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ABSTRACT Archaeological steles having a rough surface due to long periods of weathering make
recognizing the inscription difficult. In this paper, we propose a machine learning-based method to extract
reliefs for the inscription from a rough stele surface. Relief candidate segments are initially obtained by using
a curvature-based method, which include not only actual reliefs but also noises such as dents and scratches.
Then, relief segments are selected using a support vector machine classifier that is trained with various
features extracted from relief candidate segments. While conventional methods using a single geometric
feature easily fail to detect reliefs from the rough surface, the proposed method utilizes 79-dimensional
features consisting of appearance-based, cross section-based, and local extrema-based characteristics of
each candidate segment to determine whether the segment is relief or not. Using the proposed method,
the inscription of the steleMusul-ojakbimade during the Silla Dynasty AD578 were completely recognized.
The experimental results demonstrate that the proposed method accurately extracts reliefs and achieves the
highest performance on the rough stele data. The performance of the proposed method is about 8.95% and
10.4% higher than the best of the conventional methods in terms of the F1-score and the SIRI, respectively.

INDEX TERMS Cultural heritage, frangi filter, relief extraction, mesh processing, support vector machine.

I. INTRODUCTION
Among ancient cultural heritage relics, stone steles aremostly
regarded as valuable historical materials because of their
political and cultural records of the people that lived in the era
they were created. The inscriptions on the steles are presented
in the language or symbols of ancient people. However,
the stone steles that have been exposed outdoors for a long
time wore out due to weathering, and might be discolorized
with impurities.

A typical method to identify the contents of the stele,
such as characters and drawings, is the use of the stone
rubbing technique. Since the resultant image of the rubbing
process depends largely on the skills and experience of the
persons applying the technique, several results are repeatedly
produced and examined by comparing one another for accu-
rate analysis. However, when applying the rubbing method,
the surface of the stele may be damaged further by physical
contacts and contaminated by ink.

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudio Cusano .

To solve these problems, computer-aided methods have
been developed [1]–[18]. The stele will not be damaged nor
contaminated since any physical contact is not required. In
addition, contrast to the rubbing technique, the quality of 3D
scan data acquired does not depend much on the proficiency
to handle the 3D scanner.

The computer-aided methods are categorized into two
approaches; one that helps archaeologists to read the engrav-
ings by means of effective visualization, and the other that
extracts reliefs from the relics automatically.

In image-based visualization methods [1], [2], the target
is photographed iteratively by adjusting the direction and
position of the light, and shade variation is used to identify
reliefs that were not easily visible. But there is a hassle to
adjust the lighting in a controlled acquisition environment for
accurate shading visualization. Rendering enhancement of
surface concavities and convexities by dynamically adjusting
the effective light position for different areas of the surface
has been widely utilized [11], [12].

For recognizing the inscriptions or extracting illustra-
tive sketches automatically, ridge-valley edges of engravings
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FIGURE 1. The picture of Musul-ojakbi (Courtesy of Kyungpook national
university museum).

were detected [14]–[17]. In [10], the relief segments are
approximated using 3-order polynomial fitting to empha-
size the surface reliefs for illustrative shading. This method
explores the convex, concave and inflection properties sur-
rounding a point and applies shading techniques using
polynomial approximation, thereafter, the intensity for each
point is updated. In [18], eroded inscriptions were visu-
ally emphasized by morphological filtering algorithms. By
applying Laplacian smoothing and morphological subtrac-
tion to multiple different scale meshes, morphological resid-
uals representing different levels of carvings were detected
and visualized. In [13], to maximize visualization effects for
a physical artifact, an interactive 3D visualization technique
that highlights its features on the artifact was presented.

For automatic relief extraction, a depth-based method was
developed where depth values of vertices within the 3D data
were estimated globally optimizing local depth increments
[4]. Assuming that the depth values of the base surface and
of the reliefs are respectively Gaussian-distributed, regions
deeper than the threshold determined using an EM algorithm
are regarded as reliefs. In [6], a curvature-based method was
presented to extract reliefs. For each vertex, two principal

FIGURE 2. Two 3-D scanned characters from Musul-ojakbi. The left
character is easily recognizable with a few dents, while it is difficult to
recognize the right character as the surface has many dents and cracks.

curvatures are obtained. Canal-shaped regions where vertices
have both large curvature magnitude and large ratio of the two
curvatures are determined as relief regions.

In this paper, we aim to automatically extract reliefs for
the characters from the stele Musul-ojakbi, a Korean trea-
sure No. 516 that was produced to commemorate the con-
struction of a reservoir in year ‘‘Musul’’ (578 AD) during
the Silla dynasty. It recorded the construction information
that 312 workers built a reservoir in Yeong-dong village for
13 days in year ‘‘Musul’’. The content includes the names of
the supervisors and sculptors. It is noteworthy that it contains
the Idu script language, the writing system with borrowed
Chinese characters. Musul-ojakbi is regarded as an important
material for research on irrigation facilities, cultural history
and the Idu script language.

The characters of Musul-ojakbi had been inscribed in Chi-
nese characters on a very rough surface as shown in Fig. 1. As
the surface had not been grinded flat before engraving as well
as has been weathered for a long time, it is very challenging to
recognize the inscriptions by the visual and tactile perception
of the observer or by the rubbing technique.

Fig. 2 shows two character examples cropped from differ-
ent locations on the stele’s surface. The meshes are colorized
according to the pseudo-depth, the z-coordinate of vertex,
where the deepest and the highest points are represented
in blue and yellow, respectively. It is noteworthy that the
average psuedo-depth of the deepest valley of the reliefs is
just 0.27 mm, while the pseudo-depth range of each mesh is
larger than 2.4 mm.

Since this stele has a lot of dents and cracks on this very
uneven surface, the conventional automatic methods using a
single geometric feature, such as depth or curvatures, easily
fail to extract reliefs also. The rough surface causes inaccu-
rate depth estimation and makes the Gaussian distribution
assumption for the depths invalid. Since the curvature cal-
culation involves a second-order derivative, noisy curvatures
result from the rough and weathered surface. Consequently,
the curvature-based method extracts not only relief segments
but also false segments of holes and cracks with noisy seg-
ment boundaries.
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In this paper, we propose amachine learning-basedmethod
that extracts relief regions from the 3D scan data of the
rough and weathered stele. Fig. 3 shows the overview of the
proposed relief extraction method. First, candidate segments
potentially to be relief are extracted using the curvature-based
method. The extracted relief candidate segments contain not
only actual reliefs but also noises such as dents and scratches.
In the proposed method, various geometrical features are
gathered for each relief candidate segment, and trained using
a kernel support vector machine (SVM). Then, the trained
SVM model is exploited to remove the noise segments out.

The composition of this paper is organized as follows.
Section 2 briefly introduces relative works of relief extrac-
tion. Section 3 explains the proposed method. Section 4 orga-
nizes experimental results and finally Section 5 organizes the
conclusions.

II. RELATED WORK
In this section, conventional automatic relief extraction meth-
ods are reviewed briefly. Considering 3D geometric shapes
of reliefs, the use of depth information is the most intuitive
approach. These methods estimate the depth at each point
position, and the relief and background are identified based
on a threshold [3], [4]. Engraving inscription on a planar
surface would allow easy depth estimation. However, the sur-
faces are not usually flat enough.

In [3], [18], a base surface representing a virtual surface
before engraving is created by smoothing the 3D data, and
the distance of each vertex to the virtual base surface is used
for the depth value of the vertex. However, it is difficult to
search for optimal parameters for smoothing, so this does not
provide an appropriate base surface.

In the depth estimation-based relief extraction method
(DRE) [4], a relative depth of each point is estimated with-
out obtaining the base surface. Instead, the normals of the
virtual base surface are estimated by smoothing normal vec-
tors. The relative depth values of a point with respect to its
adjacent points are obtained using the smoothed normals.
Then, the depth values of vertices are determined globally
by optimizing local relative depths in the least squares sense.
Assuming that the surface consists of the background and the
relief regions and the depths for the two classes are modeled
as a mixture of Gaussians, the relief region is segmented
based on the threshold determined by an EM algorithm.

For a severely rough surface, however, the normals of the
virtual base surface are not obtained accurately and the Gaus-
sian assumption on the depth distribution is easily invalidated.
Consequently, the reliefs are not well distinguished from the
background.

Another approach to automatic relief extraction exploits
the curvatures of the 3D data [6], [9]. Lawonn et al. [6]
presented the curvature-based relief extractionmethod (CRE)
by adapting the Frangi filter for extracting reliefs from the 3D
data. The Frangi filter has been widely used in medical field
to find blood vessels using the curvatures that are prominent
features describing the local surface [19]–[21].

Since our method utilizes a modified version of CRE for
potential relief candidate segmentation, we explicate CRE
and the modified variant.

Lawonn et al.modified the vesselness measure used for the
medical images [5] to represent how much the local surface
of a point in a mesh is close to the canal shape [6]. The
vesselness V for carving extraction from a mesh is given as

V =

exp
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−
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2α2

)(
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52
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))
, k1 ≥ 0,

0, otherwise,
(1)

where k1 and k2 (|k1| ≥ |k2|) are the maximum and mini-
mum principal curvatures at a point, respectively. 0 and 5
represent the ratio of the principal curvatures
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2
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The region of connected points with nonnegative vessel-
ness values is extracted. In the CRE method, the extracted
regions are ranked to select several carvings in terms of
saliency defined as a total vesselness sum of the carving
region.

From (1), when k1 ≥ 0, the first term referred to as V shape

represents how much a local surface is similar to a canal
using the ratio of the curvatures and the second term referred
to as V depth represents the depth of a local surface using a
magnitude of the curvatures.

Specifically, the parameter α in V shape controls the width
of the detected region. Only the shape close to the canal is
extracted for a large α. The small noise regions disappear,
but the relief corresponding to a single stroke of a character
becomes thin and even tends to be separated. In contrast,
the smaller the value of α, the larger the detection of the
extracted area with a high presence of noise. Comparatively,
the parameter, β is used to control the second order structure-
ness in the canal.

However, the CRE method that was originally developed
to process the drawing carved in plasters is not effective to
extract inscriptions on steles with rough surfaces. This is
because 0 fluctuates severely due to noisy curvatures of the
rough surfaces, which results in the very messy boundaries
of the extracted areas and it is very difficult to search for
an appropriate α. In addition, since the characters of the
inscription have not only long strokes, but also short ones,
contrast to the carvings in plasters, the saliency that gives a
higher rank to a long connected region becomes meaningless.

In the modified curvature-based relief extraction method
(MCRE) [9], such problems are alleviated by nullifying the
vesselness values smaller than a threshold TV to zero and
deactivating the saliency-based selection. We utilize MCRE
for initial relief candidate segment extraction.

III. THE PROPOSED RELIEF EXTRACTION METHOD
Fig. 3 illustrates the proposed relief extraction method. Since
the whole 3D scan data of the stele are too large to process
efficiently, we partition the data manually into smaller rect-
angular meshes each of which contains a single character.
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FIGURE 3. An overview of the proposed relief extraction method.

Initially, relief candidates are obtained by MCRE. Then,
we gather various geometric features of each candidate seg-
ment. Finally, a kernel SVMbinary classifier trained using the
geometric features is utilized for determining whether each
segment is relief or not.

A. RELIEF CANDIDATE EXTRACTION
For surface alignment as preprocessing, the coordinate
frame of the rectangular mesh M is re-originated to the
center position. The partitioned mesh can be approxi-
mated by a plane using the principal component analysis
(PCA). Any slant of the mesh is got rid of by align-
ing the z-axis of its coordinate frame with the normal of
the plane.

The aligned mesh is filtered with Gaussian smoothing to
remove the noise that was captured during the 3D scanning.
Gaussian smoothing effectively reduces the amplification of
noise in the subsequent curvature computation. The relief
candidate segments S and curvatures of all the vertices are
obtained using the MCRE.

The obtained relief candidate segments include not only
actual reliefs but also noises. Furthermore, the relief segments
may have holes hindering the feature extraction used later.
Therefore, we eliminate the holes and small noises by apply-
ing the morphological closing operation to the mesh in the
segment refinement step.

Fig. 4 shows the process of extracting the relief candidate
segments. An input mesh is visualized using z values of
vertices in Fig. 4(a). In Fig. 4(b), initial segments detected by
MCRE are represented in yellow, while background regions
in blue. There are holes on the relief candidate segments and
noises. After the refinement, small noises are removed and
holes are filled as shown in Fig. 4(c).

FIGURE 4. Relief candidate extraction. From the input mesh in (a), initial
segments as shown in (b) are obtained by MCRE. By filling small holes in
the segments and removing small segments, relief candidate segments
are obtained.

B. FEATURE EXTRACTION
For each relief candidate segment S i, we gather 79-
dimensional features representing various geometric char-
acteristics of the segment. The proposed features consist
of a 31-dimensional appearance feature, a 25-dimensional
one related to the cross section of the segment, and a 23-
dimensional one describing local extreme depth and curva-
tures.

For a certain geometric information, we exploit five
statistics including the mean, standard deviation, maximum,
median, and minimum. For simple notation, the five statis-
tical values of information l is denoted by Sl ∈ R5×1. The
following subsections describe the features used for relief
classification in detail.

1) APPEARANCE SUBFEATURES
Considering that the relief represents a stroke for a character,
appearance information including the size and position of
relief candidate segment can be useful for relief classification.
The first feature represents the area of the segment by the
number of vertices to that S i belongs, denoted by NS i .
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FIGURE 5. Cross section reconstruction. (a) Boundaries of the relief
candidate segments and their 2D skeleton curve parts. (b) The normal
directions of sampled 2D skeleton points are represented as red lines. (c)
3D intersection points composing cross sections are represented in red.

We gather the statistical values of vertex position (x, y, z)
within S i, i.e. Sx , Sy, and Sz. For irregular-sized charac-
ters, the normalized position (xn, yn, zn) obtained normalizing
each coordinate of the vertex position to [0, 1] may be more
appropriate, and thus, the statistics of the normalized vertex
position, Sxn , Syn , and Szn , are also gathered. As a result, a 31-
dimensional feature is obtained for capturing the appearance
characteristics of each relief candidate segment.

2) CROSS SECTION SUBFEATURES
For shape-related features, we first extract a 2D skeleton from
S i, i.e. the medial curve of S i, that represents the structure
of the segment. Initially, all the vertices of S i are converted
into 2D points by simply removing their z-coordinates and
projecting them on a finer 2D grid to maintain accuracy. In
our experiment, the grid spacing is set to one third of the
average length of edges within the input mesh.

Then, a skeleton is obtained by thinning the region as
in [22]. For estimating reliable features, the junction part
where several strokes join is removed out from the obtained
skeleton. Consequently, the skeleton can be partitioned into
several skeleton curve segments without junction.

The cross sections of a relief resemble the shape of an
artificial canal, as the relief was made by chipping the stone
with a chisel. The next features indicate how much the cross
sections of S i are close to the canal shape by approximating
to quadratic functions.

Fig. 5 depicts how the cross section is reconstructed. From
the skeleton curve segments in Fig. 5(a), we uniformly sample
points where cross sections are to be reconstructed. In our
experiment, one fifth points were sampled from the skeleton
curve segments. At each 2D sample point p, the normal
direction is determined by using PCAwith the skeleton points
around the sample point as shown in Fig. 5(b). Letting n
denote a 3D augmented vector of the normal direction by
appending zero to the normal for the z-coordinate, a 3D plane
P containing p′ can be generated so that P is spanned by two
orthogonal vectors, [0, 0, 1]T and n. Here, p′ is a 3D point
within S i which is the closest to p except the z-coordinate.
The 2D cross section of S i at p′ is reconstructed with the

intersection of S i and P, as shown in Fig. 6. Specifically,
triangle edges within S i crossing P are obtained and the
intersection points of the edges with P are accurately found.

FIGURE 6. 3D intersection points are obtained by intersecting the yellow
relief candidate segment with the plane P spanned by [0, 0, 1]T and n at
p′ .

FIGURE 7. Quadratic approximation of cross sections. (a) Relief segment.
(b) Noise segment. The quadratic approximation to the cross section of
relief segment is usually more convex with a smaller approximation error
than the approximation of noise segment.

FIGURE 8. Local extrema points. (a) Local depth maximum points. (b)
Local curvature magnitude maximum (5L) points. (c) Local curvature ratio
minimum (0L) points.

The 2D cross section for p′ is yielded by projecting the
intersection points onto P with n and [0, 0, 1]T as u- and v-
directions, respectively.

The width w and depth d of the cross section and the
curvature magnitude 5 at p′ can be regarded as the basic
characteristics of the cross section of p′. After reconstructing
the cross sections of all the sampled skeleton points, we deter-
mine a 15-dimensional feature consisting of Sw, Sd , and S5.
For analyzing the cross sectional shape further, the cross

section is approximated to a quadratic function of the form
v = au2 + bu+ c. To deal with various relief cases, we nor-
malize u values to [0, 1] before the quadratic regression.
The coefficient a implies the approximate shape of the cross
section by indicating convexity with the ratio of the depth
and width of the segment cross section. Typically, the relief
segments have a larger a than the noise segments.
In addition, an approximation error of the quadratic regres-

sion can measure how similar the cross section is to canals,
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FIGURE 9. Subjective comparison of the relief extraction methods. (a) Input meshes. DRE [4] in (b) yielded unsatisfactory results due to undetected
strokes or many thick noise detection. CRE [6] in (c) and MCRE [9] in (d) are better than DRE, but there are still a lot of falsely detected noises. The
proposed method in (e) produced very pleasing results similar to the ground truth in (f) by selecting and removing noise segments successfully.

because the relief segment artificially made tends to have
a near-symmetrical cross section. The mean squared error
(MSE) between the cross section and the approximated func-
tion is used for the approximation error, and the relief segment
usually has a lower MSE value than the noise segment. Based
on the observations, Sa and SMSE are extracted for composing
a 10-dimensional cross section feature.

Fig. 7 shows the quadratic approximation for cross sections
of relief and noise segments. The cross section of the relief
segment is more convex and symmetric than that of the noise
segment.

3) LOCAL EXTREMA SUBFEATURES
Although there is no record of the process of making the stele
of the Silla dynasty era, it is believed that the relief of the stele
was carved out by chiseling the stone. Considering the stele
making process, locally deepest points in the surface can be
seen as the trace of the end point of a chisel.

In the proposed method, the depth d is approximated by
the z value of vertex. A point p is the local depth maximum
(LDM) point when p is the deepest point within the 1-ring
neighborhood of p.

This is an important factor in classifying the relief seg-
ments. In the relief segment, the local depth maximum points

are mainly located along the skeleton of the relief segment.
Since, however, the noise segments are different from the
shape of the canal, the LDM points are distributed randomly
and tend to deviate from the segment skeleton. That is, letting
dL and1dL denote the depth value of the LDM point and the
distance of the point to the skeleton, respectively, 1dL varies
largely for the noise segments. Based on this observation,
we extract a 11-dimensional feature consisting of the number
of the LDM points NdL , SdL , and S1dL

.
The curvatures, widely used descriptors for the local sur-

face, can be utilized in a similar way. Since the curvature
magnitude 5 and the curvature ratio 0 have been already
estimated for all the vertices in MCRE, local curvature mag-
nitude maximum (LCMM) points as well as local curvature
ratio minimum (LCRM) points can be easily searched as
interesting points. The final 12-dimensional feature consists
of the numbers of LCMM points and LCRM points, and the
statistics with respect to the values of LCMM and LCRM that
are denoted by N5L , N0L , S5L , and S0L , respectively. Fig. 8
shows the positions of the local extrema points.

C. SVM-BASED BINARY CLASSIFICATION
Each relief candidate segment S i is classified as relief or not
by the SVM classifier based on the extracted features of S i
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TABLE 1. Quantitative F1 score results of the different relief extraction methods for the nine characters in Fig. 9.

TABLE 2. Quantitative SIRI [26] results of the different relief extraction methods for the nine characters in Fig. 9.

FIGURE 10. Objective comparison of the relief extraction methods for
70 characters. The performance measures were evaluated with the vertex
label LV . The proposed method shows the highest values in terms of
precision, accuracy, F1 score, and SIRI.

[23]–[25]. The inscription of the stele we are interested in
contains only several dozens of characters each of which
consists of several strokes. Consequently, the number of relief
candidate segments extracted is only a few hundred. This
is why the SVM framework that performs well on small
data sets of high dimension is employed to select the relief
segments [24], [25].

In order to prepare the data for training an SVM clas-
sifier, relief candidate segments are extracted from the
meshes in the training dataset. After the proposed features
are obtained from the relief candidate segments, they are
standardized for effective learning. Each segment is binary
labeled (‘relief’ or ‘noise’) manually to generate the ground
truth segment label LS . Then, the SVM classifier is trained
using the 3-order polynomial kernel with the features and
labels.

IV. EXPERIMENTAL RESULTS
The hyperparameters in this experiment are as follows: σ of
Gaussian smoothing for mesh preprocessing was set to 0.9.
For MCRE, α and β used in the vesselness measure were set

to 0.6 and 0.1, respectively. TV for noisy boundary reduction
was set to 0.4.

For segment refinement in relief candidate extraction,
the morphological closing operation was performed twice
to eliminate holes and small noises. The sampling rate of
skeleton curve segment for the cross section reconstruction
was fixed to 0.2. The hyperparameters of the SVM model
in the proposed method were determined using the grid
search. A third-degree polynomial kernel was utilized with
the scale of 7, and the box contraint was set to 1. The standard
feature scaling was adapted.

We used the 3D scan mesh data obtained from the stele
Musul-ojakbi with a size of 672.9 × 987.1 × 32.4 mm (w ×
h× d). The scanned data contains approximately 23 million
vertices, with an average resolution of 250 µm and an accu-
racy of 30 µm.

For the experiment, 169 character regions were partitioned
from the 3D scan data. The 3D scan data were cropped so
that each mesh had a margin of 1 mm from the outer edge of
a single character. Apart from LS having labels per segment,
we manually made another ground truth vertex label LV that
indicates whether each vertex belongs to the relief. 70 char-
acters were used for evaluation.

A. EVALUATION
To evaluate the performance of the proposed method,
we compared it with DRE [4], CRE [6], and MCRE [9]. We
separated the 70 characters into the training set of 61 char-
acters and the test set of 9 characters. In the training
datasets, there are 525 relief candidate segments consisting
of 222 reliefs (true) and 303 noise segments (false). Fig. 9
illustrates the results of the various relief extraction methods
for subjective comparison. Fig. 9(a) shows that the inscription
had been engraved on the very uneven surfaces.
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FIGURE 11. Comparison of the relief extraction results for the entire stele of the relief extraction methods. (a) The rubbing of Musul-ojakbi
with inverted colors. (b) CRE [6]. (c) MCRE [9]. (d) The proposed method.
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DRE yielded unsatisfactory results by missing main
strokes of the character or extracting thick noise segments.
The rough surface caused inaccurate depth estimation, and
even made the Gaussian distribution assumption for the
depths invalid. As a result, the EM algorithm failed to deter-
mine a proper depth threshold. If the depth threshold is
determined low, the reliefs become thin and main strokes
are undetected as in the character mesh 1. For a high depth
threshold, the reliefs become thick, but a lot of noise segments
also appear as in the other meshes.

CRE in Fig. 9(c) also produced very unpleasing segmen-
tation results. As mentioned earlier, CRE uses the curva-
tures for the vesselness measure without the consideration
of noisy curvatures resulting from rough surfaces. Conse-
quently, the boundaries of the extracted segments were very
jagged. MCRE performs better than CRE because the noise
curvatures are partially suppressed. However, thin noise seg-
ments remain and the segments have holes and jagged bound-
aries also.

In contrast, the proposed method in Fig. 9(e) produced
very pleasing results similar to the ground truth presented
in Fig. 9(f). The results show a considerable reduction of
the noise segments. This means that the trained kernel SVM
model successfully selects and removes noise segments.

For the nine characters in Fig. 9, detail quantitative results
of the different methods are summarized in Table 1 where
the F1 score was measured based on the vertex label LV .
The highest score is indicated in bold. The results obtained
applying only each subfeature are also provided. The pro-
posed method have the best performance compared to the
conventional methods. Even using a single subfeature among
the three subfeatures is superior to the conventional methods.
The appearance information about the size and position of the
segment is most useful among the three subfeatures for relief
classification.

We also measured segmented inscription recognition index
(SIRI), which assesses the guality of segmented inscriptions
that are much closer to the subjective assessment of persons
than the F1 score [26]. The GT is divided into four areas:
inside of strokes, boundaries of strokes, background adjacent
to strokes, and remaining background. Considering that each
area has different importance to recognizing inscriptions,
each area contributes differently to TP, FN, and FP calcula-
tions. Then, SIRI is obtained using the weighted TP, FN, and
FP as follows:

SIRI =
TPw

TPw +
FNw+FPw

2

. (2)

Due to the uneven class distribution, that is, vertices for
relief are much less than the background vertices, the SIRI
score is more useful than the others. The proposed method
outperformed the conventional methods for all the characters
in the SIRI scores in Table 2. The best performance was
achieved when using the three subfeatures together, although
sometimes it was better to use a single subfeature.

Fig. 10 illustrates an objective comparison of the relief
extractionmethods for the 70 characters in terms of precision,
recall, accuracy, F1 score, and SIRI. To evaluate the perfor-
mance measures of the proposed method, we separated the
70 characters into five groups of 14 characters, and 5-fold
cross validation was performed. The 70 characters contained
617 relief candidate segments consisting of 250 reliefs (true),
and 367 noise segments (false).

The proposed method had a slightly lower recall value than
MCRE. Considering that recall is lowered when the relief
segment is undetected or thinner than the ground truth relief
region, the small reduction in recall by the slightly thinned
relief is acceptable. Since, however, low precision indicates
that a lot of noise segments are detected from the background
regions, precision is the more important factor than recall in
recognizing characters.

The proposed method was assessed 8.95% higher than
MCRE in terms of the F1-score. The proposed method
showed the highest SIRI score with a large improvement
of 29.43, 40.6, and 10.4 % compared to DRE, CRE, and
MCRE, respectively. That indicated that the proposedmethod
successfully extracted relief regions for the easiest to recog-
nize by epigraphists.

The relief extraction results for the entire stele are shown
in Fig. 11. For easy comparison, the intensity values of
the rubbing result are inverted. The most classical method,
the rubbing method, is difficult to recognize characters
because all bumps appear. The result of CRE is similar to
the rubbing, and all the bumps are extracted and connected
between adjacent bumps. Therefore, it makes the characters
more difficult to recognize. MCRE produces better segmen-
tation results than CRE, because the noise curvatures are
effectively decreased. But a lot of small noises still remain
in MCRE. The proposed method shows the best performance
compared to the other methods.

V. CONCLUSION
In this paper, we presented the method extracting reliefs from
very rough surfaced steles. The proposed method extracts
potential relief candidate segments, and then, selects and
removes noise segments using the kernel SVM classifier. For
classifying the segment accurately, we proposed the features
of segments that consist of the appearance-based, the cross
section-based, and the local extrema-based features. Through
experiments, it is confirmed that each subfeature of the pro-
posed features is effective and the proposed method outper-
forms the conventional methods objectively and subjectively.
The performance of the proposed method is about 8.95% and
10.4% higher than the second best relief extraction method in
terms of the F1-score and the SIRI, respectively.

REFERENCES

[1] T. Malzbender, D. Gelb, and H. Wolters, ‘‘Polynomial texture maps,’’ in
Proc. 28th Annu. Conf. Comput. Graph. Interact. Techn. - SIGGRAPH,
2001, pp. 519–528.

VOLUME 9, 2021 4981



Y.-C. Choi et al.: Relief Extraction From a Rough Stele Surface Using SVM-Based Relief Segment Selection

[2] M. Mudge, J.-P. Voutaz, C. Schroer, and M. Lum, ‘‘Reflection transforma-
tion imaging and virtual representations of coins from the hospice of the
grand st. bernard,’’ in Proc. Int. Symp. Virtual Reality, vol. 6, Nov. 2005,
pp. 29–39.

[3] S. Liu, R. R. Martin, F. C. Langbein, and P. L. Rosin, ‘‘Segmenting reliefs
on triangle meshes,’’ in Proc. ACM Symp. Solid Phys. Model. - SPM,
Jun. 2006, pp. 7–16.

[4] R. Zatzarinni, A. Tal, and A. Shamir, ‘‘Relief analysis and extraction,’’
ACM Trans. Graph., vol. 28, no. 5, p. 136, Dec. 2009.

[5] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, ‘‘Mul-
tiscale vessel enhancement filtering,’’ in Medical Image Computing and
Computer-Assisted Interventation, vol. 1496. Berlin, Germany: Springer,
Oct. 1998, pp. 130–137.

[6] K. Lawonn, E. Trostmann, B. Preim, and K. Hildebrandt, ‘‘Visualization
and extraction of carvings for heritage conservation,’’ IEEE Trans. Vis.
Comput. Graphics, vol. 23, no. 1, pp. 801–810, Jan. 2017.

[7] A. Gilboa, A. Tal, I. Shimshoni, and M. Kolomenkin, ‘‘Computer-based,
automatic recording and illustration of complex archaeological artifacts,’’
J. Archaeolog. Sci., vol. 40, no. 2, pp. 1329–1339, Feb. 2013.

[8] M. Kolomenkin, I. Shimshoni, and A. Tal, ‘‘Prominent field for shape
processing and analysis of archaeological artifacts,’’ Int. J. Comput. Vis.,
vol. 94, no. 1, pp. 89–100, Aug. 2011.

[9] E.-J. Heo, J.-M. Sa, and K.-S. Choi, ‘‘Relief extraction from stone monu-
ments,’’ IEIE Trans. Smart Process. Comput., vol. 7, no. 4, pp. 321–324,
Aug. 2018.

[10] L. Ammann, P. Barla, G. Guennebaud, X. Granier, and P. Reuter, ‘‘Surface
relief analysis for illustrative shading,’’ Comput. Graph. Forum, vol. 31,
no. 4, pp. 1481–1490, Jun. 2012.

[11] S. Rusinkiewicz, M. Burns, and D. DeCarlo, ‘‘Exaggerated shading
for depicting shape and detail,’’ ACM Trans. Graph., vol. 25, no. 3,
pp. 1199–1205, Jul. 2006.

[12] R. Vergne, R. Pacanowski, P. Barla, X. Granier, and C. Schlick, ‘‘Radiance
scaling for versatile surface enhancement,’’ in Proc. ACM SIGGRAPH
Symp. Interact. 3D Graph. Games - I3D, 2010, pp. 143–150.

[13] B. Ridel, P. Reuter, J. Laviole, N. Mellado, N. Couture, and X. Granier,
‘‘The revealing flashlight: Interactive spatial augmented reality for detail
exploration of cultural heritage artifacts,’’ J. Comput. Cultural Heritage,
vol. 7, no. 2, pp. 1–18, Jul. 2014.

[14] M. Kolomenkin, I. Shimshoni, and A. Tal, ‘‘Demarcating curves for shape
illustration,’’ ACM Trans. Graph., vol. 27, no. 5, pp. 1–9, Dec. 2008.

[15] Y. Ohtake, A. Belyaev, and H.-P. Seidel, ‘‘Ridge-valley lines on meshes via
implicit surface fitting,’’ ACM Trans. Graph., vol. 23, no. 3, pp. 609–612,
Aug. 2004.

[16] M. Kolomenkin, I. Shimshoni, and A. Tal, ‘‘On edge detection on sur-
faces,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009,
pp. 2767–2774.

[17] A. Tal, ‘‘3D shape analysis for archaeology,’’ in 3D Research Challenges
in Cultural Heritage. Berlin, Germany: Springer, Jan. 2014, pp. 50–63.

[18] H. Pires, L. Gonçalves-Seco, J. Fonte, M. J. C. Santos, and O. Sousa,
‘‘Morphological residual model: A tool for enhancing epigraphic readings
of highly erosioned surfaces,’’ in Proc. EAGLE Int. Conf.-Inf. Technol.
Epigr. Cultural Heritage, Paris, France, Nov. 2014, pp. 133–144.

[19] S. Rusinkiewicz, ‘‘Estimating curvatures and their derivatives on triangle
meshes,’’ in Proc. 2nd Int. Symp. 3D Data Process., Visualizat. Transmiss.
3DPVT, Sep. 2004, pp. 486–493.

[20] H. T. Ho and D. Gibbins, ‘‘Curvature-based approach for multi-scale
feature extraction from 3D meshes and unstructured point clouds,’’ IET
Comput. Vis., vol. 3, no. 4, pp. 201–212, Dec. 2009.

[21] N. Mellado, G. Guennebaud, P. Barla, P. Reuter, and C. Schlick, ‘‘Growing
least squares for the analysis of manifolds in scale-space,’’Comput. Graph.
Forum, vol. 31, no. 5, pp. 1691–1701, Aug. 2012.

[22] T.-C. Lee, R. L. Kashyap, and C.-N. Chu, ‘‘Building skeleton models via 3-
Dmedial surface/axis thinning algorithms,’’CVGIP, Graph. Models Image
Process., vol. 56, no. 6, pp. 462–478, Nov. 1994.

[23] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[24] R.-E. Fan, P.-H. Chen, and C.-J. Lin, ‘‘Working set selection using second
order information for training support vector machines,’’ J. Mach. Learn.
Res., vol. 6, pp. 1889–1918, Dec. 2005.

[25] V. Kecman andM. Vogt, ‘‘Iterative single data algorithm for training kernel
machines from huge data sets: Theory and performance,’’ in Support Vector
Machines, Theory and Applications, vol. 177. Berlin, Germany: Springer,
Apr. 2005, pp. 255–274.

[26] B.-C. Jeong, Y.-C. Choi, S. Murtala, and K.-S. Choi, ‘‘Segmented inscrip-
tion recognition index for measuring the inscription quality extracted from
3-D data,’’ IEIE Trans. Smart Process. Comput., vol. 9, no. 6, pp. 445–451,
Dec. 2020.

YE-CHAN CHOI received the B.S. degree in
electrical engineering from KOREATECH, South
Korea, where he is currently pursuing the degree in
interdisciplinary program in creative engineering.
His research interests include geometry process-
ing, image segmentation, text segmentation, and
machine learning.

SHERIFF MURTALA received the B.Eng. degree
in electrical engineering from the University of
Ilorin, Nigeria, in 2010, and the M.Eng. degree
in communication engineering from the Federal
University of Technology Minna, Minna, Nige-
ria, in 2017. He is currently pursuing the Ph.D.
degree in information and communication engi-
neering with KOREATECH, South Korea. From
2012 to 2014, he worked with Salbodi Group Lim-
ited, Nigeria, as a Technical Officer. His research

interests include computer vision, machine learning, MIMO systems, spatial
modulation, and social network analysis.

BEOM-CHAE JEONG received the B.S. degree
in electrical engineering from Kongju National
University, South Korea, in 2019. He is currently
pursuing the M.S. degree in interdisciplinary pro-
gram in creative engineering with KOREATECH.
His research interests include image segmentation,
text extraction, and 3D data processing.

KANG-SUN CHOI (Member, IEEE) received the
B.S. and M.S. degrees in electronic engineering
from Korea University, in 1997 and 1999, respec-
tively, and the Ph.D. degree in nonlinear filter
design, in 2003. From 2003 to 2005, he was with
the University of Southern California, as a Visit-
ing Scholar. From 2005 to 2008, he worked with
Samsung Electronics, South Korea, as a Senior
Software Engineer. From 2008 to 2010, he was
with the Department of Electronic Engineering,

Korea University, as a Research Professor. In 2011, he joined the School of
Electrical, Electronics and Communication Engineering, Korea University
of Technology and Education, where he is currently an Associate Professor.
His research interests include the areas of multimedia compression, video
processing, and computational photography. He was a recipient of the IEEE
International Conference on Consumer Electronics Special Merit Award,
in 2012.

4982 VOLUME 9, 2021


