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ABSTRACT Unmanned aerial vehicle (UAV) assisted wireless communication has recently been recognized
as an inevitably promising component of future wireless networks. Particularly, UAVs can be utilized as
relays to establish or improve network connectivity thanks to their flexible mobility and likely line-of-
sight channel conditions. However, this gives rise to more harmful security issues due to potential adver-
saries, particularly active eavesdroppers. To combat active eavesdroppers, we propose an artificial-noise
beamforming based secure transmission scheme for a full-duplex UAV relaying scenario. In the considered
scheme, we investigate a UAV-relay equipped with multiple antennas to securely serve multiple ground users
in the presence of randomly located active eavesdroppers. We formulate a novel average system secrecy
rate (ASSR) maximization problem under some quality of service (QoS) and mission time constraints.
Since the ASSR optimization problem is too hard to solve by conventional optimization methods due
to the unavailability of the environment’s dynamics and complex model, we develop some model-free
reinforcement learning-based algorithms, i.e., Q-learning, SARSA, Expected SARSA, Double Q-learning,
and SARSA(L), to efficiently solve the problem without substantial UAV-network data exchange. Using the
proposed algorithms, we can maximize ASSR via finding an optimal UAV trajectory and proper resource
allocation. Simulation results demonstrate that all the proposed learning-based algorithms can train the
UAV-relay to learn the environment by iterative interactions, thus finding an optimal trajectory, intelligently.
Particularly, we find that SARSA(X) based proposed algorithm with A = 0.1 outperforms the others in terms
of the ASSR.

INDEX TERMS UAV communications, full-duplex relaying, physical layer security, artificial noise injec-
tion, average system secrecy rate, trajectory optimization, reinforcement learning.

I. INTRODUCTION

The emerging Al driven 6G wireless communication net-
works have been envisioned to be an enabling technology
of IoE, wherein the networked connection between people,
process, data, and things is anticipated to be autonomously
determined [1], [2]. Therefore, the ever-increasing demand
for seamless and ubiquitous connectivity as well as high
data rate transmission serving an exponentially increasing
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number of users are amongst the most critical challenges.
In light of this, UAVs have been recognized as one of the key
components of such networks due to their unique attributes:
cost-effective, flexible deployment, maneuverability, and ver-
satility [3], [4]. As a result, UAVs can be dispatched to avoid
environmental obstacles and to provide seamless connectivity
and reliable communications to a massive number of users.
Wireless applications of UAVs can be categorized into
the following paradigms: one is for on-demand deploy-
ment as airborne platforms such as mobile BSs or relays
to expand coverage and provide wireless connectivity in
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TABLE 1. List of acronyms.

3D Three dimensional

AE Active eavesdropper

Al Artificial intelligence

ASSR  Average system secrecy rate

BS Base station

DQN Deep Q-network

FD Full-duplex

iid Independent and identically distributed
IoT Internet of things

LoS Line-of-sight

MIMO  Multiple-input-multiple-output
MRC Maximum ratio combining

QoS Quality of service

SCA Successive convex approximation
TD Temporal difference

UAV Unmanned aerial vehicle

densely crowded areas where the current infrastructures are
encountering with some challenges to meet all the concur-
rent requests [5], [6], or in hazardous environments where
no communication infrastructure is in full operation [7];
another is for data collection/dissemination due to their high
mobility and low-cost operation for the UAV-IoT applica-
tions [8]-[10]; and the last one is for serving as aerial users
or cellular-connected UAVs, receiving service from the ter-
restrial stations and cooperating multiple UAVs in the sky
leading to information fusion and resources complementation
to fulfill a common mission [11]-[13].

Despite the aforementioned advantages, the open nature
of UAVs’ AG links inevitably makes such systems
vulnerable to various malicious attacks [14] such as eaves-
dropping, particularly active eavesdropping, wherein the
adversary simultaneously performs both information eaves-
dropping and malicious jamming. If employed by illegitimate
parties, hostile UAVs can even pose, benefiting from their
salient attributes, more detrimental security threats to legit-
imate transmissions [15]. Therefore, wireless security is of
crucial requirements for such UAV-aided wireless systems,
and so, there exist various significant security challenges
in the design of UAV-aided wireless communications to
be addressed [16], [17]. Typically, in the network layer of
wireless systems, cryptography techniques have been applied
for information safeguarding, but for physical layer wireless
communications, PLS approaches have been widely investi-
gated, and recognized as one of the promising security coun-
termeasures, especially for confidentiality. Since PLS can
exploit the physical characteristics of wireless media with-
out the need for complex encryption procedure, and more
importantly, employing traditional cryptography techniques
may not even lead to satisfactory confidential performance
in resource-constraint aerial platforms [18], [19]. The notion
of PLS, first introduced by Wyner’s seminal work in [20],
lies in a wiretap channel model, which guarantees that
confidential communication can be established between
legitimate users, provided that the eavesdropper’s channel
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6G 6th generation

AG Air-ground

ANI Artificial noise injection

AWGN  Additive white Gaussian noise
DF Decode-and-forward

DRL Deep reinforcement learning
FDD Frequency division duplexing
IoE Internet of everything

ISSR Instantaneous system secrecy rate
MDP Markov decision process

ML Machine learning

PLS Physical layer security

RL Reinforcement learning

SINR Signal-to-interference-plus-noise ratio
TDMA  Time division multiple access
UR UAV-relay

capacity is a degraded version of the legitimate user’s one.
Since then, various PLS techniques have been developed
for terrestrial wireless communications with a three-category
classification: secure channel coding design, channel-based
adaptation PLS, and ANI techniques (see [21] and references
therein).

A. RELATED WORKS AND MOTIVATIONS

Recently, some research works have investigated PLS
for secure UAV communications. For example, in [22],
PLS-based secure UAV-enabled communications have been
developed via joint trajectory design and power control.
In [23], a secure UR-based communication scheme via
destination-assisted cooperative jamming has been proposed.
In [24], the authors have studied a secure multi-UAV sys-
tem with wireless energy harvesting in terms of efficient
trajectory design and communication resource allocations for
average secrecy rate maximization. The authors in [25] have
explored employing an ANI-based secure two-phase trans-
mission protocol for a single-antenna UAV system operating
as an aerial BS, and then jointly optimized UAV’s trajec-
tory, network transmission power, and power allocation factor
over a given time horizon. Further, secure energy-efficient
power control and trajectory co-design has been investigated
for UAV-enabled direct transmission [26], and UAV-assisted
mobile relaying [27], [28]. In [29], the authors have studied
a joint location-based 3D beamforming and trajectory design
for the downlink multiple-antenna UAV relaying, and then
proposed a heuristic-based iterative algorithm to improve the
secrecy outage probability of the system.

The majority of recent research works have mainly focused
on simple direct transmission [24], [29] or half-duplex UAV
relaying [30], [31]. Recently, FD transmissions that double
spectrum efficiency have attracted notable research inter-
ests to adopt at legitimate nodes, e.g., [32], [33]. Specif-
ically, for non-security purposes, a UR-based FD system
has been considered in [32] for the joint design of beam-
forming and power allocation with a fixed circular UR’s
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trajectory while using a DF relaying protocol. We note that
DF relaying refers to a type of transmission protocol used
in the communications between a source and a destination
aided by one (or more) intermediate relay nodes, where the
relay node decodes, remodulates, and then retransmits the
received signal to the destination. Another type of relay-
ing architecture is called the amplify-and-forward relaying,
wherein the relay node simply forwards a scaled version of
the received signal without decoding. Further, in [33] the
trajectory design and resource allocation of a similar system
model has been explored to minimize outage probability. For
security-based FD-operated UAV communications, in [34],
the authors have considered an FD system with an untrusted
UR, and then studied secrecy outage and average secrecy rate
performance metrics, wherein the untrusted relaying refers
to the case when the intermediate relaying conducts adver-
sarial activity during communication facilitation [35]-[37].
It should be worth pointing out that FD malicious nodes can
potentially pose severe security attacks compared to their
passive counterparts. The authors in [38] have proposed an
ANI-based secure uplink UAV transmission in the presence
of a multiple-antenna FD-operated AE. They have analyzed
a hybrid outage secrecy metric, which enables to capture the
joint effect of connection and secrecy outage probabilities.

We note that in all the abovementioned research works for
UAV’s trajectory design, e.g., [24], [26], [27], [29], [31], [33],
standard optimization techniques such as SCA have been
employed under the assumption of a known network model
and a perfect knowledge of flight’s dynamics. However, this
assumption can be somehow impractical inasmuch as a pre-
cise mathematical model can hardly be formed, owing to
the fact that the UAV-network topology frequently demands
information exchange between the UAV and the core net-
work. Consequently, the expression of the objective function
to be optimized or the constraints might be either unavail-
able or obtaining their gradients analytically becomes almost
impossible [39]. Hence, other optimization approaches are
required to deal with such complex problems. One promising
approach can be the model-free RL techniques [40] that can
reduce the online computational complexity. To that end,
in [41], the authors have proposed an RL algorithm for a
multi-UAV cooperative system, aiming at maximizing the
sum rate metric via trajectory design and resource man-
agement. The authors in [42] have considered exploiting
RL algorithms to optimize UAV’s trajectory for maximum
data collection in a sensor network under some QoS con-
straints. However, these developments have aimed at only
reliability aspects of UAV communications, and PLS security
aspects have not yet been fully explored.

B. OUR CONTRIBUTIONS

Driven by this demand, in this work, we propose a secure
FD-operated MIMO-UAV relaying communication scheme
in the presence of multiple AEs, wherein the source is
a multiple-antenna BS. We assume that both BS and UR
adopt ANI-based beamforming, and AEs are equipped with
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double antennas to perform concurrent reception and trans-
mission. Then, our design goal is to maximize the ASSR
under some QoS and mission time requirements. To achieve
our goal, we develop some applicable RL-based algorithms
for an adaptive trajectory design, enabling the flying UR to
autonomously find the optimal path to complete the mission.
Detailed contributions are summarized below.

« In our design, we target at maximizing the ASSR of the
system under some conditions for fulfilling the UR’s fly-
ing mission as well as combating the active eavesdrop-
ping issue. Besides, we take into account the collision
avoidance between the flying UR and environmental
obstacles for safety purposes.

o The original optimization problem of ASSR is, how-
ever, hard to solve due to the non-convex complex
model of the objective function and some associated
constraints. To tackle this problem, we devise some effi-
cient model-free RL-based algorithms, i.e., Q-learning,
SARSA, Double Q-learning, Expected SARSA, and
SARSA(}). Via the proposed algorithms, we can train
the UR to find its optimal path via environmen-
tal interactions and decision-updating using the feed-
back/reward received for the trajectory design purpose,
meanwhile forming a simple resource allocation prob-
lem that can partially contribute to generating the reward
function. We can see that our approach significantly
diverges from those in [22], [24], [43], where the prob-
lems were trackable and mathematical optimizations
have been applied.

« Finally, we discuss the convergence and complexity
of the proposed adaptive trajectory design algorithms
under the considered settings. Via extensive simulations,
we demonstrate that these algorithms can effectively
improve the considered ASSR performance, and their
convergence rates to their optimal policies are also
desirable.

The rest of this paper is organized as follows. In Section II,
we detail the system model and signal representations for
the proposed secure UR-based FD system in the presence of
multiple randomly-located AEs, wherein the BS and UR both
adopt the MIMO-based ANI beamforming. Problem formu-
lation is then given in Section III, followed by our model-free
RL-based solutions in Section IV. Section V is devoted to
numerical results and discussions about the performance of
the developed solutions. Finally, the conclusions are drawn
in Section VI.

Il. SYSTEM MODEL

We consider a UAV-assisted mobile relaying system,
as depicted in Fig. 1, wherein a UAV is employed as a mobile
relay to provide an enhanced service and secure connectivity
for multiple ground users. Particularly, we consider a BS,
denoted as S, which intends to secretly communicate with
the remote ground users with the help of a UR, denoted
as U, in the presence of multiple terrestrial AEs. We assume
that S and U are equipped with Ny and N, transmitting
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N y NE 8 Active Eavesdropper

FIGURE 1. Illustration of the considered MIMO-UR system model with
multiple users and in the presence of some AEs.

antennas, respectively, and U has also one receiving antenna.
Further, we assume there are L single antenna ground users,
denoted as D = {D, Dy, ---, Dz}, and M double-antenna
AEs, represented by £ = {E{, E,, - - -, Ejs }, all of which are
randomly distributed across a rectangular R,, x R; region.
We insist that AEs, compared to conventional passive eaves-
droppers, may pose stronger eavesdropping attacks as they
can, in addition to overhearing transmit confidential mes-
sages, actively deteriorate the capacity of the main channel,
i.e., the quality of received signals at the legitimate nodes,
by malicious jamming transmissions. Further, being equipped
with two antennas, we assume that each AE operates in the
FD mode such that utilizes one antenna for eavesdropping
purpose and the other for jamming transmission, simultane-
ously. To guarantee the security and reliability of the trans-
mission in the considered system, we employ a UAV to act
as a mobile DF relay. The goal of the UR is to fly over
the region from a pre-specified starting location and stop
at the pre-established final destination (ignoring the landing
process, this point is depicted by a flag in Fig. 1) for each
flight. Note that obstacles such as high-rise buildings and
trees represent the forbidden region due to, for example,
the possibility of collision, through which the employed
low-altitude UR should avoid passing during the mission.
In order for the UR to sequentially relay the data and provide
service for multiple users, the total flight duration 7', which
should not go beyond a maximum allowed feasible mission
time 7Tqy, is divided into multiple sufficiently-small time
slots, at each of them only one user is scheduled to receive
data from U according to the TDMA technique, and besides
that, the UR applies FDD protocol at each time slot, allo-
cating equally-shared bandwidth for data transmission and
reception. Now, we detail the channel assumptions and signal
representations of the proposed system in what follows.

A. CHANNEL ASSUMPTIONS
First off, we model the location of network nodes by
3D Cartesian coordinate system. As such, without loss of
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generality, due to mission requirements, the UR’s predeter-
mined initial and final locations, which may refer to rising
and landing sites, are represented as Q; = [xy, yr, H,]" and
Or = Ixr,yrF, H,]", respectively, wherein H, denotes the
operating fixed altitude of the UR. The location of flying
UR at time slot ¢ is denoted as Q, (1) = [x,(?), yu(?), H,]"
with corresponding projected coordinate on the ground
(x-y plane) as gq,(t) = [xu(t),yu(t)]T. Further, the node S
is located at the ground with x-y coordinate g; = [x;, ys]T,
the location of randomly located ground users and AEs are
also represented as qq = [Xy4, yd]T, q. = [Xe, ye]T, respec-
tively, where for i € {d, e}, x; € R¥*! y; € RV*! and so
q; € R>¥i_in which N; and N, represent the cardinality of
sets D and &, respectively. Note that the j-th column (where
j=1,2,---,N;) of the matrix q;, denoted as qlg), represents
the x-y coordinate of the j-th terrestrial device of type i. As a
result, the instantaneous distance between the flying UR and
terrestrial communication node i; can be represented as dy;; ()
which is given by

duy® = lgu(t) — g1 + H, §))

Likewise, the instantaneous distance between S and the
UR is represented as

duult) = [ 14u(0) — s> + HZ, @)

Plus, defining G £ {S} U D U &, the Euclidean distance
between any pair of terrestrial nodes a, b € G is denoted as
dgp and calculated by

dab = 11ga — gp |l 3)

where gq) € {gs, C],@ vi, j}.

1) LARGE-SCALE ATTENUATION

In this work, we consider that each terrestrial device has an
LoS path towards the UR with a given probability as [4]. This
LoS probability is determined by the environment, locations
of the terrestrial devices, and the UR. Thus, we express the
LoS probability between the terrestrial node g € G and the
UR as

1

, “4)
1 + w1 exp(—w2(Ogu(t) — w1))

Py (1) =

where 6,,(1) = %arcsin (dH—‘(‘t)) represents the elevation
gu

angle in degree, wherein dg,(¢) is given by (1) and (2), and the
parameters w1, wy > 0 are determined by the environment.
The non-LoS probability of the link between the node g and
the UR can be simply expressed as P?u(t) =1- P]g“u(t). Fur-
ther, we model the elevation-angle dependent probabilistic
path loss component as

Ngu = Py (L + PR ()1 . )

where ny > 1z > 2. We note that according to (4) and (5)
for fixed altitude of UR, the LoS probability will decrease
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as the UR goes away from the terrestrial node g and accord-
ingly, the channel will experience a larger path loss attenua-
tion. Therefore, the large-scale attenuation between any two
nodes m and n can be given by

L gu ,Bodgu Te (),
mn =
Loy = IBOdab s

where fo represents the channel power gain at the reference
distance of 1m.

Vee G

6
Va,be G ©)

2) SMALL-SCALE FADING

We further consider that the AG channels experience Rician
fading for LoS propagation conditions and Rayleigh fading
for non-LoS propagation conditions. As such, we express the
time varying channel between the BS and the UR as

hy, (1) = K‘W(t)h”t ! n. (¢ 7
sut) = mm(ﬂ- msu(), (7

where K,(t) = w3exp (wabs,(t)) with w3 and w4 being
constant parameters, denotes the Rician K-factor of the
channel, h{, represents the LoS component of the correspond-
ing channel, defined as

hg, (1)

L[]
(®)

where B, (¢) denotes the time-varying azimuth angle between
the BS and the UR, §; denotes the constant antenna spac-
ing in wavelength at the BS. Further, h{, (¢), denoting the
scattered component of channel vector between S and the
UR, each element of which follows quasi-static i.i.d complex
Gaussian random variable with zero mean and unit variance,
i.e., hgu ~ C./\/ (01><N.w IM)-

Furthermore, the air-ground channel vector between the
UR and the single receiving antenna terrestrial node i; is

represented by hy (1) as
;; (1) 1
hoi(f) — ul/ h? 9
i) V Kuip(1) + 1 P (1) + V Kuip(1) + 1 B (- 9)
w3 exp (w46u,}.(t)) denotes the Rician

where Ku,}.(t) =
K-factor of the channel between the UR and the node i,
hgi, denotes the corresponding LoS component, defined as
hy, (1)

ut;

1
= J_V[l’ <o, exp(j2r (Ny—1) 8, sin(Bui, (1)) cos(8yi; (1)),

(10)
where B, (1) denotes the time-varying azimuth angle between
the UR and the ground node i, §, denotes the con-
stant antenna spacing in wavelength at the UR. and
hZii ~ CN (leNu,INu)- We define the N, x N, matrix

ue = [Mye;s -+ 5 Nyey, 1. Since each AE has one antenna for
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, exp(—j27 (Ny—1) s sin(Bsu (1)) COS(@su(t))] )

jamming transmission, therefore, the corresponding channel
from j-th AE e; € & to the UR at time slot ¢ can be represented
as

Bou(t) = Keu® ! A ORENCE))
O =\ K 11 T\ Ko 4 17

where K., (t) denotes the corresponding Rician K-factor and
h’lu ~ CN1(0, 1). Therefore, we can define the 1 x N, vec-
tor hey 2 [he,u(t), heyu(t), - - - s hey,u(t)]. Additionally, the
M x L channel matrix from the AEs to the users can be
represented as

heiay, heydy - heyay
Heg=| - ; (12)
heMd] heMd2 heMdL

where H, is subject to i.i.d Rayleigh fading with normalized
channel power gains. Next, let the link between the BS and the
terrestrial node i; be the 1 x Ny channel vector hS,-j, such that
hy; ~ CN (01 xNy» INS). Further, the self-interference channel
from the UR’s transmitting antennas to the receiving antenna
is characterized as the 1 x N, vector ,/p,hy, wherein p, €
[0, 1] characterizes the effect of imperfect self-interference
cancellation such that p, = 0 implies zero self-interference
and 0 < p, < 1 takes the level of self-interference into
account. Further, h,,, ~ CN (01 XNy INM)- Likewise, the self-
interference channels of AEs as well as the cross-interference
channels arising from the other AEs are respectively denoted
as he, ~ CN(0, 1) and he,e, £ he,, ~ CN(0, 1) with ey(q) €
E,Vp,qp # q) € {1,---,N,}, and can be represented as
the N, x N, channel matrix given by

[Perhe; hepy . heyy,
H,. = e s (13)

heNgl heNgz v Pen, heNe

where 0 < Pe, < 1 demonstrate the self-interference factors
of the AE e, due to FD operation.

B. USER SELECTION

Since at each time slot ¢, U forwards the intended confidential
message to one scheduled user via performing FD relaying,
we let £j() € {0, 1} be a binary variable for user ID; where
j € {1,---,L} at time slot ¢ to indicate user scheduling,
ie., ¢(t) = 1 if user D is scheduled at time slot ¢ and
gj(t) = 0 otherwise. Therefore, we have the user scheduling
constraint given as

L
Do <1, (14)

In this work, we consider the user selection criterion based
upon the best channel condition of the second hop of infor-
mation relaying. Thus, the scheduled user at time slot ¢ can
be obtained as

J=arg max - [l (1l 15)
vD;e

)j €
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where j* denotes the index of the selected user D and we
denote it as the destination node D.

C. MIMO-ENABLED ARTIFICIAL NOISE BEAMFORMING

In order to establish secure end-to-end transmission,
we adopt ANI technique with the confidential messages for
secure transmission at both the BS and UR according to
MIMO-beamforming, as shown in Fig. 2. In this scheme,
we assume that the source transmits noise-like signals in
addition to information signals, in order to confuse the mali-
cious nodes. As such, we design the transmitted unit-power
signal x; from the BS as

_ [oNox1 guNsxNe—1) ]| E(7)
Xs = |:Ws Ws,an t(stl)Xl s (16)
s,an
huu
'/ N Multi-antenna
Full-duplex UAV-Relay (U)
YV Vee*Vy
tad ~.
i ~ 4
W ‘Fﬁ N
- ~
A '~
\ ) -
T ooy hsd .
- A
1} >
Hue et
\ 1"n
Multi-antenna S ',‘ L Slng!e-aptenna
Source (S) ‘l*"c:’-, x Hee * \\e& Destination (D)

Active Eavesdroppers (Es)

FIGURE 2. Proposed secure transmission at a given time slot towards the
selected user D based on MIMO bled ANI for FD-operated
UAV-assisted relaying and under active eavesdropping.

nl, . . . .
where wg = Hh¢ is chosen to maximize the information

Sll”

signal transmission towards the UR, wherein (-)Jr indicates
the transpose conjugate operator, Wy 4, is assumed to be the
projection matrix onto the null space of hy,, i.e., hgy W 4, =
0, and therefore, it is evident that the columns of the first
matrix in the right-hand side of (16), or the so-called beam-
forming matrix, form orthonormal basis. Note that following
Eigen-decomposition of the matrix Hy, = thhm, Ws can
be chosen as the eigenvector corresponding to the maxi-
mum eigenvalue, and the remaining eigenvectors can form
the matrix W 4,. It should be mentioned that the designed
beamforming matrix aims at degrading the quality of the
received signal at the unintended devices while improving the
quality of the reception at the UR. Further, #; denotes scalar
information signal to be sent securely to the end-user and
t; «n represents the ANI vector at the BS with dimensions
(Ny — 1) x 1. Letting oy where 0 < a3 < 1 be the power
allocation factor between information signal and ANI at the
BS, we have E{|t;]?} = o, and E{ty autl o} = +-5Iy,—1,
wherein E{-} indicates the expectation operator. '

Likewise, the UR performs ANI to the previously decoded
signal to be forwarded to the selected user D. Then, the
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forwarded information-bearing signal can be represented as

ty(t —1)
Nu 1 Ny Nufl u
X, = [wu XL gy )] [ Nu=Dx1 | » (17)
tu,an
hoo - . .
where wy = —“- is chosen to maximize the information

' gl 8
signal transmission towards the scheduled user D, W, 4, is

chosen such that h,;W, s, = 0. Further, t,(t — 1) denotes
the previously decoded information signal, t, ., represents
the ANI vector at the BS with dimensions (N, — 1) x 1. Letting
o, where 0 < «,, < 1 be the power allocation factor between
information signal and ANI at the UR, we have E{|z, 12} = ay
and E{tu,antl,an} = %IN,,—L

D. TRANSMISSION PROTOCOL AND SIGNALS
REPRESENTATION

Let Py, P,, and P, with j = {1,---, N,} be the transmis-
sion powers of the BS, UR, and AEs, respectively. Then,
the received signal at the UR at time slot ¢ can be represented
as

Yu = v/ PsLghg Wt + /0y Pyhyy X,

Ne
+ Z ,/PejLejuhg,-uxej +ny, (18)
=1

where n, ~ CN(0, auz) is the AWGN, x,, and Xe; are the
unit-power signals, i.e., E{lIx.?} = 1 and E{|xej|2} = 1.
Note that the first term in the right-hand side of (18) denotes
the information-bearing signal, the second term is the residual
self-interference at the UR, the third term denotes the distur-
bance arises from the AEs and their jamming transmission.
The SINR can be given as

T, = Vsu

=, 19
Veu+yuu+1 ( )

where
VYsu = OlsPsLsu||hsu||2/0142’

Ne
Yeu = ZP"./'L‘)/

=1
Yuu = lePM||hMM||2/0|,425

2, 2
hejul” /oy,

The received signal at the scheduled user D at time slot ¢ is
given by

PyLyghygwyty, +

Ne
+ Y JPeLoaheaxe; +na,  (20)
j=1

where the antenna noise ng is modeled as the AWGN,
ie.,ng ~ CN(O, 03). Note that the first term in (20) is the
information-bearing signal transmitted by the UR, the second
term is the signal coming from the BS, however assuming
the worst-case scenario such that the legitimate users have
low-complex receivers which are unable to perform joint pro-
cessing, the user treats this signal as an interference. In other

Yd = PsLgghggXg
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words, since the signals coming from the BS and the UR are
inherently different, for example, due to having been encoded
with different codebooks, so the user is only able to detect one
signal. Besides that, it is common in the literature to consider
solely the signal coming from the UR, however, in this work
we take into account the direct transmission as well. Finally,
the third term denotes the disturbance coming from the AEs.

Hence, the SINR at D can be given as
Yud
Fg=——"7""", 21
Yed + Vsd + 1

where

Yud = Py LudnhuduQ/a[%,

sLs T T
Vsd = 2 O{s"hsdws des,anws anhsd
d
Ne
Yed = Z Pe,-Lejd|he_,'d|2/05'
Jj=1

It should be mentioned that VE; € £ may receive two copies
of the information signal from the BS and the UR with
some delay as the relay needs to first process the received
signal before forwarding. In contrast to [44] and the assump-
tion that we made for the scheduled user, where the direct
transmission is treated as an interference, each AE [E; here is
assumed to be able to fully combine these signals and perform
a joint processing method such as an ideal Rake receiver [45],
[46]. As such, [E; can appropriately co-phase and merge these
two signals via applying MRC and perform more harmful
eavesdropping attacks. Besides, we assume that the AEs are
non-colluding, i.e., each AE decodes the received signals
from the source and the UR without cooperating with other
AEs. Consequently, the received signal at j-th AE, denoted by
Yej» can be represented as

Yej = PsLsejhsej(wsts + Ws,ants,an)

4_ Ijul;ueylluey(‘vutu _% ‘N]u,antu,an)

Ne

+ Z Pe,-Le,-ejhe,-jxe,- + 4/ ,Oe,-Pe_,-he,-Xe, + Nejs (22)

i=1,i#j
where x,; is the unit-power jamming signal transmitted by
other AEs Ne; is the AWGN at j-th AE where Ne; ™~
CN(0, 02) We assume that I; applies MRC to effectlvely
decode the received information, and hence, the SINR at D

can be given as

Fg,' = Fsej + Fsm{;: (23)
where the SINR TI'y,; is given by

Vsej

EEE— 24
Vsej.an + 1 4

Fsej =

in which
Vsej = asPsLsej”hsejwsnz/az-»
1—

N 1P Lejhse; Wy an W1 0, /02

Vsej,an - s,an-'se;j
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and I"gye; can be obtained as per the rules of DF protocol as
Fsuej = min (Fsuv Fuej) » (25)
where [y, is given in (19) and Dye; can be represented as

Vue;

— , (26)
ue; Yuej.an + Veje; + Ve + 1
where
1-—
Yuej,an = N, — IP uLuiejMue; Wu, ‘"’W’z an ”eJ/UE
)/uej = auPuLuethuequ” /GEj’
yej = pEjPej|h€j|2/Uezj*’
N,
Ve = D, Peileilhe /o5

i=1,i #j

lll. PROBLEM FORMULATION

The achievable instantaneous system secrecy rate of the pro-
posed UAV-based FD relaying scenario is defined, assum-
ing normalized shared bandwidth in bit-per-second-per-Hertz
(bit/s/Hz), as [47]

Ryec(t) = [Ip(t) = IE(D]T 27)

where [x]T £ max{x, 0}, Ip(¢) is given by

L
Ip(t) =) _ ¢i(t) logy(1 + Ta(1)), (28)
i=1
which represents the capacity of the main channel including
both the direct and relaying links from the BS to the scheduled
user D at time slot 7, and /g (¢) is given by

Ig(1) = max log,(1 + T), (29)
VecE

which determines the Shannon capacity of the non-colluding
eavesdropping links at time slot ¢. In this work, we aim at
maximizing the ASSR during the mission time 7 by trajec-
tory design and resource allocation. Thus, the optimization
problem can be formulated as

maximize

1 to+T
= / Rsec(t)dt
Py, Py,a5,0,,T,0y

5.t.Cl: Ryet) > R" | ¥t

sec’

to+T _
C2: / RO (t)dt < B} Vj € D
1

sec
0

C3: 0 <Ps(t) < PM™, Wt
C4: 0<P,(t) <P™, Vt
C5: 0<o(t), au(t) <1, Vt
Co: 0<ux,(t) <Ry, WVt
C7:0<y,t) <Ry, Vt

C8: Qulto) = Qi OQulto+T) =0,
C9: \/(yF - y0)2 + (xp — )C())2 =< Dvmax,
Cl10: 0 < T < Tuax, 30)
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where the constraint C1 indicates the minimum instanta-
neous secrecy rate requirement, otherwise secrecy outage
may occur, C2 is to ensure that amount of data securely
received by the users does not go beyond users’ capacity to
make fairness service amongst them, C3 and C4 should be
satisfied due to green communications and hardware limi-
tations, C5 indicates the ANI factors limitation, constraints
C6 and C7 are posed by the restricted flying region require-
ment, C8 arises due to the mission requirement in terms
of pre-specified start and ending locations, and finally C9
ensures the feasibility of the mission, and C10 is for guaran-
teeing the mission completion goes not beyond a reasonably
feasible maximum allowed time 7Ty,4. The problem (30) is
too complicated to solve due to non-convex complex model
of the objective function and constraints C1 and C2. Our
approach is to employ some learning-based reinforcement
techniques to tackle the problem. In the following section,
we detail our RL-based solutions to approximately solve the
original problem (30) after providing a brief introduction of
RL fundamentals.

IV. REINFORCEMENT LEARNING BASED SOLUTION

A. PRELIMINARIES

Here, we first briefly explain the RL fundamentals (inter-
ested readers are encouraged to refer to excellent resources
such as [40] for detailed discussions), by which we then
reformulate our optimization problem in (30) for trajectory
optimization of the proposed UR scenario and then efficiently
solving via learning approximate solution approach.

RL problems can be mathematically studied based on the
MDP frameworks which basically establish a relationship
between interaction-based learning and goal achievement.
Consequently, it is worthwhile to first recall some key, though
abstract, components of the MDP frameworks in the follow-
ing, which shall be explicitly semanticated later on. In MDPs
there is a decision-maker or the so-called learning agent that
continually interacts with the environment over a sequence
of discrete time steps t = 1,2, 3, --- via taking an action,
then receiving some feedback signal from the environment —
termed as reward, and then being presented in a new situation
or state. The objective of the agent is to maximize the received
rewards over time. In our work, we consider the finite MDP
wherein the number of elements in the state-action-reward
set, i.e., {S, A, R} is finite.

The interaction of the learning agent with the environment
is well visualized in Fig. 3. Particularly, given s € S be the
agent’s current state, it takes an action a € A and then goes to
the next state s’ € S, observes the environment, and receives
a numerical reward r € R C R following to the action taken.
According to the finite MDP framework, for particular values
from the reward set r € R and state set s € S, there is a
well defined discrete probability distribution, which depends
only on the preceding state s € S and action a € A and
represented by

p(s’ rls,a) =Pr{S; =5 Ry =r|Si—1 =5,Ai—1 = a,
Vs,s e S,reR,ac A}, (31)
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FIGURE 3. The iterative interaction process of learning UR-agent and
environment in the RL.

The function p defines the dynamics of the finite MDP, which
sums up to 1 according to the rule of total probability. Hence,
we have

Y S b rlsay=1, VseS, acA 32)

seSreR

Given p(s', r|s, a), one can obtain transition probabilities of
the learning agent as a three argument function S x S x A —
[0, 1], given by

7(s'ls, a) = Pr{S; = 5'|S—1 = 5, A1 = a}

= > (s, rls. a), (33)
reR
which results in the expected reward function of the state-
action-next-state triples, defined below as a three-argument
function

r(s7 a, S/) = E{RtlStf] =S,A[7] =a, St :S/}
/
_ Z rﬂ(s ,rls, a) (34)

(s’ ’
= TElsa)

RL algorithms, which are employed to solve the
above-mentioned finite MDP, are basically instructing the
learning agent via estimating the action-value function or
the so-called Q-function. Precisely, Q-function estimates the
quality of action taken by the agent in a given state in terms
of the expected discounted return Y. This return captures not
only the immediate reward but also a scaled version of the
future rewards in the long run for all successive steps, which
can be mathematically represented as

L
Y=Y """ 'R, (39)
n=t+1

where R,y for k = 1,2, -, L indicate the future rewards
after time step ¢, y € [0, 1] denotes the discount rate, speci-
fying to what degree of importance the future rewards should
be taken into account, and L represents the final time step.
Note that, since the expected future rewards depend on the
particular action the agent will take in the future, therefore,
this Q-function should be defined in regards of the agent’s
way of acting or the so-called policy. Indeed, policy is the
core element of RL methods and this decision-making rule is
merely a mapping from states to the probability of taking each
possible action. Mathematically speaking, if the agent follows
policy 7 at time step ¢, then it will take the action a; = a at
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state S; = s according the probability 7 (als), which is given
by
w(als) =Pr{A, =alS; =s}, VYacA s€8S (36)

In light of this, the value of taking action a under policy &
and in state s is defined as

Ox(s,a) = By {T, S =5, A = a}

T
—E. | Y y"_’_an‘Stzs,Atza . (37
n=t+1

where the Q-function Q (s, a) indicates the expected return
starting from the state s, taking the action a and following
policy mr thereafter, in which Y} is defined in (35). Likewise,
the value function of a state s under a policy 7 is defined as
the expected return when starting in state s and then following
policy 7 afterwards, which can be given by

Vr(s) = En{Tt S; = s}
T
=E, Z YIRS =5, Vse St (38)
n=t+1

These two functions can be related via

vr(s) =Y w(als)Qx (s, a), (39)

Solving an RL problem for the finite MDP is roughly
equivalent to finding an optimal policy,! which can be
expressed as

1, ifa = argmax Q*(s, a)
7*(als) = acA
0, ow.

We note that the optimal policy also shares the same optimal
Q-function, i.e., Q*(s, a), defined precisely as

Q*(s,a) = max Qx(s,a), Vse€ S, Vac A (40)

The above function provides the optimal expected long-term
return as a value that is locally and immediately available
for each state—action pair. Additionally, Q*(s, a) is required
to satisfy the Bellman optimality equation, given by

0*(s, @) = E{Ri41 + ymaxQ*(Si11, a)IS; = s, A, = a}
a

=Y p(s.rls. @) |:r + ymaxQ*(s', a’)i| . 4D

s'r

It is worth pointing out that the Bellman optimality equa-
tion is non-linear and explicitly solving it is, in prac-
tice, too hard, since at the outset we need to accurately
aware of the dynamics of the environment — corresponding
to have p available, and secondly we need to have sufficient

LN policy m is defined to be better than or equal to a policy my if its
expected return is greater than or equal to that of m, for all states. In other
words, 1| > my = v (5) = vr,(5), Vs € S. We also note that there the
optimal policy is not necessarily unique, however, there exists always at least
one policy that outperforms all other policies in terms of the expected return.
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computational resources for solving the equations amongst
other required assumptions. Alternatively, we can use some
iterative methods to approximately solve it and hence esti-
mate the optimal Q-function in an efficient time. In light
of this, TD-based reinforcement algorithms are model-free
methods that recursively approximate the Q-function. Fur-
thermore, there are two main types of TD learning methods:
On-policy and Off-policy. While the former attempts to eval-
uate and improve the policy that is used to make decisions,
the latter evaluates or improves a policy known as behavior
policy, which may or may not correlate with that used to
generate the data, namely the estimation policy.

Now, we have the necessary tools to dive into our problem
in terms of reformulating the UR’s trajectory design problem
such that we solve it via the finite MDP-based RL algorithms.
Towards that end, we reformulate (30) as a model-free RL
problem. Specifically, we divide the original problem into
three sub-problems: user scheduling, trajectory optimization,
and jointly power and ANI allocation sub-problems. In other
words, a three-stage decision-making process is considered to
cope with the original problem. First, the UR takes one of the
possible actions to obtain its trajectory, then, selects one of the
users as per protocol detailed in II-B, i.e., mainly the closest
user to the UR, for conducting relaying service. Upon UR’s
changing position and scheduling the ground user, by opti-
mizing the available resources < Py, Py, oy, ot >, the ISSR
is improved, which in turn contributes to the reward received
by the learning agent (i.e., UR) following the action taken in
the previous stage. Therefore, to approximately reformulate
the original problem to be solved efficiently, we need to pre-
cisely specify the RL models in terms of state set, action set,
rewards, and the algorithm, all of which are detailed below.

B. STATE SET

Since we are interested in UR’s trajectory design, therefore,
we can consider each state representing the position of the UR
in 3D space. However, seeing that UR’s position can gener-
ally be modeled as a continuous function of time, i.e., Q,(¢)
where tg <t < to + T, hence, this leads to having an infinite
state set. Nonetheless, we hold attention to the restricted
number of possible states as per the finite MDP frame-
work. Therefore, the considered rectangular region, where
the fixed-altitude UR aims to learn the optimal trajectory via
RL is partitioned into N,, by N; small tiles. Consequently,
the region [0, R,,]1 by [0, R;]in Fig. 1 is converted into a finite
grid-world of N,, x N; tiles which the x-y coordinates of the
center of each tile represents one state. As a result, the state
set S can be represented as

S={Sy = yn)|n=12.3,--- N}, (42)

where N = N,, X N}, x, and y, are given respectively by

R n— DRy
e R
R n— DR,
_ R i DRy 2 N, (44
n 2NW+ N orn w o (44)
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It should be mentioned that here we also assume that each
tile, representing the position in a x-y coordinate, might be
occupied by a user, an AE, or an obstacle. Thus, the corre-
sponding occupied states can be represented as sets Sy C S,
S, C S,and S, C S, respectively, where it is assumed that
SiNS, NS, = @. Further, according to the definitions given
above, we can define the initial state s;,;; and the termination
state sq4¢ of the considered MDP problem as

Sinit = (X1, Y1), Sflag = (XN, YN, s 45)

Moreover, based on the constraint C8 in (30), we have g; =
qu(0) = sinir and g = QM(N;';M = Sflag, Where N;zax
is a positive integer corresponding to the mission comple-
tion time. Moreover, with a slight change in the notation,
the UR’s discrete position at time step ¢ can be considered as

qu(t)y=s€S.

C. ACTION SET

As illustrated in Fig. 1, the available action set for the UR is
assumed to be

A= N,S, W, E,NE, SE, NW, SW}, (46)

where N refers to flying one tile towards the north
(—y direction), S refers to flying one tile towards the south
(+y direction), E refers to flying forward for one tile in
the direction of 4+x, W refers to flying backward for one
tile in the direction of —x. Analogously, NE, SE, NW, SW
indicate flying one tile with higher speed but equal time
duration, when compared to other aforementioned directions,
towards north-east, south-east, north-west, and south-west,
respectively. Therefore, the cardinality of the action set is
8. Note that, in practice the UR is capable of selecting any
direction, however, the optimal continuous trajectory can be
approximately considered when the number of states in our
problem goes to infinity.

It should be mentioned that here we adopt £-greedy strategy
for action selection in order to balance between exploration
and exploitation of the environment. As such, action a* is
selected according to

argmax Q(s, a), if rand(:) > ¢
* aeA
a = an
random action selection, o.w.

where rand(-) € [0, 1], and ¢ represents the probability of
exploration, wherein the agent has the chance to improve
its current knowledge about each action, which of course,
enables the agent to make more informed decisions in the
future. Further, 1 — ¢ denotes the exploitation rate, which
refers to choosing the greedy action to obtain the most reward
by exploiting the UR-agent’s current action-value estimates.
In general, we want the UR-agent to start off the learning of
environment with fairly randomized policy and later grad-
ually move towards a deterministic one, which implies &
should be decaying. Note that in this work we consider ¢ as a
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decreasing function of episode number episode as
episode
ghew — golde Lik J , (48)

where € € (0,1), k is a constant positive integer value
such that makes ¢ parameter decay every kth episodes, and
-] represents floor bracket operator. This dynamic choice
of epsilon parameter with proper constants results in having
more chance of environment exploration at the beginning of
learning process and mainly following the learned policy at
the last episodes.

D. REWARD FORMULATION

In order to enable the UR to be successful in the quest for
an optimal trajectory to maximize the ASSR during the flight
mission, we devise the reward function in such a way that
the constraints imposed by the environment are also satisfied
in the RL. It is worth pointing out that when the UR takes
an action a at time step ¢ such that t = 1,2,--- ,Ng‘”,
and then transits from current state s to next state s’ receiv-
ing the reward r’ at the successive time step, the UR-agent
assigns a score for the taken action to indicate how important
that action was in rendering the future reward. Therefore,
the reward function of the UR-agent is defined as

r =01 F1Rwe — 02 F2 + 03T, (49)

where IAQM represents the improved ISSR as an immedi-
ate reward, J; is the indication function for taking into
account QoS requirements in terms of both the communi-
cation secrecy outage and user service fairness, J, is also
an indication function that encourages the UR to complete
the mission at the final desired destination as soon as pos-
sible (decreasing Ng™* which corresponds to minimising
the mission time 7') in order to improve the overall ASSR
performance. Finally, F3 is a function which penalizes the
UR-agent to avoid collision with an obstacle, to make it fly
inside the restricted region, and discourage it from getting
stuck in a loop which may result in a mission failure. It
is worth pointing out that the reward function parameters
(¢1, &2, ¢3) should be selected in such a way to balance
between positive rewards (revenue) and negative rewards
(cost). Now, we delve into mathematically explaining the
functions making the instantaneous reward r in more detail.

1) DEFINITION OF FUNCTION IA?SEC
Following user scheduling according to (15), for the sake of
maximizing the ASSR in (30), it is important to optimize the
ISSR via proper resources allocation, which in turn, improves
the system sum secrecy rate and accordingly ASSR perfor-
mance. We define the function R;,. for a given time step ¢ as
Rsec = maximize Ryec(Py, Py, a5, 0ty)
Pg,Py.,ag,oy
5..Cl: 0 <Py < P™
C2: 0<P, <P™
C3:0<aya,<1 (50)
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where C1 and C2 are the maximum transmission power
constraints_posed by hardware limitations and regulatory
standards. C3 indicates the ANI power allocation constraints.
The above optimization problem, having non-linear objective
function with convex constraints, can be readily solved via
known optimization toolbox such as finincon in MATLAB.

2) DEFINITION OF FUNCTION F,

According to the minimum QoS requirement of the mission,
we assume there exists a minimum required secrecy rate R
constraint to be satisfied, or the secure communication under-
goes an outage. To that aim, we formulate this constraint as a
penalty function to penalize the UR for taking those actions
during the learning process that lead to any QoS failure. As a
result, to avoid such circumstances, we define the function
F1 as

1 Reet) > R% and Y4 REN) < R1

J'_'l — sec sec (5 1)

0, o.w.

where Ry is given by (50), R™_ represents the minimum

instantaneous secrecy rate requirement at each user, R
indicates the maximum sum secrecy rate threshold, below
which the selected user’s cumulative secrecy rates up to the
given time step ¢ should be, in order to ensure fairness in

providing service amongst the users.

3) DEFINITION OF FUNCTION F,

Since the UR is required to complete the mission in the
pre-specified final location denoted as a flag in Fig. 1,
we need to have a termination state. However, the UR-
agent may not, depending on the environment, complete the
mission due to getting stuck in some states. To avoid this,
we penalize the UR by the function />, defined precisely by

' ) lau® = a7l )
Ng= | g — qill

It is worth mentioning that penalty function /> is designed
as the multiplication of two terms: I) ( 1 + N,+W is a penalty
corresponding to the number of time steps taken so far, and
in general, we target at a reasonable mission completion
time of the UR (i.e., as fast as it can with fewer steps) to
reduce mission time duration and in some sense mechanical
energy consumption, II) Wf_{;ﬁ” indicates the normalized
distance between the UR’s current location and the desired
final location to motivate the UR to find its way towards the
termination state. We emphasize that penalty function 7, via
multiplication of both terms ensures that the UR does not get
stuck in some specific states, which may have higher secrecy
rates, for an unreasonable period of time, and thus, avoids
mission incompletion.

.7:2=<1+

4) DEFINITION OF FUNCTION F3

Apart from the previous functions contributing the UR’s
reward, we need another function to impose the environ-
mental and mission requirement constraints. To that aim,
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we define F3 as

—Jp, ifqut) € So,

—Jp ifqu) ¢S,

—fp, i qut) =q,(-1)VT € {1,2,--- , 1 =1},
+fr, i qu(t) = Spiag,

0, 0.W.

53

(53)

where f, and f, are the absolute values of some immedi-
ate penalty and reward (both of them will be quantified in
the simulations) subject to the conditions with which the
UR-agent has encountered, respectively. The first penalty
term in (53) ensures that the UR-agent flies at a safety dis-
tance of obstacles to avoid possible collisions, the second
penalty is to motivate the UR not to go beyond the operating
region of interest, the third penalty term is also to further dis-
courage the UR-agent to avoid getting stuck in some specific
states making an infinite loop, and the forth term is a reward
for reaching the termination state and completing the mission.

E. TD-BASED MODEL-FREE RL ALGORITHMS

TD-based techniques refer to a class of model-free rein-
forcement learning algorithms which can learn from raw
experience without knowing a model of the environment’s
dynamic, and also update estimates based in part on other
learned estimates, i.e., learns by bootstrapping from the cur-
rent estimate of the value function without waiting for an
outcome. In this work, we consider SARSA as an On-policy
TD learning algorithm and Q-learning as an Off-policy TD
learning, as well as some generalized versions based on
these two, i.e., Expected SARSA, Double Q-learning, and
SARSA(}), for the UR-agent’s trajectory optimization and
then we compare their performances in the numerical section.
We note that the main difference between these algorithms
lies in the Q-value update rule which are detailed below.

1) SARSA: ON-POLICY TD LEARNING-BASED ALGORITHM
SARSA is an On-policy reinforcement learning TD method
with the Q-value update rule expressed by

(5, a)y=Q% (s, @t [ r+y QU -0 5. @)
(54)

where « and y denote the learning rate and the discount
factor, respectively. Note that (54) demonstrates how learning
is conducted from one state-action pair to another and the
Q-value is updated. This update rule is calculated after every
transition from a non-terminal state. It has been proven that
SARSA converges with unit probability to an optimal policy
provided that all state—action pairs are visited an infinite
number of times and the policy converges in the limit to
the greedy policy [40]. SARSA-based intelligent trajectory
design for the proposed flying FD-operated MIMO-UR sys-
tem is, therefore, given in Algorithm 1.
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Algorithm 1 SARSA-Based Trajectory Design for the
Proposed FD-Operated MIMO-UR Scenario

Algorithm 2 Q-Learning Based Trajectory Design for the
Proposed FD-Operated MIMO-UR Scenario

1: Inputs:
learning parameters («, y),
reward function factors (¢1, {2, £3)
termination parameters (/V, S’;‘”‘ N e’;’]‘”‘

state sets S, Sy, Se, Sp, and action set A
2: Outputs:

my, = argmax,e 4 O(s,a) Vse S
3: Initialize:
e < L0 =054
4: for episode = 1 to Ng,™* do
5: S <= Sinit; sp < 0
6: update ¢ using (48)
7 choose a based on (47)
8 while s # 574, and sp < N do
9 take a, then observe s” and calculate r using (49)

10: select a’ using (47)

11: 0(s, a) < O(s, )+« [r +y0(s', d) — OCs, a)]
12: s<Ss;a<~d;sp<sp+1

13: end while

14: end for

2) Q-LEARNING: OFF-POLICY TD LEARNING-BASED
ALGORITHM

Q-learning is an Off-policy reinforcement TD learning
method with the update rule defined by

Q™ (s, ay=Q3 (s, a)+a[r+y max 0g'(s', )~ QG (s a)] :
(55)

where the learned action-value function directly approxi-
mates Q-value, regardless of what policy being followed by
the UR-agent. Q-learning based UR trajectory design for the
proposed scenario is given in Algorithm 2.

3) EXPECTED SARSA

Since the use of next action a’ introduces additional variance
into the update rule for On-policy SARSA method, it may
slow the convergence. For this reason, a modified version of
SARSA, i.e., Expected SARSA, has been proposed in [40]
and systematically investigated in [48]. Expected SARSA
algorithm, instead of using the next action d’, indeed, employs
an expectation (weighted sum) over all available actions in
state s’ considering the probability of each action under the
current policy, with the update rule as

= 0l @)+ [+ vV — 0 @], (56)
where the state-value function can be defined as

Vy & Zn(a|s’)QZ§d(s/, a) (57)
acA
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1: Inputs:
learning parameters (o, y),
reward function factors (¢, {2, £3)
termination parameters (V, :1”,”, N Z’,“"

state sets S, Sy, Se, Sp, and action set A
2: Outputs:

”(;1 =argmax,c g O(s,a) Vs€ S
3: Initialize:
e < L0 =054
4: for episode = 1 to N;** do
5 S <— Sinit; Sp < 0
6: update ¢ using (48)
7 while s # 554, and sp < Np™ do
8 choose a based on (47),
9 take a, then observe s’ and calculate r using (49)

10: 0(s, a)<=Q(s, a)+alr+y max 0@’ a)—0(s, a)]
ae

11: s« s;sp<«sp+1

12: end while

13: end for

in which 7 (s'|a) is given by

ﬁ, if a is non-greedy
=T e (58)
—— + —, ifais greedy

|Agl 1A

wherein |.Ag| shows the number of greedy actions, and ¢ is
given in (47). This may offer substantial advantages over
SARSA learning by reducing the variance and accordingly
speeding up the convergence of the learning algorithm. On the
other hand, Expected SARSA is quite similar to Q-learning
for the case when the estimation policy is greedy, and there-
fore, it can be viewed as an On-policy version of Q-learning.
We note that Expected SARSA requires more calculations
than SARSA but lacks the high variance due to random
selection of the next action @’. As a result, it moves deter-
ministically towards the same direction that SARSA moves
in expectation, and this leads to relatively better performance
for the Expected SARSA than the normal SARSA with the
same amount of experience as shall be seen in the numerical
section. Expected SARSA based UR trajectory design for the
proposed scenario is given in Algorithm 3.

4) DOUBLE Q-LEARNING

Using max operation in the single-estimator Q-learning
algorithm may result in poor performance due to a large
overestimation issue, particularly in some stochastic environ-
ments. To remedy this issue, Double Q-learning has been
proposed in [49], which employs two Q-functions such that
they both get randomly updated based on the value from the
other Q-function for the next state s’, and this partly relieves
the situation in terms of overestimation issue, however, this
approach may result in underestimation of the maximum
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Algorithm 3 Expected SARSA Based Trajectory Design for
the Proposed FD-Operated MIMO-UR Scenario

Algorithm 4 Double Q-Learning Based Trajectory Design
for the Proposed FD-Operated MIMO-UR Scenario

1: Inputs:
learning parameters («, y),
reward function factors (¢1, {2, £3)
termination parameters (/V, S’;‘”‘ N e’;’]‘”‘

state sets S, Sy, Se, Sp, and action set A
2: Outputs:

my = argmaxgeq Q(s,a) Vs e S
3: Initialize:
£ < 1:0 =054
4: for episode = 1 to N,;;** do
5 S <= Sinit; sp < 0
6: update ¢ using (48)
7 while s # spq; and sp < Ngy™ do
8 choose a based on (47)
9 take a, then observe s” and calculate r using (49)

10: calculate V¢ according to (57)

11: O(s, a)<=Q(s, a)+a[r+y Vy —0(s, a)]
12: s<s;sp<sp+1

13: end while

14: end for

expected value. Double Q-learning is regarded as an unbi-
ased estimate of action-value function since the update of
two Q-functions occurs in the same problem but learning is
accomplished from dissimilar experience sample sets. Here,
we proposed a Double Q-learning based RL algorithm for
UR-agent’s trajectory optimization in Algorithm 4, wherein
for action selection, the sum of both the state-value func-
tions for each action is considered to capture the effects of
both Q-functions. Although this requires higher computa-
tional storage, and hence, Double Q-learning is generally less
data-efficient than normal Q-learning, it significantly speeds
up the convergence, as we will see later on in the numerical
section.

5) SARSA(L)

So far, all the abovementioned TD learning algorithms,
i.e., Q-learning, SARSA, Expected SARSA, and Double
Q-learning, only consider one step at most for updating the
Q-table values corresponding to the operation state. However,
before getting a given state, every step taken resulting to that
might be important to consider with different level of degrees.
SARSA()) algorithm [40] is a generalized multi-step version
of SARSA which not only updates the Q-value of the latest
step, but also, efficiently rewards all the related steps using
the so-called eligibility trace. Eligibility trace is indeed a
matrix such as E|s|x|.4), which is initialized with zeros prior
to each episode, and saves each step in the path experience
whose state-action value gets incremented by one. However,
after each step all the elements of the eligibility trace will
be decayed proportionally to the the bootstrapping factor A.
This ensures that all the action values from the beginning of
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1: Inputs:
learning parameters (o, y),
reward function factors (¢, {2, £3)
termination parameters (V, :I”,“x, N Z’,“"

state sets S, Sy, Se, Sp, and action set A
2: Outputs:

na’;q =argmax,c g O(s,a) Vs€ S
3: Initialize:
e < 1; 01 = 015145 Q2 = 0i5)% |4
4: for episode = 1 to N;** do
5 S <— Sinit; Sp < 0
6: update ¢ using (48)
7 while s # 55, and sp < Np™ do
8 calculate Q < Q1 + Q>
9 choose a using (47) based on 7 derived from Q

10: take a, then observe s’ and calculate r using (49)
11: if rand(-) > 0.5 then
12: let a* = argmax Q1(s’, a)
acA
13: Q1(s, a)<=Q1(s, aftalr+y 0a(s', a* )01 (s, a)]
14: else
15: let b* = argmax Qx(s', a)
acA
16: 0a(s, a)<=Qa(s, artalr+y Q1(s', b*)-0a(s, a)]
17: end if
18: s« s;sp<sp+1
19: end while
20: end for

the episode up to the last step taken are updated with dif-
ferent degrees following the recency fading. The SARSA(X)
based trajectory design for the proposed UR-based relaying
scenario is given in Algorithm 5. We will see how well
this algorithm might perform compared to the others in the
numerical section.

F. COMPLEXITY DISCUSSIONS

In this paper, we use the grid-world for the exploration of
the UR to find its optimal trajectory. Therefore, the state
space topology has linear upper action bound, i.e., the number
of possible actions in each state capped with |A] = 8 at
most. Further, we have finite set of states with cardinality
of |S| = NiN,, £ N.In Algorithms 1 and 2, the UR-agent
learns by visiting all the states, updating the corresponding
Q-values during each episode® Assuming that all the actions
are known to the UR, and the state space is fully observable
in that the UR is capable of determining it’s current state,
therefore, the learning agent can reach the goal state and ter-
minate after at most O(|S| )" _s [A(s)|) steps. Further, since
the considered grid-world has the special property of 1-step

21n this work, we define an episode as all the states that come in between
the initial state and when the UR-agent reaches the termination state, or the
number of steps taken goes beyond the maximum time limit Ng‘,‘”‘ during
the course of the agent-environment learning process.
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Algorithm 5 SARSA(A) Based Trajectory Design for the
Proposed FD-Operated MIMO-UR Scenario
1: Inputs:
learning parameters («, y),
reward function factors (¢1, {2, £3)
termination parameters (/V, S’;‘”‘ N e’;’]‘”‘

state sets S, Sy, Se, Sp, and action set A
: Outputs:

my =argmax,eq Q(s,a) Vse S

N

: Initialize:

¢ < 1,0 =05x4
4: for ep = 1 to N;;** do
5: reset the eligibility trace £ = 0154
6: s < Sinit; sp < 0
7
8
9

(98]

update ¢ using (48)
while s # 574, and sp < N do
choose a based on (47)

10: take a, then observe s’ and calculate r using (49)
11: 8§ «—r+y0(@s,d)— 0, a)

12: E(s,a) < E(s,a)+ 1

13: for Vs € S,Va € Ado

14: 0(s,a) < O(s,a) + adE(s, a)

15: E(s,a) < yME(s, a)

16: end for

17: s<«sia<d;sp<sp+1

18: end while

19: end for

invertible due to having no duplicate actions [40], the worst-
case complexity for both the proposed algorithms becomes
O(8N?). This implies that the worst-case complexity of pro-
posed learning-based algorithms, though perform undirected
exploration, are in polynomial order with respect to the num-
ber of states N. The only major difference between the two
basic algorithms is that the On-policy SARSA learns action
values relative to the policy it follows and hence may impose
high sample complexity, while Off-policy Q-learning does it
relative to the greedy policy in each state visiting, and hence,
might be comparably slower. Further, the generalized version
of the above algorithms which have been mainly proposed
in the literature to speed up the convergence at the cost of
higher complexity such as Expected SARSA or SARSA(L),
or higher storage resources but with the same computational
complexity for Double Q-learning.

V. NUMERICAL RESULTS

In this section, we demonstrate the performance of the pro-
posed algorithms to find the optimal trajectory for the consid-
ered MIMO-beamforming based secure UAV-assisted flying
relay system. Simulation settings, mainly adopted from the
literature, all are given in Table 2, unless otherwise stated. It is
worth noting that we use both Python 3.7 and Matlab R2020a
to implement the algorithms and conduct the simulations.
Further, all the learning experiments have been conducted
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TABLE 2. Simulation parameters.

Notation Simulation value

(L, M) (10,5)

description

number of users and AEs

(Ruw,Ri) (100m, 200m) size of rectangular operation region
' 80m UR’s operating altitude
[z1,y1, HJJT UR’s start location
[Ny, YNy, Hul” UR’s final location
[z1,91,0]7 location of the BS
(10mW, 5mW) BS and UR’s maximum transmit powers
1mW AEs’ jamming power
(107°,1077) residual interference factors
(2,5) LoS and non-LoS path-loss exponents
(1,1) constant spacing, in wavelength
(32,4) number of transmitting antennas
—40dBm background noise power
(10,16) grid-world dimensions (number of states)

(11.95,0.14, 3.1623, 0.0256)
(2 bps/Hz, 20 bps/Hz)

environmental parameters
secrecy QoS requirement

(R, 2R ) absolute values of penalty and reward in F3
0.05 learning rate (step size)
0.95 discounting factor
(1,0.1,1) reward parameters
(0.9, 50) e-greedy constants
(NG®, NG*) (3000, 60) algorithms’ termination parameters

2

—@— Proposed, Hu =50m

— O- Benchmark 1, H, = 50m
16F |=©O== Benchmark 2, Hu =50m
e Proposed, Hu =100m
141 — A- Benchmark 1, H = 100m
12| |=d#=-Benchmark 2, H = 100m
x| =++ %= Benchmark 3

0.8

Instantaneous System Secrecy Rate [bps/Hz]

U e el SLLIITITI
0.4, N 77
\Q 4 /’/
0.2 ~ E
\1\~\\ - /_/
c——
0 "~o ‘
0 5 10 15 20

Mission time [s]

FIGURE 4. Simple illustration of the achievable secrecy rate performance
of the proposed FD-operated UR-based scenario and impacts of resource
allocation.

using Python 3.7 on i5-8265U CPU @ 1.6 GHz with 16 GB
of RAM system.

First, we supply Fig. 4 to demonstrate how the proposed
FD-operated MIMO-UR with ANI scenario, denoted as Pro-
posed, performs in terms of the ISSR and the impact of
resource allocation according to (50). In this figure, the ISSR
performance of the ANI-based UR system with fixed resource
allocation, i.e., Ps(t) = PI¥, P,(t) = Pl a4t) =
0.5, ay(t) = 0.5 Vt, is represented by Benchmark 1. Fur-
ther, Benchmark 2 illustrates the ISSR performance of the
UR system without ANI operation (equivalent to a(f) =
1,a,(t) = 1 Vr) and with fixed transmit powers Py(t) =
PP, Py(t) = P’ Vt. The ISSR performance of the direct
transmission protocol from the BS with ANI beamform-
ing to destination and optimized communication resources,
represented by Benchmark 3, also taken into account for
comparison. Note that the curves in Fig. 4 are plotted for
different altitudes of UAV to demonstrate the effect of this key
system parameter. In Fig. 4, we consider a simple scenario
with fixed-line trajectory of the UAV, wherein there are one
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FIGURE 5. Considered environment for the learning purpose of the

UR-agent.
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FIGURE 6. Expected discounted return of rewards vs. Episode.
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FIGURE 7. Total steps vs. Episode.
BS located at g, = [0, 017, one user at g; = [g,0]”, and
one AE at g, = [32, 017 with ¢ = 100m. Plus, the UAV flies

with constant speed at a fixed altitude H,, from just above the
BS towards just above the user. Therefore, at mission time
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FIGURE 9. Average system secrecy rate of SARSA(1) against different 1
values. Reward factors are set as (¢1, £, £3) =(1,0.1,1).

t = 0Os, the UR is located at the same x-y coordinate of the BS
but with altitude H,,, and at r = 20s, the UR reaches its final
location assumed to have a similar projected x-y coordinate
of the user’s one. It is crystal clear from the curves that our
proposed scheme well outperforms the other benchmarks.
Further, we see that for the lower altitude of the UR, i.e., H, =
50m, there is an optimal location for the UR to offer the best
ISSR for all these UR-based scenarios, and this location is
roughly closer to the destination user than the BS. Further,
this figure also illustrates that when the low-altitude UR is
too far from the destination user, Benchmarks 1 and 2 bring
comparably deteriorated ISSR performance than the tradi-
tional direct transmission in Benchmark 3 without exploiting
a UR. The justification behind this can be explained as for the
lower altitude of UR and without proper resource allocation,
the secrecy capacity of the relaying link may be dramatically
impacted due to overall larger attenuation. However, for the
reasonably higher UR’s altitude, i.e., H, = 100m, the advan-
tages of having likely LoS channel due to higher alti-
tude plays a significant role so much so that it may result in a
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FIGURE 10. Model-free Reinforcement learning based path-planning for the proposed FD-operated UR-based scenario obtained via optimal policy of
different On-policy and Off-policy TD algorithms such as Q-learning, SARSA, Expected SARSA, Double Q-learning, and SARSA(}) with » = 0.1, 0.5.

higher ISSR performance than the properly resource allo-
cated scheme at the lower altitude. We also observe that for
the higher altitude of H, = 100m, the ISSR performance
of all the UR-assisted scenarios gets improved as the UR
gets closer to the destination user, so the better channel
condition due to UR’s placement has a stronger effect than
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the proper communication resource allocation. However, it is
worth mentioning that there is an inherent trade-off between
the LoS channel and the larger path loss attenuation due to
the higher altitude of the UR, and this should be taken into
account for system design. Note that in this work we consider
afixed altitude of the UR for the remaining simulations, albeit
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this can be readily extended to a general case in our future
work.

Now, we turn our attention to employ the model-free
RL-based algorithms mentioned in the previous section to
design the UR’s path planning in order to maximize the
ASSR performance. The considered environment is shown
in Fig. 5, wherein obstacles such as tall trees and build-
ings denote the prohibited flying regions, and also the
randomly located users (visualized by either boy or girl
icons) and AEs are considered quasi-stationary such that
their possible movements do not result in a change in
their occupied states during the UR’s flight duration. Hav-
ing implemented the proposed TD-based RL algorithms
detailed in the previous section, we obtain the following
results.

Figs. 6 and 7 are provided to demonstrate the accumu-
lated discounted rewards (return) and mission duration (total
steps) performance of all the considered RL-based algo-
rithms, i.e., Q-learning, SARSA, Expected SARSA, Double
Q-learning, and SARSA(X) with e-greedy action selection
strategy, and in regards to the episode number. As can be
observed from Fig. 6, initially the return fluctuates dramat-
ically as the UR explores the environment with a higher
probability and takes actions randomly. This results in mainly
getting negative rewards due to, for example, collisions with
obstacles, revisiting already visited states in a given episode,
or flying outside the limited region. Nevertheless, after suffi-
cient time when the UR-agent is trained well via the received
feedback from the environment, which further leads to having
a decent knowledge of the topology of the environment,
it tends to utilize from its experience, and consequently,
the fluctuation in the accumulated discounted reward function
gets negligible, indicating that the Q-function updating is
settled. This also implies that the maximum achievable ASSR
is attained. Further, we observe from Fig. 7 that the number
of steps that corresponds to the mission time is decreased
as the learning agent interacts with the environment in each
episode. Further, it is evident that the UR intends to complete
the mission as fast as possible, while accomplishing the
required objective. Indeed, there is a trade-off between the
mission time and the achievable ASSR of the system. The
more the mission time, the higher the sum system secrecy
rate could be due to better positioning and data relaying which
improves the objective function of the ASSR, but the larger
the denominator of the objective function, which of course,
degrades the ASSR. Therefore, the UR intends to complete
the mission as fast as it can, while being smart. That’s why
the path plannings obtained via the algorithms generally look
like the way that the UR is instructed to find the best, but
not necessarily the shortest, path from the initial location to
the final pre-specified location. While (Expected) SARSA
could achieve the least total steps of 16 according to Fig. 7,
Q-learning has performed the worst with regards to total steps
taken and obtained the highest mission duration of 23 time
steps, according to their final routes derived from the optimal
policies.
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FIGURE 12. Processing time for different model-free TD-based RL
algorithms considered for ASSR optimization. Reward factors are set as
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Fig. 8 is plotted to demonstrate the convergence of the
proposed RL-based algorithms in terms of the ASSR. Note
that in the figure, the ASSR values are smoothed via a
Savitzky—Golay filter [50] to better illustrate the overall
trends. It is evident that all the algorithms get converged
and demonstrate quite identical increasing trend to that of
discounted cumulative reward given in Fig. 6. We also note
that SARSA(L = 0.1) achieves the highest value, i.e.,
2.73 bps/Hz, amongst all the algorithms with the equal num-
ber of training episodes. The convergence speed of Double
Q-learning is comparatively faster than the others, particu-
larly, normal Q-learning, despite the fact that they achieve
quite identical optimal ASSR values. We also observe that
higher values of A degrades the performance of the algo-
rithm in the considered environment. Due to the latter result,
we also empirically investigate the effect of A factor in the
performance of SARSA(A) algorithm in Fig. 9 and observe
that A = 0.1 brings the best ASSR, so it can be considered
the best choice of bootstrapping factor in SARSA()X) based
algorithm for the given environment.

Fig. 10 depicts the trajectories learned by the UR-agent
using the proposed TD-based algorithms. Note that final
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routes are derived from the optimal policy of all the afore-
mentioned algorithms. We note that all the algorithms find
slightly different trajectories compared to each other and
this difference is on the grounds that they employ different
updating approaches, and owing to the fact that SARSA based
algorithms are more conservative than Q-learning ones when
it comes to the actions explored.

Fig. 11 depicts the average user secrecy rate against user
index for different proposed RL-based algorithms. We see
that all the proposed algorithms satisfy the minimum and sum
secrecy rate requirements of the system. Despite that some
users are not scheduled according to Fig. 11, the considered
secrecy rate requirements of the scheduled users are well
satisfied, indicating the effectiveness of the proposed trajec-
tory design and resource allocations algorithms. Fig. 12 is
supplied to show the processing time taken for the algorithms
to complete using our system. As can be observed from the
figure, all one-step algorithms, particularly, SARSA perform
better than the multi-step ones in terms of the lowest process
time. The impacts of reward function parameter ¢ is explored
in Fig. 13. we note, intuitively, that the proper choice of ¢
results in a balance between system sum secrecy rate and the
total mission completion time, which further leads to the best
ASSR performance. Further investigation regarding tuning
the learning parameters and reward factors is required, which
we leave as interesting future work.

VI. CONCLUSION

In this paper, we considered an FD-operated UR-assisted
secure communication system to serve multiple ground
users in the presence of randomly located AEs. We pro-
posed a secure relaying scheme, wherein both the BS and
UR adopt MIMO-enabled ANI-based beamforming to com-
bat AEs. Our problem of interest was to maximize the
ASSR of the considered scenario. To achieve this objec-
tive, we invoked some model-free TD-based RL algorithms,
i.e., Q-learning, SARSA, Expected SARSA, Double
Q-learning, and SARSA(A) for trajectory optimization.
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The proposed algorithms were subject to some QoS require-
ments in terms of minimum instantaneous secrecy rate, user’s
maximum sum secrecy rate, and also without the need for
system identification. Simulation results revealed that all of
the proposed algorithms were capable of finding an optimal
trajectory of the UR while improving the ASSR, avoiding
collision with environmental obstacles, and completing the
mission as fast as possible. As a future research direction, one
can extend this work to investigate more practical scenarios
when the state and action spaces are continuous and/or have
very large dimensions suffering from the curse of dimen-
sionality issue. Then, the promising DRL techniques such as
DQN may be explored to perform the functional optimization
to efficiently tackle the computationally intensive learning
process of tabular methods investigated in this work.
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