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ABSTRACT Under the background of big data, the use of massive online data to improve the real-time
characteristics and reliability of wind power prediction and to reduce the impact of wind farms on the power
grid makes the power supply and demand balance important problems to solve. This paper provides a new
solution for short-term wind power forecasting to address these problems. In this paper, an improved random
forest short-term prediction model based on the hierarchical output power is proposed, and it is used to
forecast the power output of a real wind farm located in Northwest China. First, a chi-square test is adopted
to discretize the power data to divide the large-scale training data and remove abnormal data. The novelty
of this study is the establishment of a classification model with the output wind power as the classification
target and the use of Poisson re-sampling to replace the bootstrap method of the random forest, that is,
to improve the training speed of the random forest algorithm. The results indicate that the proposed technique
can estimate the output wind power with an MSE of 0.0232, and the comparison illustrates the effectiveness
and superiority of the proposed method.

INDEX TERMS Chi-square test, data discretization, Poisson re-sampling, random forests, wind power
prediction, weighted k-nearest neighbors algorithm.

I. INTRODUCTION
Wind energy is a renewable and clean energy source with
large storage capacity and wide distribution. Wind power has
become the fastest growing renewable energy power genera-
tion technology in the world [1], [2]. However, wind power
is volatile and intermittent, and large-scale wind power grid
connections represent severe challenges to the safe and stable
operation of power systems.

Wind power prediction technology is an effective method
to mitigate the negative effects of wind power grid con-
nections [3]. Accurate and reliable wind power prediction
has greatly contributed to dynamic economic dispatch in
power systems. In addition, the wind power permeability is
increased, the rotating spare capacity is reduced, and the wind
farm capacity coefficient is stabilized [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was B.Chitti Babu .

Wind power prediction methods can be divided into two
categories according to the physical objects of prediction.
One way is to predict the wind speed first and then obtain the
wind power output according to thewind turbine or wind farm
power curve. The other is to directly predict the output power
of wind farms. At present, the research methods for wind
power prediction around the world have shifted from physical
methods to statistical and machine learning methods [5],
including support vector machines (SVMs) [6], time series
analysis [7], [8], neural networks [9], [10], fuzzy control
[11], [12], and intelligent optimization algorithms [13]–[15].
These methods usually train a prediction model according
to historical sampling data and then find the optimal model
parameters. Furthermore, these models achieve high preci-
sion in short-term wind power prediction. However, when the
amount of historical data is large and the confidence intervals
are too large, the above models suffer problems such as slow
convergence speed, serious overfitting and easily falling into
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local minimum. Thus, the accuracy of wind power prediction
is greatly reduced.

Wind speed is a key factor affecting wind power. In fact,
even at different times of the same day, the frequency and
amplitude of wind speed fluctuations can vary greatly, which
increases the difficulty of wind power prediction. In large-
scale wind farms, the spatial and temporal distributions of
wind conditions are more diverse. If all the data are used
to predict wind power directly through a single prediction
model, it is difficult to describe the complexity and diversity
of wind conditions, which affects the prediction accuracy of
the model.

To address these problems, a wind power prediction
algorithm based on weather classification was proposed in
[16]. Numerical weather forecast (NWP) data are classified
according to daily changes, and prediction models for dif-
ferent types of NWPs are established. In [17], a prediction
model for wind power probability was proposed based on
wind scenario recognition. The wind speed and direction
were selected as the reference variables to divide the wind
scenario and a cluster analysis model of the wind scenario
was established. In [18], a combination of the wind speed
variation period and wind power prediction was proposed,
and a combination forecast model was developed. These
methods have overcome the limitation of single prediction
models to some extent. However, it is not sufficient to reflect
the impact of wind changes on the output power of wind
turbines by simply classifying the wind speed according to
the season or time period.

This paper proposes a hierarchical wind power prediction
model, and the larger data set is divided into smaller training
sets for modelling. By discretizing historical data, the regres-
sion problem is transformed into a classification problem,
and wind speed and direction data are grouped into narrow
confidence intervals according to different output wind power
levels. Then, Poisson re-sampling is used, instead of the
bootstrap method in random forests, to simplify the pruning
process when establishing the wind power prediction models.
Finally, a dataset from the Supervisory Control and Data
Acquisition (SCADA) system of a wind farm in Northwest
China is used to assess the validity of the proposed model.

II. DISCRETE METHOD OF OUTPUT WIND POWER BASED
ON CHI-SQUARE TEST
A. CHI-SQUARE TEST
The chi-square test, also known as the χ2 test, is a non-
parametric hypothesis testing method that is mainly used for
statistical inference of unordered categorical variables [19].
The basic idea of the chi-square test is to compare the
consistency between theoretically inferred values and actual
observed values. Assuming that the composition ratios of the
categorical variables are the same, the chi-square statistic χ2

is constructed as:

χ2
=

∑ (A− T )2

T
(1)

where A is the actual observed value and T is the theoretical
inferred value. According to (1), the smaller the difference
between A and T is, the closer χ2 is to 0. Therefore, χ2 can
be used to reflect the similarity between the actual observed
value and the theoretical inferred value. The chi-square test
is often used in feature selection, anomaly detection and
correlation analysis.

B. CHI-SQUARE SORTING AND CHI2 ALGORITHM
In data mining modelling, continuous variable sometimes
need to be transformed into discrete variables in a process
called data discretization. Furthermore, feature discretization
can be used to simplify a regression model. This process is
robust to abnormal data because nonlinearity is introduced in
data discretization, which makes the model more stable and
reduces the risk of overfitting.

Binning is a common data discretization method that
includes unsupervised binning and supervised binning. Chi-
square binning is a supervised method that relies on the chi-
square test. The chi-square statistic χ2 is selected as the
statistical index for discrimination. The basic idea of chi-
square binning is to judge whether there is a distribution
difference between two adjacent intervals [20]. If the two
adjacent intervals have very similar distributions, they can
be merged; otherwise, they should be kept apart. When the
data are discretized on the basis of the chi-square statistic,
the bottom-up merge method is adopted until reaching the
restricted condition.

Data discretization algorithms based on chi-square binning
include the ChiMerge algorithm, Chi2 algorithm, and mod-
Chi2 algorithm [21]. However, an appropriate threshold is not
easy to obtain in the original ChiMerge algorithm, whereas
the improved Chi2 algorithm can automatically determine an
appropriate chi-square threshold and maintain the restoration
degree of the original continuous data set.

In this paper, the Chi2 algorithm is used to discretize wind
power into different levels. The input data of the Chi2 algo-
rithm include vector data for discretization and evaluation
standards for classification.

The aims of this paper is to discretize wind power, and
based on this discretization, train different wind power pre-
diction models. First, according to the Chi2 algorithm, wind
speed and wind direction are used as the classification eval-
uation criteria. The data set in this paper is from the SCADA
system of a wind field in Northwest China, and the wind
speed and direction data are the average values measured by
two wind sensors on the wind turbine at a given time. Taking
into account the computing power of the computer we used,
the operation data of a wind turbine for one month, that is,
from 2016-6-1 to 2016-6-30, are selected, and the data are
collected with one-minute intervals.

Fig. 1 and Fig. 2 show the wind speed distribution and
wind roses of the wind field, respectively. The wind speed
is distributed mainly in the range of 5 m/s∼15 m/s, and
the prevailing wind direction in this month is south. In this
paper, the considered data attributes includewind speed, wind
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Chi2 Algorithm
Input: Continuous data set, significance level α and incon-
sistency rate δ
Output: Discrete data set
Stage 1: Start with the initial significance level α, discretize
all the numerical attribute values. Each attribute is sorted
by its value
Stage 2: Perform the following steps:
1. Calculate the Chi-square statistic χ2 of adjacent inter-
vals (at the beginning, each interval contains only one
attribute value);
2. Combine the two intervals with the lowest χ2 in the
adjacent interval;
3. Continue the merge process until the χ2 values of all
adjacent intervals exceed the parameter α;
4. Repeat the process and gradually reduce the parameter α
until the inconsistency of the data is less than the parameter
δ.

FIGURE 1. The wind speed probability distribution of the wind field.

FIGURE 2. The wind direction rose of the wind field.

direction and the output power of the wind turbine. Data
that do not meet the cut-in speed (3 m/s) and cut-out speed
(20 m/s) are removed, and there are a total of 26796 pieces
of data.

The sample data are shown in Table 1 (only the
first 10 pieces of data are displayed in the table).

TABLE 1. The data set from the SCADA system.

TABLE 2. Contrast of discretized results.

According to the wind energy density formula, wind speed
is the decisive factor of wind power. The dominant wind
direction remained essentially unchanged for a month; there-
fore, we focus on the influence of wind speed on wind
power discretization. The relationship and distribution of the
original wind speed and wind power data are represented as
a scatter diagram in Fig. 3. Several distinct outliers can be
observed in Fig. 3. These outliers must be removed; other-
wise, the accuracy of the prediction model will be affected.

In the Chi2 algorithm, the initial value of parameter α is
0.5, and that of δ is 0.05. Finally, wind power was discretized
into 18 levels, and a comparison between the discretization
result and the actual wind power is shown in Table 2 for 10
randomly selected pieces of data (where the sequence number
represents the ordinal relation of the data in the original data
set).

To ensure that the discrete data set accurately represents
the original data set, a consistency check is used as the stop
criterion for the Chi2 algorithm. This approach automates
the discretization process by introducing an inconsistency
rate as the stopping criterion, and the significance value is
automatically selected. Therefore, the algorithm has good
robustness in data discretization.
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FIGURE 3. Scatter plot of wind power.

FIGURE 4. Box plot of wind power.

In addition, we can convert the wind power level into a
label variable and draw a boxplot of wind power and wind
speed, as shown in Fig. 4. The relationship of wind speed
and the discretized wind power is reflected in the boxplot,
and the outliers are also shown in Fig. 4. The outliers were
identified and deleted based on the boxplot. The triangular-
shaped points in the figure are extreme outliers: to verify the
anti-noise ability of the classification and prediction model,
we kept some mild outliers.

The scatter diagram used to delete extreme abnormal data
is shown in Fig. 5.

III. WIND STATE CLASSIFICATION MODEL BASED ON
THE WEIGHTED K-NEAREST NEIGHBOR ALGORITHM
Commonly used machine learning classification algorithms
include SVM, logistic regression, K-nearest neighbors
(KNN) [22], and decision trees. In view of the wind power
prediction model proposed in this paper and according to
the discretization results of wind power, each measurement
value has a different classification possibility, which makes
the problem a multi-category classification problem with a
single label. The KNN algorithm can predict the classifi-
cation of new sample points by dividing data points into
several classes; moreover, the algorithm is suitable for multi-
category classification problems. Furthermore, compared to

FIGURE 5. Scatter plot of wind power after deleting outliers.

other algorithms, the KNN algorithm is simple to implement
and has a good classification effect when the data size is large.

A. KNN ALGORITHM
On the basis of a given training data set, the KNN algorithm
can find the k instances closest to the new instance in the
training data set according to the given training data set.
If most of the k instances belong to the same class, the input
instance is categorized into this class:

KNN Algorithm
Input: The training data set T = {(x1, y1), (x2, y2),..., (xN ,
yN )}
where xi ⊆ Rn represents the eigenvector (i = 1, 2,..., N )
and yi ∈ ϒ ={cj}, which is the category (j = 1, 2,..., K ).
Output: The classification to which the input variable
belongs.
Stage 1: Based on the given distance measurement, find the
k points closest to x in the training set T ; the neighborhood
of x that covers these k points is denoted as Nk (x);
Stage 2: In Nk (x), determine the category of x according to
the classification decision rule:
y = argmax

cj

∑
x∈Nk (x)

I (yi = cj), i = 1, 2, . . . ,N ;; j =

1, 2, . . . ,K
where I is an indicator function. When yi is equal to cj, I
is 1; otherwise, I is 0.

B. WEIGHTED KNN ALGORITHM
The KNN algorithm is sensitive to the uneven distribution
of samples, which can easily cause classification errors. The
error is more obvious when the distribution of samples has
a large skew towards a particular classification. Because the
density of the data sample is large, more samples may belong
to a certain category, and the test data will be more likely to be
assigned to this category, which could result inmisjudgement.
Therefore, we add a weight to the distance between the test
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data and the known value; that is, the shorter the distance is,
the greater the weight.

The weighted KNNmust first sort the distance values. The
nearest k elements [23] are selected, and theweighted average
is calculated; that is, each distance value is multiplied by the
corresponding weight, and the results are summed. The final
distance can be expressed as:

f (x) =

∑k
i=1 diwi∑k
i=1 wi

(2)

where di represents the distance between the nearest neighbor
i and the value to be predicted x, wi is the weight, and f (x) is
the numerical result of the distance.

This paper uses a Gaussian function [24] to select the
weights. When the distance is 0, the weight reaches its
maximum value of 1. As the distance increases, the weight
decreases continuously; however, it does decay rapidly and
never reaches 0. The Gaussian weight is expressed as:

wi = e−
d2i
2c2 (3)

where c is the half-peak height of the Gaussian function,
which is generally 0.3∼0.5.

In the traditional KNN algorithm, all training samples are
considered equally important, that is, all the attributes are
treated equally. This approach does not reflect the influence
of different sample characteristic variables on the classifica-
tion results. Compared to wind speed, wind direction has a
weaker influence on wind power. In this paper, we assign
different penalty factors to wind speed and wind direction
when using the weighted KNN algorithm to reflect the influ-
ence of wind speed on the output power and to improve the
classification accuracy.

C. WIND STATE CLASSIFICATION MODEL
The wind power prediction model proposed in this paper
establishes different prediction models for different wind
power grades. Wind speed and wind direction can be clas-
sified according to the results in Section II. However, 18
different prediction models must be trained, and according to
the classification results, different grades of data sets can use
different models to predict the output power, which greatly
increases the workload of the wind power prediction task.
Therefore, we must fully recognize the similarity principle
between samples, and multiple classification labels should be
merged to reduce the number of prediction models. To main-
tain the balance between the classified samples and reduce the
influence of an uneven sample distribution on the weighted
KNN classifier, according to the discretization results in
Section II, the label merging results are shown in Table 3.

To verify the effectiveness of the algorithm, 70% of the
data set is randomly selected as the training set and 30% is
selected as the test set. The distance function used in this

TABLE 3. The label merging results.

paper is Euclidean distance.

L
(
xi, xj

)
= (

n∑
l=1

∣∣xi − xj∣∣2) 12 (4)

where xi and xj are two different instance points, each of
which includeswind speed andwind direction characteristics.

In general, themodel with the least empirical risk is the best
model. When the sample size is sufficiently large, empirical
risk minimization (ERM) can ensure a good learning effect.
For a training set with N samples, the ERM function fN is:

fN = argmin
1
N

N∑
i=1

L(yif (xi)) (5)

Second, an appropriate k must be chosen. The value of k
should not be excessively large or small. A small k corre-
sponds to a small training error, but for the overall model,
overfitting is likely to occur. A larger k increases the train-
ing error and can lead to inaccurate prediction. Therefore,
cross validation can be used to select the optimal k . This
paper adopts 10-fold cross validation; that is, the data set is
randomly divided into 10 disjoint subsets of the same size.
Verification and comparison indicate that the optimal k is 11.

The trained model is then used to classify the test set.
The wind power is classified according to the given grade,
as shown in Fig. 6. Different colours in the figure represent
different wind power grades, and the classification accuracy
reaches 98%.

IV. A RANDOM FOREST PREDICTION MODEL BASED ON
POISSON APPROXIMATE RE-SAMPLING
Random forest is one of the most popular machine learning
methods [25] that has good advantages in different data sets.
In the process of creating a random forest, the unbiased
estimationmethod is used to estimate the generalization error,
that is, the mathematical expectation of an estimator is equal
to the estimated parameter. The difference between random
forest algorithms is how randomness is introduced into the
process of tree generation. Therefore, a random forest is a col-
lection of trees with sample sampling and feature sampling;
that is, the randomness of a random forest is reflected in two
aspects: sample sampling (row sampling) and attribute sam-
pling (column sampling). The basic random forest generation
process is shown in Fig. 7.

x is the input characteristic variable, and y is the weighted
output of the random forest. Given a data set containing m
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FIGURE 6. Scatter plot of wind power after deleting outliers.

FIGURE 7. Random forest algorithm model.

samples, we sample the data at random with replacement,
so the same sample can be selected more than once.

After random sampling n (n ≤ m) times, we obtain a
sample set with n samples. Some samples in the initial train-
ing set appear many times in the sampling set, while others
never appear. Suppose that each sample has k characteristics
and randomly select j attributes from k . Attribute sampling
usually uses sampling without replacement. The split point
of the decision tree is obtained according to the selected j
attributes.

A. POISSON APPROXIMATE RE-SAMPLING ALGORITHM
In view of the problem proposed in this paper, only wind
speed and wind direction are used for wind power prediction;
thus, we have to consider only row sampling. To reflect the
randomness of row sampling, bootstrap or bagging methods
are generally used in the formation of classified regression
trees in random forests. The training set used by each tree
is sampled from the total training set; therefore, some sam-
ples from the total training set may appear multiple times
in a tree’s training set or may never appear. Sampling with
replacement is themost effectivemethod to generate a sample
set for model fitting. This sampling approach is equivalent
to sampling with a uniform binomial distribution; that is,
the probability of each data point being selected follows a
binomial distribution.

If the above process is repeated T times, we obtain T deci-
sion trees. For the regression problem, the output dependent
variable is the average of each tree and can be expressed as:

y =
1
T

T∑
i=1

hi(x) (6)

where h1, h2,. . . , hT denote different decision trees and hi(x)
is the output of hi on sample x.
Sampling with replacement is the most effective way to

generate a sample set from the initial data for model fitting.
The probability of each sample data point being selected
follows a binomial distribution and can be calculated as:

P(X = k) = Ck
n p

kqn−k , k = 0, 1, 2, . . . , n (7)

The Bernoulli trial is repeated n times under the same
conditions. Only two opposing outcomes per experiment are
possible, that is, A and A′. The probability of A occurring is
p, where p is between 0 and 1. Therefore, the probability of
A′ occurring is 1-p (represented as q). Suppose that k is the
total number of times the result is A in n trials and that k is a
randomvariable. That is, the binomial distribution, also called
the Bernoulli distribution, is denoted as X ∼ b(n, q).
However, in practical applications, the Bernoulli distribu-

tion usually has a large n and relatively small p, and the prod-
uct of n and p is moderate. In this case, we can use the Poisson
distribution to approximate the binomial distribution because
the Poisson distribution is relatively simple to calculate [26].

The Poisson distribution is defined as:

lim
n→∞

Ck
n p

k
n(1− pn)

n−k
=
λk

k!
e−λ, k = 0, 1, 2..., n (8)

where pn is the probability ofA occurring in nBernoulli trials,
which depends on the number of trials.

According to (7) and (8), the binomial distribution can be
approximated by the Poisson distribution with parameter λ=
np:

Ck
n p

k (1− p)n−k ≈
λk

k!
e−λ (9)

Generally, each tree is generated with the same amount of
data as the total number of training samples. This approach is
equivalent to using the bootstrap algorithm to sample all the
initial training sets such that each model contains the same
number of data samples as the initial data [27]. However, the
bootstrap algorithm is not suitable for very large data sets.
In addition to improving the prediction accuracy, improving
the fitting speed is also very important.

B. IMPROVED RANDOM FOREST
Wind power forecasting involves a large quantity of data, such
as wind speed and wind direction, which can be collected at
one-minute intervals. When sampling is conducted in a large
amount of data, the probability of any sample being selected
is very small. This scenario conforms to the conditions under
which the binomial distribution approximates the Poisson
distribution. In this paper, the bootstrap algorithm is replaced
by Poisson re-sampling to improve the training speed of the
random forest model.We call the improved algorithmPoisson
re-sampling random forest, and the specific process is as
follows.

(1) Conduct separate Poisson re-sampling for each input
sample of the training data set {(x1, y1),(x2, y2),..., (xi, yi),...,
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(xn, yn)}, where xi is a multidimensional vector. The Poisson
sampling parameter is:

λ =
t
n

(10)

where n is the total number of samples in the initial training
set and t is a data sample contained in any model.
(2) In the process of regression tree generation, ramifica-

tion is needed. For all input variables, we must determine
the optimal ramification variable and the optimal ramification
point. That is, a characteristic variable is selected, the input
space is divided into two parts according to its value, and the
operation is repeated. In this paper, wind speed and direc-
tion are predicted, and the optimal split variable is selected
according to the predicted target. Taking wind speed as an
example, wind speed is the optimal split variable j. The
objective function of searching for the optimal split point s
is:

Fmin=min
j,s

min
c1

∑
xi∈R1(j,s)

(yi−c1)2+min
c2

∑
xi∈R2(j,s)

(yi−c2)2


(11)

where R1 and R2 represent the two subspaces after ramifica-
tion. c1 and c2 are the predicted values of the two subspaces,
which are equal to the output mean value of each sample in
different subspaces, as in (12):

cm = ave(yi|xi ∈ Rm) (12)

where m represents the different subspaces that the input
space has divided.

(3) Step (2) is repeated in the two subspaces until the
objective function Fmin satisfies the stop condition. Finally,
the regression tree is generated as:

h(x) =
M∑
m=1

cmI (x ∈ Rm) (13)

where I represents different input spaces. A regression tree
corresponds to an input space and the output values on this
input space.

(4) Sampling T times generates T regression tree predic-
tion models {hk (x)} (k = 1, 2,..., T ). That is, the sampling
frequency of any data sample is subject to a Poisson distribu-
tion, and the parameter λ is Tt/n. Then, the results of all the
learners are averaged mathematically to obtain the output of
the model as:

H (x) =
1
T

T∑
k=1

hk (x) (14)

The large quantity of wind power data entails some chal-
lenges in wind power prediction. Compared to the bootstrap
algorithm, the Poisson re-sampling algorithm simplifies the
sampling process and improves the modelling speed.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, first, the feasibility of the improved random
forest algorithm prediction model is verified and compared to
other algorithms in terms of the prediction accuracy and real-
time performance. Second, we analyse the prediction effect
before and after wind power grade classification.

A. POISSON RE-SAMPLING ALGORITHM
To address the power prediction problem in actual wind
farms, the effectiveness and superiority of the Poisson
approximate re-sampling method in the improved random
forest algorithm are verified. The experimental data are the
full data without wind power classification. For the random
forest algorithm, by means of cross validation, the mean
square error (MSE) is minimized when the number of trees
in the random forest is approximately 150. In consideration
of the real-time performance of the prediction algorithm, the
number of regression trees was set to 100. First, to compare
the performance of different prediction models on this prob-
lem, we chose gradient boosting regression tree (GBRT) and
multilayer perceptron (MLP) to compare with the random
forest algorithm for the same training data.

FIGURE 8. Comparison of iteration curves.

The iterative curves of these three models are shown in
Fig. 8. Considering the training time and memory consump-
tion of the model, the learning rate of GBRT is 0.01. GBRT
is mainly used for regression prediction, but more regression
trees are needed to achieve better prediction performance.
Therefore, when the number of regression trees was limited to
100, as shown in Fig. 8, the prediction results were worse than
those of MLP and random forest. For this problem, the num-
bers of nodes in the input layer, hidden layer and output layer
of the multilayer perceptron were 2, 8, and 1, respectively.
The MSE of the network after iteration is similar to that of
the random forest algorithm. However, the network training
speed is slow, which affects the real-time performance of
prediction, and it is easy to fall into local extrema. Therefore,
the random forest algorithm is selected and optimized in this
paper.
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TABLE 4. Performance comparison of four algorithms.

FIGURE 9. Comparison of iteration curves with different sampling
algorithms.

TABLE 5. Performance of the wind power prediction algorithm for
different grades.

The iterative curves of the random forest algorithm before
and after improvement are shown in Fig. 9. The brown curve
in the figure is the iterative curve of the improved random
forest algorithm. When the size of the regression tree is 100,
the MSE is 0.096. In addition, to achieve the same error,
compared with the unimproved random forest algorithm, the
method proposed in this paper requires fewer regression trees;
that is, the real-time performance is better.

TABLE 4 compares the performance of the four algo-
rithms, including the MSE and training time. The algorithms
proposed in this paper perform better in terms of training
accuracy and training time.

The predictive model after training is used to test the wind
motor output power per minute in the next hour to verify the
fitting of the predictive model.

Fig. 10 shows the error curve and fitting curve of
ungraded wind power prediction. The fitting curve shows
the wind power output at 60 time points to be pre-
dicted (in minutes). As the wind power fluctuates greatly,
the prediction error is large and the fitting effect is not
ideal.

FIGURE 10. Prediction curve of the improved random forest.

FIGURE 11. Training and prediction curve for grade I.

B. THE HIERARCHICAL WIND POWER PREDICTION
ALGORITHM
According to the algorithm proposed in this paper and the
above classification model, the sample data are first classi-
fied; then, the classified data are used for wind power pre-
diction. Additionally, the improved random forest algorithm
proposed in this paper is adopted. In the experiment, the
number of regression trees in the random forest was also set
as 100, and the four grades of data were trained and predicted
to verify the effectiveness and superiority of the hierarchical
wind power prediction algorithm.

Figs. 11 to 14 show the iteration curves and fitting curves
of the four grade prediction models. TABLE 5 shows the
performance of the four prediction models.

In the above four figures, the blue curve is the iterative
curve. According to the iteration curve, when the number of
regression trees reaches 50, a small MSE can be obtained.
The green curve is the measured value of wind power, and
the brown curve is the predicted value. The real value and the
predicted value of each grade basically coincide, and only a
few large errors occur at the turn of the curve.

As shown in TABLE 5, compared with the prediction
results using the full data, the hierarchical wind power
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FIGURE 12. Training and prediction curve for grade II.

FIGURE 13. Training and prediction curve for grade III.

FIGURE 14. Training and prediction curve for grade IV.

prediction model has a shorter iteration time and smaller pre-
diction error. This is because all the data are first classified,
and the prediction model is established in a data set with
small differences, which reduces the prediction error to a
great extent and improves the real-time performance of the
prediction algorithm.

To compare the results obtained with the improved ran-
dom forest algorithm applied to all the data, the prediction
accuracy and real-time performance after classification are

improved to a great extent. However, the classification time
is not considered. Classification is equivalent to the segmen-
tation of a large data set before the prediction. In addition,
the hierarchical wind power is predicted separately, and the
total forecast time of this model is not counted. Therefore,
the real-time performance of the model is still lacking, and
parallel processing would improve the method.

VI. CONCLUSION
The large quantity of wind power data entails challenges in
the prediction of wind power. The wind power hierarchi-
cal algorithm proposed in this paper as a data segmenta-
tion method can reduce the data scale without changing the
original characteristics of the data to transform prediction
problems into classification problems, which is conducive
to the establishment of refined prediction models. Second,
the weighted KNN algorithm shows good classification per-
formance when the number of classification variables is
relatively small. In addition, compared with the bootstrap
algorithm, the random forest algorithm based on Poisson re-
sampling is more suitable for big data modelling. The experi-
mental results show that the algorithm proposed in this paper
shows superior classification and prediction performance.
The new solution can estimate the output wind power with
an MSE of 0.0232, better than that of the algorithms that are
not hierarchical.

In the next step, to account for the characteristics of big
data in wind power, parallel modelling of the prediction
algorithmwill be realized to further improve the accuracy and
speed of prediction.
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