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ABSTRACT An intelligent shearer drum height regulating method is the key technology for mining at
an unmanned coalface. In this study, a novel intelligent decision-making method of shearer drum height
regulating is proposed, which makes a decision by selective ensemble the Kernel Extreme Learning
Machine (KELM) with a self-learning ability. In this approach, the shearing coal process of the shearer
is characterized based on the extended finite state machine. Transfer attributes are introduced to establish
the decision information system of shearer drum height regulating. Then, propose a neighborhood rough
reduction method is proposed to generate distinctive attribute subsets, which is applied to train the base
classifiers based on the online KELM. Finally, we introduce an accuracy-guided forward search and
post-pruning strategy to select part of the base classifiers for constructing an efficient and effective ensemble
system of the shearer drum lifting prediction. For evaluating the proposed method, four evaluation metrics are
used: accuracy, precision, recall rate and the F1-score, which are the most popular metrics for evaluating the
performance of a classifier. We use the ten-fold cross validation method to optimize the hyperparameters.
The proposed method is compared in two different scenarios: 1) three different classes of base classifier
algorithms which including the Support Vector Machines (SVM), Support Vector Machines (CART) and
K-NearestNeighbor (KNN) are used, and 2) two traditional ensemble methods including the bagging and
random subspace. The proposed method is performed on the field datasets and the experimental results
reveal that the method is effective in comparison to other approaches for shearer drum lifting prediction.

INDEX TERMS Shearer, machine learning, classifier selective ensemble, neighborhood rough set, KELM,
drum lifting prediction.

I. INTRODUCTION

A. BACKGROUND

As the coal mining depth of underground increases, the dis-
asters such as gas explosion, rock collapse and water inrush
occur frequently in the process of the coal mining, which
seriously threaten the lives of coal miners in full mechanized
coalface [1]. To improve this situation, the unmanned fully
mechanized coal mining method is considered as an effective
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way to solve this problem for its high recovery ratio and
extremely low mortality rate in recent years [2], [3]. The
intelligent shearer, one of the main equipment in fully mech-
anized coalface, is a key equipment when using this method.
However, it has always been difficult for the shearer drum
height intelligent regulating to realize the intelligence of the
shearer, since the natural occurrence boundary of coal seams
is very irregular due to sinking roof rocks and rising floor
rocks frequently.

This poses a challenge to make the shearer drum height
adapt to the undulating changes of the coal roof.
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FIGURE 1. Steps of the proposed method.

A number of techniques for the shearer drum height
intelligent regulating have been devised so far [4], [5].
Roughly speaking, we can divide these techniques into two
kinds: simple feedback regulating based on identification
of the coal-rock interface and intelligent regulating based
on multi-information fusion. The simple feedback regulating
refers to making use of the information of the coal-rock
interface from the sensors to achieve drum height regulating
directly. Widely researched simple feedback control tech-
niques include the control methods based on the gamma ray
instrument [6], the radar coal thickness sensor [7], the thermal
infrared-based coal seam tracking [8]. However, these tech-
nologies, which are based on simple drum height feedback,
have not been widely applied due to the structural com-
plexity of the coal seam, and technical problems related to
identification of the coal-rock interface. Furthermore, stable
and practical online identification of coal-rock interface is a
complex problem, which will influence the simple and direct
feedback regulating of the shearer for a long time.

To address these problems, the shearer drum height auto-
matic regulating method based on multi-sensor information
fusion can be considered a reasonable alternative. With the
development of computational technologies, the shearer drum
height intelligent regulating methods based on field data
started to attract more attention of researchers. Chen et al. [9]
developed a prediction method for the shearing trajectory
using a LSTM neural network, in which the historical data of
shearer drum height was used as the only input information.
Li et al. [10] presented an automatic regulating method based
on the grey-Markov model. The predicted height data of
shearer drum were used to build the state transfer probabil-
ity matrix of the Markov chain to achieve better precision
and stability. However, Chen and Li did not achieve the
expected results because the single input information hardly
described the complex coal seam occurrence. Fan et al. [11]
proposed a shearer intelligent height adjusting system con-
trol method based on Dynamic Fuzzy Neural Networks
(D-FNN). However, the input parameters of D-FNN obtain
from a mathematical model, which can be hardly adaptable to
all cases. Si et al. [12] combined a CNN and Dempster-Shafer
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evidence theory to propose an intelligent multisensor data
fusion and recognition method. By analyzing the vibration
acceleration and current signals of six shearing conditions,
the fusion algorithm predicted the shearing trajectory of the
shearer. Wang et al. [13] obtained a model of self-adaptive
adjustment height of the shearer drum based on artificial
immunity and memory cutting. In this work, the shearing and
working parameters of the shearer were considered to adapt
the geological conditions of the coal-seam boundary changes.
Yang and Xiong [14] also proposed an adaptive regulating
height model of shearer drum, with two wavelet neural net-
works as identifier and controller respectively. Application
results show that this control system is more effective than
those based on normal neural network. Wang and Zhang [15]
established an intelligent height adjustment model for shearer
drums based on multi-sensor information fusion derived from
the principle of minimum fuzzy entropy by testing vibration,
current, acoustic emission and infrared signals during coal
shearing. Xu et al. [16] proposed a self-adaptive cutting
strategy using fuzzy theory, which can automatically adjust
drum height as well as judge whether the shearer is cutting
rocks. However, it is a challenge to define an appropriate
fuzzy set and associated membership functions in such fuzzy
logic-based models. However, none of these methods satisfies
the expected standards of high accuracy because the exist-
ing methods have some disadvantages. First, the attributes
describing changes of the coal seam from a local perspective
are not considered. Second, there are methods depend on a
single decision model which is difficult to effectively guide
the shearer to intelligently adjust drum height in a fully mech-
anized coalface under complex and changeable geological
conditions.

B. RESEARCH MOTIVATIONS

The research motivation of this study is twofold: employ
-ment of the migration features and neighborhood rough
reduction for describing and extracting the change law of
the coal-rock interface, and the utilization of the selective
ensemble learning methods-based the online self-optimizing
KELM in height prediction of the shearer drum. The
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regulating pattern of the shearer drum height is classified
into three types, that is, increasing its height, decreasing its
height and holding its height. From this perspective, this
research transforms the problem of the shearer drum height
prediction into the problem of pattern recognition (multiclass
classification). Generally, an intelligent shearer height regu-
lating classification system framework based on multisensor
information fusion can be divided into three stages namely (1)
data acquisition, defining the perceptual parameters and data
preprocessing, (2) classification and (3) controller. The data is
collected from sensing system of the operating shearer. Now,
the perceptual parameters which used to be the shearer height
regulating come from the shearing and working parameters of
the shearer [9]-[11], [12]. However, these parameters cannot
describe the change law of the coal-rock interface to the cut-
ting height adjusting system of the shearer drum. Therefore,
we propose the migration features of the shearer working
state to construct the complete parameters set, which describe
the change law of the coal-rock interface from the local
perspective. It is worth noting that there may be redundant
parameters in the parameters set of field data because of
using the migration features, which would constrain the effi-
ciency and accuracy of the shearer height regulating model.
In order to handle these problems and increase the clas-
sification accuracy, the appropriate parameters (attributes)
reduction techniques must be used. Rough set theory, which
was introduced by Pawlak [17], has attracted much attention.
This methodology proves to be a powerful tool for attribute
reduction [18], [19]. As we know, most of the applications
select the reduction with the fewest attributes to construct
a classifier at present [20], [21]. However, the information
hidden in other reducts is wasted in this case. In order
to avoid the decrease of accuracy of the height prediction
caused by information loss, an essential technique needs to
be employed.

Furthermore, a suitable classifier with a better perfor-
mance must be employed to predict the regulating pattern
of the height of the shearer drum. Several studies on devel-
oping ensemble models employing single machine learn-
ing methods are found in literature [22], [23]. Ensemble
machine learning techniques are methods which combine
opinions of the multiple learners to achieve a better perfor-
mance. It allows using a group of simple predictors while
achieving a better classification performance. Tsai [24] stated
that the ensemble models based on the combination of
diverse classifiers accomplish a better classification perfor-
mance by eliminating the other classifiers’ errors. Vijaya and
Sivasankar [25] proposed a signal classification model to
combine feature selection with the bagging ensemble clas-
sifiers to enhance performance in terms of training time
and accuracy. Hu et al. [26] presented an ensemble classi-
fier by classifiers built on the different attribute reduction
subset by sampling randomly from the original feature set,
which selected part of the base classifiers. Saha et al. [27]
used SVM, Random Forest, Decision Tree and NB to build
an ensemble learning method based on majority voting for
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prediction of protein interactions. In multiclass classification,
Zhang et al. [28] used different classifier models to build an
ensemble learning method for prediction of rockburst inten-
sity and the algorithm using an ensemble classifier revealed a
better classification performance. Hence, the main motivation
of this study is to employ the ensemble classifiers in the
shearer drum intelligent height adjusting to achieve a better
prediction performance.

In this paper, a novel intelligent decision-making method
of shearer drum height regulating is proposed based on neigh-
borhood rough reduction and selective ensemble learning.
The model can utilize the useful attributes information more
effectively and it improves the efficiency and accuracy of
the height prediction with KELM fast learning. Furthermore,
enhancement of the fast learning and generalization perfor-
mance of the proposed model is also achieved by the online
self-learning KELM, which not only uses the general classi-
fication algorithms. The main contributions of this paper are
as follows:

(1) First, a novel intelligent decision-making method of
shearer drum height regulating is proposed based on neigh-
borhood rough reduction and selective ensemble learning.

(2) Second, we propose the migration features to describe
the change law of the coal-rock interface from the local per-
spective to improve the generalization performance of model
with irregular changes of coal-rock interface.

(3) Third, we selectively combine partial reductions that
redundant attributes are removed using the attribute reduction
based on multi-granularity neighborhood rough set, where
the information hidden in reductions is utilized effectively for
improving the accuracy of shearer height regulating.

(4) Finally, the online self-optimizing KELM algorithm
is used in the ensemble classifier to achieve self-adaptive
adjustment of the shearer drum height regulating model.

Besides, various experiments are conducted in order to
compare the proposed method and the Bagging and Random
Subset ensemble classifiers performance for the shearer drum
height regulating.

The rest of this paper is organized as follows.
Section 2 introduces the modeling process of the intelligent
decision-making model of shearer drum height regulating.
Section 3 describes the full experiments including perfor-
mance evaluation, hyperparameters tuning, and verifying the
performance of the proposed method. The main results of this
study are summarized and discussed in Section 4.

Il. METHODOLOGY

Fig 1 depicts the proposed method. The main ideas of
the shearer drum height regulating method based on the
selective ensemble of online KELM-based rough subspaces
(SDHRM-SEoKELMRS) are as follows. (1) Field data pre-
processing. First, the parameters (attributes) set of the cutting
and working state in the shearer process, including gen-
eral attributes and migration attributes, is constructed. The
decision information system for the shearer drum height
regulating is established based on field data. Second, the
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different attribute subsets are obtained by the attribute reduc-
tion technology based on the multi-granular neighborhood
rough set. Finally, the training sample sets and test sam-
ple sets are established corresponding to each attribute
subspace. (2) Training and validating the base classifiers
based on the kernel extreme learning machine. And then,
an accuracy-guided forward search and post-pruning strat-
egy is used to select parts of base classifiers for ensem-
ble systems. (3) Application and online self-optimization of
the SDHRM-SEoKELMRS model. Different modules are
described in the following subsections.

A. ESTABLISHMENT OF THE SDHR ATTRIBUTE SPACE

1) REFINED REPRESENTATION OF THE COAL SHEARING
PROCESS OF THE SHEARER

The shearer is one of the key equipment in fully mechanized
coalface, whose main tasks are shearing and loading coal.
The shearer adjusts the drum to adapt to change of coal seam
thickness in fully mechanized coalface through the automatic
height adjustment device, so that it can cut the coal seam
along the coal-rock interface, and its principles are shown
in Fig 2. X is the running direction of the shearer in the
working face. Y is the advancing direction of the shearer
in the working face. Z is the cutting height direction of the
shearer.

Digital representation of the shearer shearing process is the
basis for intelligent height adjustment of the shearer drum
based on data-driven. Mataric [29] found that the interaction
between an agent and the working environment can be mod-
eled as synchronous finite-state automata. Thus, we propose
a digital method for describing the cutting coal process of
shearer based on an extended finite-state machine. In this
way, we establish the mapping relationship between the state
parameters and the behaviors of the shearer drum.

Definition 1: The extended finite-state machine of the
cutting coal process of the shearer, formulated as a six-tuple
SCEFSM = (Q',¥',D, W, 3, \),where Q' = {q,,....4q,}
is the finite sensing parameters set of the cutting coal process
of the shearer, ¥’ = {o{, 04, ..., 0,} is the value set of O,
D is the set of behavior parameters of the shearer drum, W
is the value range of the behavior parameters, § = Q' x
¥’ — (@' is the state transition function of the shearer, and
A = Q x ¥ — W is the mapping between the finite
sensing parameters and the behavior parameters. In addition,
athree-tuple S = {Q', A, D} is defined as the pattern, where
A = {Aq, Ay, ..., A,} is a set of the migration features of
the cutting coal process of the shearer. C = {Q’, A} is defined
as the set of condition attributes of the decision information
system for the intelligent height regulating of the shearer.

2) CONSTRUCTION OF THE ATTRIBUTES SET

It is important to realize intelligent decision-making of the
shearer drum height regulating based on multi-information
fusion to establish the mapping relationship between the state
parameters, the change law of the coal-rock interface and
the behaviors of the shearer drum. We propose the transfer
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FIGURE 2. Work cycle of the shearer.

attribute set A to construct the attribute set, which can make
the pattern space S of the decision information system of the
shearer drum height regulating.

The attribute set of the decision information system of the
shearer drum height regulating needs to satisfy the essential
conditions as follows: (1) the scale of the attributes does not
change as the system changes, (2) there is a high correlation
between the attributes and the behavior modes of the shearer
drum, and (3) the attributes should be as complete as possible
to reflect the changes of working state of the shearer drum. We
establish the attributes set which is shown in Table 1 based on
these three principles and engineering applications.

It can be seen that the attributes are not affected by
the system scale in Table 1. Furthermore, the attributes are
mainly the physical parameters reflecting the changes of
working state of the shearer drum. The parameters ci-cs
reveal the information of position and attitude of the shearer.
The parameters cg-c14 reflect the working information of
the shearer. We define the change of the parameters c¢-c4
as the migration features. The parameters cig-cy¢ are the
migration attributes of the operational process, which reveals
the evolution law of the coal-rock interface from the

local perspective when the cutting trajectory of shearer
drum changes in the time and space. The values of the migra-
tion features are obtained by the difference in the value of the
parameters ce-c14 between adjacent sampling periods. Based
on the attribute set in Table 1, in order to analyze easily,
we establish the decision information system of the shearer
drum height regulating mode.

Definition 2: The decision information system of the
shearer drum height regulating, DIS-SDHR is formulated
as a five-tuple DISspygr = (U,A,V.f), where U =
{x1,x2,...,x,} is a nonempty set including finite objects x;,
i=12,...,nnA=CU{d} #@Wand CN{d} = & are
the set of attributes of the objects, C = {cy, c2, ..., c26} 18
the set of condition attributes, and d is the decision attribute,
which indicates the shearer drum adjustment pattern in every
sample. When the height of the drum increases, the value
of d is 1. In contrast, the value of d is 2 when the height
of the drum decreases. The value of d is 3 when the drum
height is constant. Where V. = {vy, va, ..., v2¢, v4} is the
value range of the attributes, f is the information function,
andf : U x A — V is used to define the attribute values of
the sample.
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TABLE 1. Coding attributes in the process shearing coal of shearer.

Condition ~ Parameter name Condition Parameter name and
attributes and unit attributes unit
c Shearer position c Current of right
! /m “ shearing motor /A
c Pitch angle /° Crs Pitch angle variation /°
c3 Roll angle /° Cis Roll angle variation /°
c Height of left c variation of height of
! drum /m 7 left drum /m
c Height of right . variation of height of
’ drum /m 18 right drum /m
Pulling speed Pulling speed variation
Ce Pt Cig .
/m-min /m-min-1
c Traction direction c Current variation of
7 2 left traction motor /A
Temperature variation
Current of left P .
cs . ) of left traction motor
traction motor /A o
/C
Temperature of . .
pera Right traction motor
Cy left traction C .
. current variation/A
motor /'C
. . Temperature variation
Right traction - .
cr C23 of right traction motor
motor current /A C
Temperature of L
. . Current variation of
: right traction d .
e & . € left shearing motor /A
motor /'C
Current of left Temperature variation
cn shearing motor Cos of left shearing motor
/A /'C
Temperature of .
peran Current variation of
ci3 left shearing Cas . .
. right shearing motor /A
motor /'C

B. CONSTRUCTION OF THE ROUGH SUBSETS

The key problem using the attribute subsets ensemble method
to adjust height of the shearer drum is how to get a set of
attribute subset with good predicting power. In this section,
we employ the multigranular neighborhood rough sets to get
the attribute subsets based on the decision information system
of the shearer drum height regulating.

1) MULTIGRANULAR ATTRIBUTE REDUCTION FOR DIS-SDHR
The rough set theory was first proposed by Prof. Pawlak
for processing imprecision, vagueness, and uncertainty of
data [17]. Attribute reduction is an important application of
rough set theory that is used to remove the redundant and
irrelevant attributes in attribute set. Attribute values of the
decision information system of the shearer drum height reg-
ulating are continuous and discrete data. However, Pawlaw
rough sets can only deal with discrete data. In order to
deal with this problem, the neighborhood rough set and
attribute reduction technology [30] are used to establish the
subspaces of attribute set by changing the neighborhood
radius.

Given a decision information system of the shearer drum
height regulating DISspgr = (U,CUD,V,f),B < C,
where U = {x1,x2,...,x,} is a finite set of samples, C
is the condition attribute set and D = {d} is the decision
attribute set. B is a real-valued attribute subset for describ-
ing the samples. The §-neighborhood of an arbitrary sample
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xj € U is defined as follows.
8p(xi) = {xjlxj € U, Ap(xi, xj) < 8} (D

where dp(x;) is also called the §-neighborhood infor-
mation granule of x;. § is the neighborhood threshold,
which is a real number between 0 and 1. Ap(x;, %)) =

02, . .

YveeB [f (xi, ©) — f(x;, c)‘ ) is the distance function. For-
mula (1) represents sample set with similar attribute values
to those of sample x; for attribute set B. The smaller § is, the
higher the similarity between sample x; and sample x; in the
attribute space B, and the smaller the number of individuals in
the neighborhood. When § = 0, the neighborhood rough set
becomes the classical rough set. Furthermore, the sample set
is divided into sample set dy of the increasing drum height,
sample set d; of the decreasing drum height, and sample
set d of the holding drum height according to the decision
attribute d. The positive region of the sample set with respect
to the feature set B is defined as follow.

POSp(d) = Np(do) U N(d1) U Np(d2) )

where Npdy = {xld5(xj) Sdo.xj € U}, Ngdy =
{xj'|53 ()Cj) cd, Xj € U},&dz = {x]‘|33 ()Cj) - dz,xj' IS U}.
According to formula (2), all samples with similar feature
values to a sample which is in the positive region, have
the same classification. This shows that the sample can
be accurately classified under the feature set B. The more
samples there are in the positive domain, the better the sepa-
rability of the attribute set and the stronger the classification
ability, which is beneficial to the learning of the classification
algorithm. According to the decision information system
of the shearer drum height regulating, neighborhood rough
set-based attribute reduction is introduced to generate a set of
reducts, and then each reduct is used to train a base classifier.
To achieve this goal, a forward feature selection strategy is
used based on attribute importance.

[POSB(d)|
3 d = 3
yg(d) U] 3)

where | - | is the cardinality of the set. yg is the §-dependency
of d on B.

The significance of the attribute ¢ in B relative to the
decision d is as (4).

SIG (¢, B.d) =y (d) — y(d) )

To obtain different reducts, we generate k different neigh-
borhood radii in [§min, dmax]- By setting different neighbor-
hood thresholds §;, we can control the granularity size of
the sample, so as to obtain the reduction results at different
levels. Furthermore, we can get p different sample sets § =
{81, 82...., Sp} according to the reducts. The sample set S is
divided into training set M = {My, M>,..., M,} and test set
T =({T1,T,,...,T,}.
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C. OSL-KELM-SDHR BASE CLASSIFIER

Based on the advantages of the KELM with high learn-
ing speed, an online self-learning extreme learning machine
of the shearer drum height regulating (OSL-KELM-SDHR)
classifier is proposed, which is used to combine an ensemble
classifier for adjusting cutting height of the shearer drum.
In this section, the OSL-KELM-SDHR model is discussed
in detail.

1) ELM-SDHR BASE CLASSIFIER

Set the training samples of field data M = {(x;,T;)
|i =1,2,... ,N}, where x; € R? is a d-dimensional input
vector and 7; € R is the output value corresponding to
xj(different values represent different adjustment patterns).
The ELM model is defined as follow [31].

1 1<
min = |82 +c5 Y &

st h(x)B =yi—&

&)

where B = [B1, B2, ... Bl € RYN is the output weight
vector of the model, h (x;) = [h1 (x;), hy (x;), ...~ (x))]
is the attribute mapping from the d-dimensional input to L-
dimensional hidden layer attributes, &; is the training error
corresponding to the i th sample and c is the regularization
parameter, ¢ € RT.

Based on KKT optimization conditions, the optimization
problem of formula (5) is solved, and the weight vector
parameters Bppry Of the shearer shearing path adjustment
model are calculated.

. I -1
Boeiy =H" (E +HHT) T (6)

where T = [Ty, 1>, ... TN]T is the target value vector of the
input samples, and H (x;) = [hT e1), AT (ep), .. AT (xN)]T
is the mapping matrix of the input samples.

Assuming that the input vector of a new sample is x,
the height regulating mode Ty, of the shearer drum can be
calculated by formula (7).

Tscp =h (xp) ﬁBELM )

2) KELM-SDHR BASE CLASSIFIER

To further improve the accuracy of the base classifier and
enhance the generalization performance with complex coal
seam, we propose a KELM-SDHR classifier model based
on KELM. Given a new input vector X, the output Ty, is
calculated according to the weight vector parameter /} RELM +

X 1 -
Tyep = h (xp) Bprry = I (xp) H' (E +HHT) r ®

According to the theory of the inner product of the kernel
function [32], we can directly use the kernel function instead
of the nonlinear explicit mapping HHT of the ELM hidden
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layer nodes to improve the robustness and generalization
ability of the ELM.

Tyep = KA™'T 9)
—1
where K (x;, x;)is the kernel function,A_1 = (% + SZKELM)
and K = [K (xp,x1). ..., K (xp,xy) |. Formula (9) is the
classification model of the KELM-SDHR. The model does
not need to provide an explicit hidden layer attribute mapping
function A(x) and the number of hidden layer neurons L.

3) ONLINE SELF-LEARNING KELM-SDHR BASE CLASSIFIER
The boundary of a coal seam is complex and changeable in a
fully mechanized coalface, but there is law. With the advance-
ment of the working face, the newest structure information
of the coal seam is exposed. However, the KELM-SDHR is
unable to learn the newly acquired structure information of
the coal seam online. With time passing by, the accuracy
of the KELM-SDHR may decline. So, it is necessary to
provide a dynamic update mechanism to improve the pre-
diction accuracy of the KELM-SDHR. In view of this, this
paper proposes a dynamic OSL-KELM-SDHR model based
on the KB-IELM [33]. The data with labels are recorded
by a remote control system in real time while operating the
shearer. The label of new samples is based on the manual
control and ensemble controller. The main steps using the
OSL-KELM-SDHR are as follows.

Step 1: Initialization:

A classifier Ty (x) = K/A; 1T, is trained according to the
initial samples M; = {x;, Ti}f.vzol, where Ny is the number of
initial samples, K; = [K x,x1), ..., K (x, xNO) ], and

_ 1 !
A7 = (Elt + 95{ELM>
—1

1
E—i—K(xl,xl) K(xl,xNO)

1
K (xNo’xl) C +K (xNo’xNo)

Step 2: Online self-learning. Repeat the following process:

Itis assumed that k new samples with labels are obtained in
the working process of the shearer. A new sample set with the
initial samples and the new samples is formed. Then, we use
the new sample set to train a new classifier.

Trp1 (0) = KA Top

-1
— Al Ut TI
- ok (gr 5) (ot
(10

where K; 1 = [K (x,xN0+1) , ..., K (x,xN0+k)] is kernel
mapping of x for newly added training samples,

K (x1,XNy+1) K (x1, XNp+k)
Ul = cee R . P ’
K (xNo, xNo+l) K (xNo, xNo+k)
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1

—+K (xN0+1,xNO+1) A

C K (XN0+1 ) xN0+k)

1
o=+ K (XNotk XNg+£)

K (xNo+k, xN0+1) c

—1

Using the block matrix inverse formula [34] with A, Iy

we can obtain

A _(A;l + AU p T A

—A7 U, p!
= el ) (1)

—p;'UTA! p;

where p, = D; — UITAI_IU,.

The incremental updating basis for the classification model
OSL-KELM-SCT is obtained by incorporating formula (11)
into formula (10).

Tip1 (0) = KA T

== (Kt AKIJ,_l)
y <A,1 +4; Uip 'UTA —AHUmH)
—o; 'UTAT o

“(afa)

AT

= KA 'T, + KA 'U,p'UTA]'T,
—AK 410, ' UTA]'T,
—KA7'Uip; AT 1+ AK 4197 ' AT 4

=T, (x) + B—AK1)p, '(E—AT,1)  (12)

where B = K,A;'U, and E = UTA['T.

Step 3: Online use

The application of the OSL-KELM-SDHR includes two
stages.

(1) Self-learning optimization of the basic classifier. Con-
sidering the working cycle of the shearer and the structure of
the coal seam, the learning cycle and the number of newly
added samples are determined. Assuming that the learning
time period is ¢, the N; samples are obtained. The newer
the samples, the better generalization the trained classifier
will get due to the local sudden change of the coal seam.
Therefore, the forgetting mechanism is needed to enhance
the impact of new samples on the classifier and remove the
old samples. Assume that Ny, is the maximum number
of training samples in the model. The OSL-KELM-SDHR
discards d samples according to the historical timing of the

samples when the model is updated in the (m + 1)th in order
m+1
to guarantee the number of samples No+ Y N; —d < Npax.

(2) Decision-making using the basil(? lclassifier. Sup-
pose that the total number of samples is M < Ny
after several updates, and then these samples are used
to calculate the parameter A;,Il. When the input sam-
ple is X, the shearer drum performs the action
according to Tresr = [K XrestsX1) 5.y K Kpser Xm)] -
A [T, T, Tu "
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D. SELECTIVE ENSEMBLE

The base classifiers trained with reducts and
OSL-KELM-SDHR algorithm will have a good general-
ization power. What is more, the classifiers trained with
different reducts should be diverse. It seems a good solution
to construct ensemble model with the neighborhood rough
set-based reducts. However, with experimental analysis,
we find that there are usually hundreds of reducts for the field
data. This triggers a problem: whether we require using all
the reducts or not. If a small number of base classifiers are
combined, the difference of the base classifiers is difficult
to fully reflect, and the ensemble classification accuracy is
insufficient. If all base classifiers are combined, the classifi-
cation accuracy also will decrease due to the characteristics of
the ensemble learning. However, it still has been difficult in
how to choose base classifiers [35]. Although a large number
of metrics and selection algorithms have been proposed, there
is no consistently selective ensemble method that is better
than other technologies in engineering applications [36].
Therefore, we introduce an accuracy-guided forward search
and post-pruning strategy FS-PP [26] which selects part of
the base classifiers to construct an efficient and effective
ensemble system for the shearer drum lifting prediction.

Ill. EXPERIMENTS AND RESULTS

A. FIELD DATASET

1) OBTAINING THE ORIGINAL DATA SET

The dataset was collected from the 43101 fully mechanized
coalface of the Yujialiang Coal Mine in northern Shaanxi,
China. The length of the 43101 working face is 351.4 m,
the thickness of the coal seam is 1.0-1.7 m, the average
thickness is 1.47 m, the average height of the working faces
is 1.4 m, and the inclination is 3°-5°. The main configuration
of the fully mechanized mining equipment is as follows: The
hydraulic support adopts the ZY9200/09/18D double-pillar
shield type with a supporting strength of 0.99-1.06 MPa; the
shearer adopts the MG 2 x 200.890-WD1 type, the shearer
shearing height range is 1.3-2.5 m, and the total installed
power is 890 kW; the scraper selects the SGZ800/1400 type,
and the installed power is 2 x 700 kW. The layout structure
of the 43101 fully mechanized mining faces in the Yujialiang
Coal Mine is shown in Fig 3. The time interval for collection
is from March 29 to 30, 2020, from 01:00 am to 06:00 am
each day, and the sampling period is 1.0 s. The raw data
set is composed of 26 conditional attributes and 1 decision
attribute. The total number of samples is 26,343 after remov-
ing duplicate samples.

2) DATA PREPROCESSING

The prediction of the adjustment mode of a shearer shearing
drum is a complex classification problem based on data min-
ing. The important premise behind machine learning theory
is that we must have enough sample data with high quality.
The quality of the data determines the quality of the model
extracted by the classification algorithm or trained. When
the sample quality is poor, it is difficult for the proposed
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model to achieve the expected results. Therefore, in the data
preprocessing stage, the raw data set is processed to remove
missing values and outliers, and then the data are normalized
to construct a high-quality data set.

There are some data missing in the original sample data,
including one-dimensional and multidimensional data. For
samples with missing one-dimensional data, this article uses
Lagrangian interpolation to impute the missing values; for
samples with missing multidimensional data, to ensure accu-
racy, the sample is deleted. Some shearer shearing drum
adjustment mode records are outliers; due to electrical fail-
ure or sensor failure, encountering some abnormal values is
inevitable. According to the actual characteristics of these
abnormal data, they are treated as missing values or corrected
by using average values, and some are deleted.

To eliminate the dimensional interactions between the
attributes, the original sample data are subjected to the
minimum-maximum normalization process [37], where the
relationship existing in the original data is retained, and
each attribute value is mapped to [0,1] to achieve normal-
ization. After preprocessing and normalization, the samples
have 23,827 samples. Among the output variables, there are
6995 data in which the shearer drum rises, 7728 data in
which the shearer drum falls, and 9104 data where the height
remains the same. The data set composed of the attribute set
{c1-c14, d} is called data set I, and the data set composed of
the attribute set {c1-c26, d } is called data set II. The statistical
results of the output variables in the two data sets are shown
in Fig 4. The sample distribution has a small proportion of
imbalance.

3) DATASET ESTABLISHMENT

This study uses a 10 folds cross-validation method to evaluate
the performance of the proposed model. The attribute sub-
sets are obtained based on the field data. According to each
attribute subset, a corresponding sample subset is generated,
and the number of samples is the same as that of the orig-
inal data sample (duplicate samples are not removed). The
samples split into a training subset of 70% and a subtest set
with the remaining 30% samples. The whole training (testing)
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set is composed of multiple training (subtest) subsets, and
the training subtest) sets depends on the attribute reduction
subsets. All training subsets were partitioned into 10 folds
using cross-validation (one fold for test 9 folds for validating),
and this is done on each dataset for 10 times, that is, each clas-
sifier is trained for 10 times (Fig 5.). The validating sets in all
training sets are used to obtain the optimal hyperparameters
for the base classifiers.

B. PERFORMANCE MEASURES
To accurately and comprehensively evaluate the ensemble
classification model for shearer shearing drum height regu-
lating mode, four evaluation metrics have been used: accu-
racy, precision, recall, and Fl-scores [38] which are the
most popular metrics to measure the performance of a clas-
sifier. A confusion matrix helps to intuitively compare and
understand the classification performances of the proposed
model. In the confusion matrix, predicted categories are rep-
resented by rows, and actual categories are represented by
columns. Table 2 is the confusion matrix for classifications
of the shearer shearing drum height regulating mode, where
U, D and S represent increasing its height, decreasing its
height and holding. UU, DD, and SS represent the number
of samples with correct predictions, and other combinations
represent the number of samples with incorrect predictions.
Based on the confusion matrix, the classification perfor-
mance evaluation index of this study is defined as follows.

UU + DD+ SS
Accuracy = gu+bb+50 (13)

p

where p is the total number of test samples.
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TABLE 2. Confusion matrix for height prediction of shearer drum.

TABLE 3. Hyperparameters adopted for the models.

Actual Predicted
U D S
Y 1619 UD Us
D DU DD DS
S SU SD SS

Generally, the precision and recall are applied together
in the F-measure for assessing the prediction accuracy of a
classification model. These measures for height prediction
problem of shearer drum are calculated as follows.

. 1 uu DD
Precision = — +
3<UU+DU+SU DD + UD + SD
+ 55 (14)
SS + US + DS
1 uu DD
Recall = - +
3\UU+UD+US DD+ DU+ DS
+ 55 (15)
SS +SU + SD
2 Precision x Recall
F1 — Score = (16)

Precision + Recall

C. EXPERIMENTAL SETUP

1) LAB ENVIROMENT

In this study, we use MATLAB R2018b for program devel-
opment and perform our experiments on a hardware plat-
form with an Intel(R) Core(TM) i5-6500 CPU @ 3.20 GHz,
16.0 GB RAM, and the Windows 7 64-bit operating system.

2) MODEL PARAMETERS

The parameters of the proposed model in this paper mainly
include two categories, one is the neighborhood radii of the
neighborhood rough set attribute reduction (NRS-AR) and
the number of seeds K, and the other is the parameters of the
base classifier ELM-SDHR and KELM-SDHR. We obtain
the attribute subsets by changing the value K in the numerical
range [0.1, 0.6] [39]. The initial value K is 50. All the hyper-
parameters of the base classifiers are selected with 10-fold
cross validation while the base classifiers with the highest
accuracies. The hyper-parameters for different classifiers in
the proposed model are described in Table 3.

3) COMPARISON APPROACH

To evaluate the proposed method, three different perspectives
are selected for comparison with the proposed SDHRM-
SEoKELMRS:

(1) Three base classifiers are listed in Table 4. Currently,
there are many learning algorithms that can be used as basic
classifiers for ensemble classification. However, we select
three different categories of the most popular classification
algorithm to compare with the base classification algorithm
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Model Hyperparameters Empirical scope  Final value
NRS- Neighborhood radius ¢ [0.1,0.6] [0.1,0.6]
AR
Seed number K [50,200] 150
ELM Number of Hidden Units [3,100] 20
Activation function Sigmoid(),tanh(),  Sigmoid()
Relu(),et al.
The weight between - random-
input and hide layer w number
Biases of hidden neural - random-
units b number
KELM Number of hidden units [3,100] 20
Kernel function Linear kernel, Gauss
Polynomial kernel
kernel, Gauss
kernel, et al.
Regularization parameter - 1.5x10*
C
The width of Gaussian - 10
kernel §
TABLE 4. Base classifiers and hyperparameters.
Type Learning Hyperparameters Final
Algorithm value
Lazy KNN Number of Neighbors 7
Distance Euclidean
Tree CART SplitCriterion gdi
MinLeafSize 53
MaxNumSplits 13,826
Functions SVM Coefficient of the penalty term 6.4772
(©
Gamma value of Gaussian 5.6063

kernel (y)

selected in this article. All these algorithms are imported
from the classification learning algorithm package of MAT-
LAB R2018b. These algorithms are widely used for ensem-
ble classification problems, which are simple and effective.
There is no unified theory or guiding method for the selec-
tion of the related hyperparameters in the algorithm listed
in Table 4. This paper uses a 10-fold cross-validation experi-
ment to determine the optimal hyperparameters of each base
classifier.

(2) Two traditional integrated classifiers are used: the bag-
ging and random subspace methods. To show the superior-
ity of the proposed FS-PP ensemble classification method,
we use the bagging and random subspace methods to estab-
lish the same number of base classifiers as in the FS-PP and
integrate them to carry out related comparative experiments.

(3) Two original attribute sets are used: the original
attribute set containing transfer attributes and the original
attribute set without transfer attributes. To show the influence
of migration attributes on the classification effect for shearer
shearing drum adjustment modes, the FS-PP ensemble
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TABLE 5. Results of reduction.

Data Attributes  Reducts
1 Without migration attributes(Data set I) 14 85
2 Containing migration attributes(Data set II) 26 128

classifier proposed in this paper is selected to compare the
classification effects between the two original attribute sets.

Our comparison method is as follows: In Section D.1,
we show the neighborhood data reduction subset based on
the domain-granulated rough set; in Section D.2, we report
the classification results of different base classifiers on the
domain data set; in Section D.3, the relationship between the
number of base classifiers and different ensemble classifica-
tion performance indicators is shown; finally, in Section D.4,
the ensemble classification method proposed in this paper
is compared with the traditional ensemble classification
method, and the classification results of the integrated system
under the two sets of attribute spaces are presented.

D. RESULTS AND DISCUSSION

1) ATTRIBUTE SUBSET

In the neighborhood threshold interval [0.1, 0.6], by adjusting
the number of granulated seeds K in the neighborhood, Algo-
rithm [26] is used to perform attribute reduction to the field
data set. To ensure the complementarity of the classification
information from attribute reduction subsets, we select as
many attribute subsets as possible. In addition, to ensure
the diversity of the base classifiers, each group of attribute
subsets should have attributes that are at least 30% differ-
ent. Combining the above two points, Table 5 shows the
final numbers of reduced subsets that do not include transfer
attributes and those that include transfer attributes.

2) THE PERFORMANCE OF SINGLE CLASSIFIERS

According to Table 4, the optimal parameters are described
for each classification algorithm in Section Table 3 and
Table 4, and the classification effect of each algorithm on
the shearer shearing drum height adjustment data set is ana-
lyzed. The base classifiers listed in Table 3 are independently
evaluated using the field data set (data set I does not con-
tain migration attributes and data set II contains migration
attributes), and each base classifier is shown in Table 7 and
Table 8, which show the accuracy, precision, recall and F1-
score results. Among them, Table 6 contains the classifica-
tion prediction results for the data set that does not contain
migration attributes, and Table 7 contains the classification
prediction results for the data set that contains migration
attributes.

Table 6 and Table 7 summarize the prediction perfor-
mances of different classifiers on the two sets of data. It can
be seen that the KELM has the best prediction performance
on the two data sets, and the highest prediction accuracy
rates for the two data sets are 71.99 and 73.21, respectively.
However, the prediction performance of the ELM on the two
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TABLE 6. The performance of base classifiers for data set I.

Classifier
Metric KNN CART SVM ELM KELM
Accuracy 69.14 66.59 70.13 57.10 71.29
Precision 67.41 66.57 68.92 48.78 70.69
Recall 66.57 67.63 67.32 53.48 69.63
F1-Score 66.52 67.65 68.14 51.02 70.16

TABLE 7. The performance of base classifiers for data set II.

Classifier
Metric KNN CART SVM ELM KELM
Accuracy 71.38 69.47 71.11 58.81 72.21
Precision 68.12 66.80 71.38 62.78 70.73
Recall 69.35 65.76 70.32 56.76 68.48
F1-Score 68.73 65.98 70.85 59.52 69.59

sets of data is poor, and the prediction accuracy rates are
57.10 and 58.81, respectively. Among the five classification
algorithms, the classification performances of the SVM and
KELM are relatively close. The classification performances
of different classification algorithms on data sets that contain
migration attributes are better than those of data sets that
do not contain the status transfer attributes. The prediction
accuracy is improved by 1.80% on average, and the pre-
diction accuracy of the CART algorithm is improved by up
t0 2.98%.

3) THE NUMBER OF BASE CLASSIFIERS

The number of base classifiers determines the final gen-
eralization performance of the ensemble algorithm. As the
number of base classifiers increases, although the ensemble
classification performance is improved to a certain extent,
the data scale and the number of integrated classifiers
increase, and the need to consume many computing resources
causes the classification performance to decline. In this exper-
iment, first, on the basis of the original data set I and the
original data set II, 85 attribute subsets that do not contain
transfer attributes and 128 attribute subsets that contain trans-
fer attributes generated by reduction are used to generate the
training data set of the base classifier. Then, the generated
data set is applied to five classification algorithms, the KNN,
CART, SVM, ELM, and KELM methods, to obtain two
groups of base classifiers. Each group contains 5 types of
base classifiers, each with 85 and 128 attribute subsets in
dataset I and dataset II, respectively. Finally, the selective
ensemble strategy in algorithm 2 is used to determine the
number of base classifiers from each group to be finally
integrated. The effect of the number of selective ensemble
base classifiers on the performance of the ensemble system
in terms of classification accuracy is shown in Fig 6.
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FIGURE 6. Variation of classification accuracies with number of base
classifiers. (a) Dataset I. (b) Dataset II.

Fig 6 shows that as the number of base classifiers increases,
the recognition accuracy of the shearer drum height adjust-
ment mode first gradually increases and then gradually
decreases. The reason why the ensemble classification accu-
racy rate gradually rises during the initial stage of the ensem-
ble is that at the beginning of the ensemble sorting process,
the base classifier included in the ensemble is small, and
the difference between the base classifiers is small, which
directly leads to low ensemble accuracy. While continuously
adding new base classifiers with better comprehensive perfor-
mance, the diversity of the base classifiers is increased, so the
ensemble accuracy gradually increases. After the ensemble
accuracy reaches a certain value, the ensemble accuracy grad-
ually decreases because at this time, after adding enough base
classifiers, a base classifier with poor comprehensive perfor-
mance appears in the integrated system, and the ensemble
accuracy gradually decreases. In dataset I, which does not
contain migration attributes, when the KELM base classifier
is between 20 and 25, the recognition of the shearer drum
height adjustment pattern can be highly accurate. However,
as the number of base classifiers increases further (the num-
ber of base classifiers is greater than 60), the performance
in terms of recognizing the shearer drum height adjustment
pattern is not very helpful, and even the addition of too
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TABLE 8. Number of fused different classifiers.

Data set Classifiers Number of fused classifiers

ELM 28

KNN 14

I CART 12
SVM 15

KELM 20

ELM 42

KNN 42

I CART 35
SVM 25

KELM 40

TABLE 9. Comparison of the performance of ensemble classifiers (ELM).

Single Traditional Ensembles Our
Dszia Metric Classifiers ‘ (best) — approach

(best) Bagging Subspace FS-PP

Accuracy 68.61 79.58 76.89 81.12
Precision 67.47 80.81 78.33 79.58
1 Recall 74.70 79.56 79.65 79.40
F1-Score 70.90 75.47 78.98 79.49

Test time 0.259 0.925 1.159 0.931
Accuracy 70.02 83.94 79.18 82.42

I Precision 90.63 80.06 78.67 78.67
Recall 79.94 75.28 75.29 74.70
F1-Score 84.95 77.60 76.94 76.63

Test time 0.306 1.065 1.278 0.957

many weak learners leads to a decrease in the final accu-
racy rate. Therefore, in subsequent comparative experiments,
the final ensemble base classifiers number is 20 for data set I.
In dataset II, which contains migration characteristics, when
the KELM base classifier is between 35 and 45, the recogni-
tion of the shearer drum height mode can be highly accurate,
and the number of base classifiers is determined to be 40.
The ensemble numbers of other base classifiers is shown in
Table 8.

4) COMPARISON BETWEEN SDHRM-SEoKELMRS AND
OTHERS CLASSIFIER ENSEMBLE
Finally, we compare and analyze the classification perfor-
mance of the SDHRM-SEoKELMRS along with those tradi-
tional ensemble classifier, the bagging and random subspace
methods, on data set I and on data set II. The traditional
ensemble classification methods (the bagging and random
subspace methods) and the SDHRM-SEoKELMRS algo-
rithm contain the same number of base classifiers. The test set
is used to predict the shearer drum height regulating pattern
shown in Fig 5. The base classifier algorithms adopt the ELM,
KNN, CART, SVM, KELM, and OSL-KELM. Tables 9, 10,
11, 12, 13, and 14 show the results of the experiments.
Tables 9-14 summarize the prediction performance of the
base classifier on the test data set containing shearer drum
height adjustment modes under different ensemble methods.
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TABLE 10. Comparison of the performance of ensemble classifiers (KNN).

Single Traditional Ensembles Our
D::ta Metric Classifiers (best}){an Jom approach

(best) Bagging Subspace FS-PP

Accuracy 69.39 80.23 74.54 78.13
Precision 72.54 78.01 77.69 78.52

I Recall 70.28 77.76 76.58 76.48
F1-Score 71.39 77.88 77.13 77.49

Test time 0.546 1.850 2.545 2.122
Accuracy 71.43 79.41 77.59 80.36
Precision 76.18 80.48 79.87 83.36

I Recall 72.69 77.89 77.53 79.67
F1-Score 74.88 79.16 78.68 81.47
Test time 0.618 2.153 2.974 2.484

TABLE 11. Comparison of the performance of ensemble classifiers
(CART).

Single Traditional Ensembles Our
Dsztta Metric Classifiers (best}){an dom approach

(best) Bagging Subspace FS-PP

Accuracy 71.58 79.36 78.13 81.91
Precision 78.04 78.18 81.53 80.97

1 Recall 73.00 78.04 78.30 73.29
F1-Score 75.44 78.11 80.86 76.94

Test time 0.225 0.919 1.525 1.208
Accuracy 76.47 82.02 81.25 83.74
Precision 85.28 80.78 82.39 85.61

11 Recall 72.53 90.00 76.06 87.64
F1-Score 78.39 85.14 79.10 86.61

Test time 0.367 1.681 2312 2.273

TABLE 12. Comparison of the performance of ensemble classifiers (SVM).

Single Traditional Ensembles Our
D;ia Metric Classifiers (best}){an Jom approach

(best) Bagging Subspace FS-PP

Accuracy 65.38 80.45 78.38 82.47
Precision 72.55 80.95 83.97 87.78

1 Recall 66.67 73.02 84.13 88.89
F1-Score 69.49 76.78 84.05 88.33

Test time 0.652 1.931 3.140 2.875
Accuracy 69.70 82.66 81.70 85.37
Precision 75.80 80.42 82.11 81.55

I Recall 61.75 71.43 76.19 80.95
F1-Score 68.06 75.66 79.04 81.25

Test time 0.855 2.312 4.102 3.531

The prediction accuracy of the SDHRM-SEoKELMRS
method on the two test sets (83.78 and 85.68, respectively) is
higher than the prediction accuracies of other base classifiers,
which are comparable to that of a single OSL. Compared
with the KELM-based classifier, the accuracy of the ensemble
method is increased by 15.60% and 13.86%, respectively. The
prediction accuracy of each prediction model on test set II
is generally higher than that on test set I. We believe that
this shows the effectiveness of using the migration attribute
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TABLE 13. Comparison of the performance of ensemble classifiers
(KELM).

Single Traditional Ensembles Our
D:;a Metric Classifiers ) (best}){an Jom approach

(best) Bagging Subspace FS-PP

Accuracy 72.25 81.51 78.90 81.03
Precision 87.25 87.39 86.67 86.04

1 Recall 66.11 87.55 74.54 78.48
F1-Score 75.23 87.75 80.15 82.09

Test time 0.447 1.395 2.244 2.095
Accuracy 74.63 81.56 79.84 82.87
Precision 87.88 85.12 85.98 88.99

11 Recall 68.89 76.25 71.98 82.23
F1-Score 77.23 80.44 78.36 85.48
Test time 0.578 1.535 2.516 2.317

TABLE 14. Comparison of the performance of ensemble classifiers
(OSL-KELM).

Single Traditional Ensembles Our
] Metric Classifiers (best}){an Jom approach
(best) Bagging Subspace FS-PP
Accuracy 72.47 84.02 80.83 83.78
Precision 81.44 83.69 81.64 82.87
1 Recall 73.52 83.76 83.01 81.47
F1-Score 77.28 83.73 82.32 83.17
Test time 0.261 0.683 1.142 1.083
Accuracy 75.25 83.91 82.93 84.68
Precision 82.73 85.18 81.06 84.08
1 Recall 81.81 84.33 80.74 85.89
F1-Score 82.26 84.73 80.90 84.97
Test time 0.278 0.786 1335 1.230

set to improve the accuracy of the classification prediction
for the shearer drum. The proposed SDHRM-SEoKELMRS
ensemble classifier method achieves the best predictive per-
formance for these four metrics (accuracy = 85.68, preci-
sion = 84.08, recall = 85.89 and F1-Score = 84.97) on test
set II. The FS-PP and random subspace methods both obtain
multiple different groups of base classifiers by perturbing the
sample attribute space, but for the industrial test data set of
shearer drum height adjustment modes, the FS-PP method
uses the redundancy of the neighborhood rough set attribute
reduction technology to effectively improve the generaliza-
tion performance of the integrated system.

To better compare the prediction accuracy and calculat-
ing time of the classification algorithm and its integrated
system on the industrial test set of shearer drum height
adjustment modes, we provide the results in the form of
graphs, as shown in Fig 7 and Fig 8. Although our method
does not achieve a completely accurate prediction effect,
the obtained results are acceptable in comparison with those
of other approaches. Although the response time of the
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FS-PP +ELM combination is as short as 0.957 s, the pre-
diction accuracy rate drops by 4.72%. The FS-PP+SVM
combination has the highest prediction accuracy rate at §6.97,
but the long amount of time required to make a decision
makes it difficult to meet real-time performance require-
ments. In the process of industrial production, the actual
operating speed of the shearer is between 0-0.08 m/s. In view
of the decision-making time and prediction accuracy, the
proposed SDHRM-SEoKELMRS method has the best per-
formance. In addition, we can also adjust the maximum
number of training samples of the SDHRM-SEoKELMRS
algorithm or optimize the adaptive calculation method for the
decision-making parameter to further enhance the real-time
decision-making of the algorithm to adapt it to the needs of
working conditions. This is also the focus of our future work.
The SDHRM-SEoKELMRS method adopts an incremental
learning method, which enhances the adaptability of the
shearer to the randomly changing coal roof in the coal mine
and can effectively predict the adjustment mode of the drum
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to avoid the shearer from being damaged or being involved in
a safety accident.

IV. CONCLUSION

This research proposes a novel classifier selective ensemble
method using the OSL-KELM classifier and neighborhood
rough set attribute reduction technology to classify the height
regulating pattern of the shearer drum. To improve the classi-
fication accuracy of the model, we introduce the migration
attributes describing the shearing coal of the shearer. The
multigranular attribute reduction technology based on the
neighborhood rough sets is used to perturb the attributes space
to generate different base classifiers. In addition, tenfold
cross validation is used to tune hyperparameters of individual
classifiers. The performance of the classifier ensemble on the
field database is evaluated using statistical measures includ-
ing accuracy, precision, recall and F1-score. The main results
of this study are summarized as follows.

(1) The experimental results clearly demonstrate
SDHRM-SEoKELMRS'’s superior performance in the height
regulating pattern of the shearer drum, which the prediction
accuracy is 84.68% and time requires 1.23s.

(2) The generalization performance of ensemble methods
on data sets with migration features is higher than that on
data sets without migration features, in which the accuracy
has increased by up to 4.5%.

(3) The classification accuracy of SDHRM-SEoKELMRS
which uses the proposed neighborhood rough reduction and
the selective ensemble methods to remove effectively the
irrelevant attributes and base classifiers has increased by
2.75% compared with the Random Subspace model.

(4) After comparing six base classifiers, the OSL-KELM
method achieves the shortest time (1.23s) on the test set II,
which has increased by 65.16% compared with the classifier
SVM.

In summary, based on the observations above, SDHRM-
SEoKELMRS shows great potential and advantages for
shearer drum height regulating. In other words, we used this
method for increasing prediction accuracy of the change law
of the coal-rock interface and reducing classification error by
selective ensemble. Moreover, the ensemble method can be
easily extended to other classification problems in the fully
mechanized coalface. It is worth mentioning that although
the proposed method has advantages in calculating speed and
accuracy, it still needs to be improved in order to meet the
requirements of unmanned fully-mechanized mining coal.

Nevertheless, it is certainly possible that the complete
industry data can improve the generalization ability of the
ensemble model. So, future work should focus on enlarg-
ing the current database and investigating other combination
methods to improve the generalization ability of the ensemble
model.
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