo-

nent, it exhibits long-rang dependence characteristics
when 0.5<H<1;

FIGURE 6. Flowchart of the fBm forecasting model.

3) Establish the difference iterative equation of fBm with
discrete increments for forecasting;

4) Use the maximum likelihood estimation to estimate the
parameters of the fBm model;

5) Simulate the increments to obtain the stochastic process
of lost load series to obtain forecasting result compared
with actual data.

V. FORECASTING ACCURACY OF THE MODEL
LRD characteristics of a series would change with different
interval and forecasting performances would be considerably
improved when the sample size is properly chosen. We cal-
culate the distribution of the Hurst exponent for arbitrary
interval, as shown in Table 3. The Table clearly demonstrates
the randomness of the lost load time series. Specifically, in the
case considered, we find that the forecasting is best when the
length of sample size is within (40, 60). Actually, the lost
load time series data has best LRD characteristics when the
sample size is 50, which is then selected.Moreover, the longer
forecasting step size, the higher the error. We notice that the

TABLE 3. Hurst exponents of the lost load time series in different
intervals.
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forecasting error is relatively small when the step size is 10,
from Table 4.

TABLE 4. Forecasting error for different step size.

With the chosen sample size and forecasting step size,
forecasting has been made with the proposed model for the
time series data in the years 1996-1998 of the North Amer-
ican electric power transmission system. Fig. 7. presents the
results produced by the fBm forecasting model, compared
with the actual data. Table 5 reports the forecasting errors,
including max relative error (%) and mean relative error (%).
The results obtained are close to the actual ones, which
confirms the accuracy of forecasting.

FIGURE 7. Forecasting results of lost load by the fBm model.

VI. CASE STUDY
To further evaluate the performance of our proposed forecast-
ing model, the power outage events of medium voltage power
grid in Shanghai are analyzed. The causes of these outages
mainly include severe weather, equipment failure, operation
management, human error, construction, transportation, ani-
mal interference and other external causes. Fig. 8. shows the
frequency of outages in each cause category for every month
and Fig. 9. presents the lost load time series of power outage
events in 2017. Although the causes of power outages are
different from those of the North American electric power
transmission system, it can be seen that severe weather and
equipment failure still account for a large portion. Selecting
50 as sample size and from Table 6 we can see that the
forecasting error is relatively small when the forecasting step
size is 10.

TABLE 5. Relative error (%) of the fBm model.

FIGURE 8. Number of power outages in each cause category over time.

FIGURE 9. Lost load times series of power outage events.

TABLE 6. Forecasting error for different step size.

An example is selected for forecasting and analysis, with
the Hurst exponents given in Table 7. The lost load and time
interval between power outages both follow LRD character-
istics. The forecasting results of lost load by fBm model are
shown in Fig. 10. Comparisons method cannot fit closely
the actual lost load as shown in Fig. 11. Table 8 reports
MAE (Mean Absolute Error), MAPE (Mean Absolute Per-
centage Error) and RMSE (Root Mean Squares Error) among
them. From the results it is evident that the performance
of the proposed method is better than that both of the

VOLUME 9, 2021 6629



L. Ren et al.: fBm Model for Forecasting Lost Load and Time Interval Between Power Outages

FIGURE 10. Forecasting results of lost load by fBm model.

FIGURE 11. Comparisons of performance for lost load forecasting.

TABLE 7. Hurst exponents of lost load and time interval.

TABLE 8. The evaluation indicators of different models.

FARIMA and LSTM networks. Accordingly, we use the
same method to forecast the time interval between power
outages. The forecasting results are quite close to the actual
values are shown in Fig. 12. Furthermore, max relative
error and mean relative error for both lost load and time
interval are tabulated in Table 9. Although the errors of
time interval larger than lost load, this is still important
for power grid operators to make scheduling decisions and
carry out the standby unit arrangement and commitment
work.

FIGURE 12. Forecasting results of time interval between power outages
by the fBm model.

TABLE 9. Relative error (%)of lost load and time interval by the fBm
model.

VII. RISK ASSEMENT
Our research provides a novel insight for performing risk
assessment from the system level. In order to quantitatively
characterize system-level reliability, we consider the value
at risk (VaR) and conditional value at risk (CVaR) metrics
for risk assessment of power outages in complex power sys-
tems [10]. The twometrics are of relatively simple calculation
and easy to understand, which can accurately characterize
power outage risk level with complementary characteristics.
VaR accounts for the potential maximum loss that the system
faces at a given confidence in a certain period of time in the
future, and its definition is given by:

Prob(1V > VaRθ ) = 1− θ (28)

where θ is the confidence,1V is the loss within the specified
time period. For a known PDF, p(x), where x represents the
scale of loss and p(x) is the density function of the magnitude
of loss, the calculation of VaR can refer to the following
formula:

σ =

∫ VaRθ

−∞

p(x)dx (29)

VaR combines the expected loss with the likelihood of the
loss occurrence. Two limitations of VaR as a risk assessment
index are that the consistency axiom is not satisfied and
the insufficiency of the tail loss measurement. In order to
overcome the above-mentioned shortcomings of VaR, Rock-
afeller and Uryasev proposed the CVaR [51], which gives the
average level of excess loss. CVaR is defined as follows:

CVaR =
∫
∞

VaRθ
xp(x)dx (30)

Taking the forecasted lost load data of the medium voltage
power grid in Shanghai for example, the PDF of the samples
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are shown in Fig. 13. Let θ = 0.98, then the VaR and CVaR
are given in Table 10. From the results in the Table, taking
the first sample for example, this implies that there is 98%
confidence that a failure would not result in an outage size
larger than 3271.5 kW of lost load. The expected value of
lost load larger than 3271.5 kW is 9.69 kW. Combining these
two indices, it can be seen that the system risk of the fourth
sample is the largest.

FIGURE 13. PDF of lost load with different samples.

TABLE 10. Power outage risk of samples.

VIII. CONCLUSION
From statistical perspective, our research first time illustrated
the original development of fBm forecasting model to iden-
tify the LRD characteristics and self-similarity of the lost load
series and time interval between power outages. Our analysis
verified LRD characteristics of lost load and time interval
series, validating the proposed model considered of both the
North American electric power transmission system and the
medium voltage power grid of Shanghai. Comparison with
other methods, the proposed modeling approach can provide
accurate forecasting of lost load for a real power system to
assist in the evaluation of power ouatge risk. For this, two
complementary indices were used to estimate the severity of
losses in future power outages, as well as to compare the
reliability of different systems. Despite the accuracy of time
interval between power outages is lower than lost load, it still
is of great significance for power system operators to make
arrangements for electricity emergency reserve and power
dispatching. In the future, further research will be required
to study the detailed relationship and focus on improving the
forecasting accuracy of time interval between power outages.
At the same time, applying the established model to more
fields is also the future research direction.
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