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ABSTRACT Big Data applications have demanding expectations on computational resources front. Thus,
general purpose operating systems are not a good fit. In this paper, we present a new special purpose
distributed micro-kernel designed with big data applications’ needs in mind. The new micro-kernel adopts
a core-based Asymmetric Multiprocessing (AMP) approach. It optimizes interrupt management and I/O to
suit the Map-Reduce model. The proposed micro-kernel design is based on Inter-processor Interrupts over
Ethernet (IPIoE) frames and a BareMetal Operating System Markup Language (BOSML). A transparent
deployment mechanism is presented to completely shield the developer of the micro-kernel service from
the underlying distribution infrastructure and decouple the application implementation from its deployment
perspective. Based on the initial prototype and the experiments presented, a considerable gain in performance
of average 2.34 folds was achieved using the distributed TeraSort benchmark over Linux/Hadoop.

INDEX TERMS Asymmetric multiprocessing, big data, distributed micro-kernels, core-based,
general-purpose operating systems, inter-processor interrupts, inter-processor interrupts over Ethernet,
network protocols, markup languages, IPIOE, BOSML, micro-kernel, operating systems, tickless.

I. INTRODUCTION
Given the exponential growth of data, big data process-
ing is increasingly becoming one of the most challenging
problems in the computing domain [1]. General-purpose
operating systems are not designed to cater for big data
fundamental processing, data distribution and communica-
tion needs, namely scalability and performance [2]. They
cannot accurately identify the workload profile of running
processes through heuristics. Interrupting long batch pro-
cesses unnecessarily introduces an overhead that significantly
affects performance. Moreover, distributed processing over
general-purpose operating systems entails a lot of network
overhead due to the deep library stack upon which network
protocols are implemented for standardization. In addition,
the widely adopted SMP approach is not the best solution
for less-interactive workload profiles, such as Big Data. This
is due to the address space switching and poor cache man-
agement resulting from inaccurate affinity predictions and
unnecessary interrupts.

Highly scalable Big Data processing frameworks like
Map-Reduce depend on the concept of ‘‘move-code-to-data’’;
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so, data is initially distributed and processed by different
cores based on locality and affinity [3]. Operating systems
used in such environments are Linux, FreeBSD as well as
other UNIX- based systems. Mainly designed with interac-
tivity in mind, these systems do not provide the required
resource allocation needs for Big Data processing [4].

When multi-core hardware became pervasive, moving to
SymmetricMultiprocessing (SMP)was the fastest and easiest
way to be able to support multi- core environments. Such
approach allowed utilizing existing kernel designs with the
least amendments possible. The SMPmodel is indeed of great
benefit in the general use case but causes further performance
degradation in the big data processing domain.

In this paper, we propose a distributed core-based asym-
metric multiprocessing micro-kernel designed specifically
for big data processing. The micro-kernel was essentially
designed to be deployed on a cluster of commodity hardware.
Different cores communicate through message passing and
service invocation techniques. Local cores exchange mes-
sages using Inter-Processor Interrupts (IPI), which is a special
type of interrupt used in multi-core environments allowing
cores to signal each other. Unlike local cores which utilize
shared memory to exchange messages, remote cores utilize
a special network protocol, IPI over Ethernet (IPIoE). IPIoE
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allows cores to exchange remote messages over net- work in
a transparent way. It was essential to have an extensible repre-
sentation framework in place for different kernel images, run-
ning on different cores, to exchange messages. A BareMetal
Operating System Markup Language (BOSML), was intro-
duced as an extensible framework backbone for ex- changing
messages. The proposed micro-kernel is a special- purpose
one designed to extend theMapReduce [5] model for big data
processing.

In section 2 we present the proposed solution design goals
and decisions. Section 3 presents our proposed kernel archi-
tecture, different components, and detailed design. Previously
conducted experiments and results are presented in section
4 followed by analysis and discussion in section 5. Finally,
we conclude and present future work in section 6.

II. DESIGN GOALS AND DECISIONS
Our design goals and decisions target big data applica-
tions that adopt an execution profile with dependency on
the distribution of data and avoiding moving huge amounts
of data across the network. Essentially, we are targeting a
MapReduce-like application profile that depends on the con-
cept of ‘‘move- code to-data’’. The data is distributed and
accessible by different cores and each core processes the data
subject to its locality and affinity. [3]

A. DESIGN GOALS
• Design Goal 1: Reducing overheads but not at the
expense of extendibility. Our design should set reducing
overheads as a general objective. However, this should
not translate to a monolithic design of the kernel. Mono-
lithic designs do not emphasize extendibility, and the
overhead of message passing is negligible compared to
big data processing. Instead, a micro-kernel approach is
adopted.

• Design Goal 2: Minimizing interrupts on data process-
ing tasks or eliminating them when possible. Since our
micro-kernel targets optimizing big data processing, it is
designed to minimize interrupts on tasks performing
long processing of big data. Eliminating all interrupts
might not be feasible to allow synchronization between
tasks. However, as a general design goal, unnecessary
interrupts should be eliminated. This will reduce mem-
ory overhead through adopting a single address space
approach per core which will also enhance the cache and
the TLB effect. In a time-sharing operating system, pre-
emptive scheduling allows user programs to share com-
puter resources with minimized response-time. On the
contrary, batch processing jobs would greatly benefit by
being assigned to uninterruptible CPUs unless deemed
necessary [6]. The timer introduces multiple challenges
for long batch processing. While the process is run-
ning an interrupt is fired periodically hence delaying
the CPU and introducing overheads. The overheads can
be categorized into two; power and performance. The
power overhead is represented by the dynamic power

waste entailed by the use of the ‘‘always switching’’
device to implement the periodic timer for the scheduler.
The power overhead is considered a major concern in
hardware [7]. Performance overhead is introduced due
to the frequent unnecessary interrupts of long running
batch processes. When a process is interrupted a switch
in the address space occurs causing the Table Lookaside
Buffer cache (TLB) to flush which significantly slows
down the processing. Such symptoms are referred to as
system noise which can cause up to two-thirds of the
slowdown of an application [8]. It has also been proven
that system noise is a major hurdle when it comes to
scalability [9]. The overhead incurred directly from the
timer is relatively small, however, the indirect overhead
is significantly large. An equation to quantify such noise
was introduced by Tsafrir et al. in [8] and called it
the ‘‘noise law’’. It was concluded that despite limiting
the ticks by the timer improving the situation it does
not help significantly especially in large clusters. It is
established that the optimal solution is eliminating the
ticks altogether.

• Design Goal 3: A CPU Core is the fundamental build-
ing block of the system. Overcoming the bottlenecks
of symmetric multiprocessing’s schedulers, our system
should be designed with the core being the building
block of the system. An asymmetrical multiprocessing
model allows the kernel to carry out different dedicated
tasks on specific cores. There are two types of ker-
nel architectures targeting multiprocessing: Symmetric
Multiprocessing (SMP) and Asymmetric Multiprocess-
ing (AMP). In the SMP architecture, all cores running
the same kernel image, are treated equally, and can be
used for scheduling any of the ready processes. On the
other hand, in the AMP architecture, each core gets
a predefined task and may even get a different kernel
image. The difference between SMP and AMP stems
from either differences in the hardware core or the soft-
ware image that the core is running [10].

• Design Goal 4: A single system image of a distributed
system. Dealing with separate cores in a distributed
environment can be challenging for the user. It also
requires the target big data application to be heavily
tailored to make use of the distribution. This problem
exposes the need to have resource location transparency
and resource access transparency mechanisms within
the system. The application business logic should not
be aware of the distribution of the workload across
remote nodes. Distributed operating systems are respon-
sible for making distributed resources appear as if they
are local to the users and their applications [11]. This
gives the system the property of having a Single System
Image (SSI) as it hides the distributed nature of the
available resources and achieves high levels of trans-
parency [12].

• Design Goal 5: Ability to extend horizontally by
adding more nodes with minimum effort. The distributed
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micro-kernel should run on many nodes that host several
resources, especially the cores. Since themicro- kernel is
targeting big data that could require additional resources,
the design should provide seamless mechanisms to scale
through adding more nodes and discover their resources
transparently and efficiently.

• Design Goal 6: Ability to assign a specific task to a
specific core transparently, whether remote or local.
Since the core is the building block of the system,
each core should be addressable and be assigned a spe-
cific task to carry out. This core could reside locally
to the application or could be remote. The system
should be able to provide the semantics of location
transparency.

• Design Goal 7:A programmingmodel should be in place
to add services to the kernel without the need to under-
stand the underlying architecture by the micro-kernel
service developer. A micro-kernel by nature provides a
set of services that are required for resourcemanagement
through sending messages. Most services must run in
user mode. Also, services should be easily added to the
micro-kernel. Since some functionality of the service
might require privileged access to kernel resources and
data structures, the functions within the service must be
divided into privileged functions and user-mode func-
tions. Since transparency is emphasized as a design
goal, there exists another consequent goal to have a
programming model that allows embedding a service
into the kernel transparently. The target should always be
to avoid switching to kernel mode except when needed.
The service developer should have minimum insight
about the underlying micro-kernel architecture.

B. DESIGN DECISIONS
In order to achieve the previously mentioned design goals,
firm primary design decisions need to be taken at an early
stage; other secondary decisions are still under investigation.
• Design Decision 1: Each core within a node has its
own kernel image and its own address space. This is a
design approach that could enable us to achieve design
goals 2 and 3. Looking closely at one node, each core
within that node has some assigned functionality that
it should perform. For example, the bootstrap’s kernel
image might build up the memory virtual page table
for itself and the remaining of the cores before even
starting them up. This also addresses the point of reduc-
ing overheads in the sense that a core’s kernel image
might be responsible for handling a certain event while
another core is processing a task. Thus, an overhead
of the unnecessary disruption on the processing task
is eliminated. Moreover, single address space per core
will eliminate the overheads entailed during interrupt
handling.

• Design Decision 2: Within a node, cores are assigned
roles. Cores are divided into 3 groups: ‘‘Worker’’ cores,
‘‘Management’’ cores, and I/O cores. A role of a

‘‘Worker’’ entitles the core to process big data intensive
tasks. A ‘‘Management’’ role entitles the core to manage
the resources of the node, such as scheduling and virtual
memory. A role of ‘‘I/O’’ entitles the core to manage I/O
devices such as mass storage and network.

• Design Decision 3: Disable timer interrupts on worker
cores, except when needed and route the timer interrupts
to the management core. At least one core per node
needs to have the timer enabled. In support of design
goals 1 and 2, our design aims to emphasize reducing
the interruptions throughout the system, especially on
the worker cores. One major source of interruptions
is the periodic timer interrupt which is routed to all
cores in general-purpose operating systems. Such timer
interrupts are important for scheduling but for the case
of worker cores they pose a source of unnecessary inter-
ruptions. Therefore, the timer interrupts will be disabled
on the worker cores and will only be routed to some of
the management cores by enabling the timer, through
configuring their local APIC timer.

• Design Decision 4: Implement the functionality of the
Network Management role, Disk I/O Management role,
Memory Management role, and Worker role as the bare
basic functionality needed for the micro-kernel to be
able to perform and be of use. As we decided to adopt
a micro-kernel architecture, there are some roles that
must be implemented to support the basic functionality
of the micro-kernel. The worker role functionality must
be implemented. Another functionality is managing the
network component of the system which is crucial to
achieve a distributed environment. Moreover, Disk I/O
is essential to be able to read the big data files subject to
processing from disk.

• Design Decision 5: Cores synchronize and commu-
nicate using Inter-processor Interrupts (IPIs) with
location transparency. Remote communication and
synchronization are done using a special IPI over
Ethernet protocol (IPIoE). In order to support syn-
chronization and communication between the cores,
the micro-kernel must implement mechanisms to uti-
lize Inter-processor Interrupts (IPIs). IPIs could happen
either locally or remotely; a core should be able to send
an IPI to another core on a remote node. For the case
of local IPIs, the core will save any exchanged data in
a shared memory region and send an interrupt to the
designated core signaling the core to perform a task.
This should be the main infrastructure for micro-kernel
service invocation across cores. Knowing that the core is
the building block of the system and that IPI could hap-
pen across remote nodes, the remote IPI signal should
include the service invocation parameters. This provokes
the need to have a new protocol that transmits the data
packets as an extensible message as well as the signal.
The protocol is referred to as IPI over Ethernet (IPIoE).
The remote IPI should be transparent to the issuing core
and the receiving core.
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FIGURE 1. Overall NileOS view.

• Design Decision 6: The Virtual Page Table’s level 4
(PTEs) is shared between all cores. Knowing that a
single node might have many cores, having a com-
pletely separate virtual table per process needs a gigantic
amount of memory to store. However, design decision
3 gave us room for optimization. Each worker core is
bound to have a single process without tick interrupts,
thus no context switching happens and no swapping of
virtual tables takes place. This allows us to have a single
virtual table per core. Yet, the memory problem associ-
atedwith having a huge number of cores on a single node
is still not solved. Thus, we utilize a virtual table design
similar to that of an inverted page table for the purpose
of saving memory [13]. This is achieved by allocating
(at startup) page frames necessary for page table level
4 based on the available physical memory size.

III. PROPOSED SOLUTION: NileOS
Having discussed the problem at stake in addition to some
of the partial solutions to some aspects of the problem, and
the design goals and decisions needed, we would like to
present our proposed solution. A new micro-kernel is pro-
posed to target long batch processing big data applications
specifically and still provide other means of interactivity
on demand. It will trade off the generality that bottleneck
heavy batch processing have in favor of optimizing the
processing of big data. Our solution will be implemented
on general-purpose hardware present in most computers;
Intel-based x86_64 architecture. In this section, we will start
by presenting a high-level overview of the overall architec-
ture of the proposed micro-kernel and its different compo-
nents. A detailed explanation of each component will be
presented as well as its interaction with other components in
the architecture.

A. SYSTEM OVERVIEW
Our system is a distributed system that consists of multiple
nodes. Each node is built up of general purpose x86_64 hard-
ware architecture. Nodes are assumed to be connected

via a high-speed network. From a single core perspective,
the remote resources are made available through location
transparency, and thus, remote resources are perceived as
local. Applications are not meant to be aware of the underly-
ing hardware distribution and instead use the system as a sin-
gle unified computing power. Cores can invoke micro-kernel
service methods transparently by name utilizing location
transparency that is inherently supported by our proposed
design.

For the system to function, each core provides a set of
services which defines its role. By having roles through
dedicated services, an asymmetric multiprocessing model
is achieved. The exact roles, services, and resources to be
utilized by a node are determined by a configuration file.
Currently, our system has 4 different core roles that can be
extended in the future: management, network, disk and appli-
cation. The management cores handle all the systemmanage-
ment non-processing functionality, such as scheduling and
housekeeping tasks. Network cores handle all the network
operations such as sending and receiving packets. Disk cores
handle all I/O operations to and from the disk. The application
cores are meant to handle the big data processing tasks. The
micro-kernel tries to reduce the overhead on such application
cores by minimizing interrupts. For example, the recurring
timer interrupt is disabled on the application core.

Figure 1 demonstrates the overall architecture of the pro-
posed system. Each node has multiple cores. Cores within
each node communicate over local IPIs. Cores of different
nodes communicate over IPIoE through each node’s network
core. A gossip protocol is in place utilizing the IPIoE control
protocol to disseminate information across the whole core
body of the environment. IPIoE broadcast is avoided and
only used in special cases when needed. Communication
among all cores is realized via extensible messages. Local
cores can exchange extensible messages using local IPIs and
Bare Metal Operating System Markup Language (BOSML)
over shared memory. Each node is responsible for managing
its own resources, but it needs to be aware of the avail-
able resources in the whole system through some directory
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of services. For remote communication, such as invoking a
remote functionality, BOSML messages are encapsulated in
IPIoE packets. Our system allows more services to be added
to the cores easily using a transparent service deployment
mechanism such that service developers do not need to know
about the underlying architecture of the micro-kernel.

B. THE MICRO-KERNEL BACKBONE
The architecture of our distributed operating system was
designed with extensibility in mind. Kernel developers can
write their own services that could easily be plugged into
the micro-kernel with minimal effort. Location transparency
of any running service in any given node at any time is
a priority. To achieve this goal, as described in Figure 2,
we decided to implement the core of our kernel, which shall
be referred to as Service Transport Layer (STL), to act as
the backbone of the micro-kernel to register new services as
well as propagate incoming requests to registered services.
Each node should have an STL. The STL is responsible for
dispatching a specific function from within a service when
needed. Both the service and the function are invoked by
name. The STL is divided into 2 main sub layers. The lower
layer runs in the kernel space and is able to execute privileged
functions, while the upper layer runs in the user space and acts
as a dispatcher for user mode service invocations.

FIGURE 2. NileOS Kernel Architecture.

To further elaborate, the STL is divided into two main
parts, as described in Figure 3. The first part is the kernel
STL or STL_K which is responsible for dispatching methods
related to services that need to be run in the kernel mode.
On the other hand, we have the STL_U which also allows
services that don’t need kernel privileges and user applica-
tions to communicate together. The STL is designed as an
interface that has the capability of dispatching service meth-
ods on behalf of a service invocation from a user application.
For example, if Service X needs to dispatch method y that

belongs to Service Y where both are running in kernel mode,
then X dispatches the method through the STL_K which
takes both themethod and the service identifiers as arguments
and calls the corresponding function. After the successful
execution of this method, the result is then returned to the
calling service through the STL_K. Another example would
be if a user application requires extra memory from the heap
manager which would be a service plugged into the STL_U,
the request is delivered to the heap manager through the
STL_U after which the heap manager decides if it needs
kernel privileges or not. If the service decides that there is no
need for such privileges, then the result is returned to the user
application. However, if there is a need to use these privileges,
to map physical frames into the page table for instance, there
should be a mirrored service that has the capability to do just
that. Accordingly, we decided to offer the kernel developers
the opportunity to create both versions of the service; one that
works in user mode and another that works in kernel mode.

FIGURE 3. Service transport layer communication.

STL runs on each core and therefore allows services run-
ning on different cores to communicate easily through IPIs
which offer location transparency mentioned earlier. Also,
in the case of communication between services running on
different nodes, STL has the ability to identify the location
of the remote services then send an IPIoE. The IPIoE packet
contains an extensible message that could help identify the
origin of the packet and information about which method
needs to run together with the passed parameters. Moreover,
new user services can be added to the micro-kernel and regis-
tered with the STL using an extensible service deployment
mechanism. The proposed micro-kernel comes with a set
of required services that are needed for the micro-kernel to
be able to function and be of use. Such services are regis-
tered with the service transport layer. Extra services can be
added by developers upon the need. The default essential
services are:
• PhysicalMemory Service: The physical memory service
is deployed on a memory management core. It abstracts
any interactions related to the physical memory. Dif-
ferent cores might request from the physical memory
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FIGURE 4. Virtual memory diagram.

service to allocate or deallocate physical frames. The
service allows other services to get more information
about the physical memory in a given node including all
of the memory regions present as well as the total usable
memory. Moreover, the physical memory service moni-
tors the usage of memory which allows other services to
easily request or release memory frames.

• V irtual Memory Service: The virtual memory service
is responsible for building the virtual page table for
each core. Figure 4 illustrates the x86_64 PML4 page
table architecture created by the service for each core
and highlights the overlapping shared level-4 page
tables [13]. This service first creates Level-4 virtual
page tables according to the usable physical memory
available in a given node provided by the physical mem-
ory service. These tables are statically allocated at the
initialization time of the kernel to save up future time
and space. It is faster to have the tables created in
advance without any need to allocate them during run
time. On the other hand, statically allocating space for
each of the virtual tables belonging to each core in a
given node would require a huge amount of memory.
Therefore, we decided to have a pool of level-4 virtual
memory tables that would be shared among all cores.
Since each of these tables can map the same amount of
physical memory it was apparent that we wouldn’t need
more tables than that. Therefore, the virtual memory
service is responsible for creating the first 3 levels of the
virtual memory page table for each core, linking them
together, and just leaving the last level unmapped.
A target core can issue a request to map a memory
frame and consequently the virtual memory service will
perform a page walk to identify the level-3 entry corre-
sponding to the requested virtual address. If the level-
3 entry is already connected to a level-4 table then

the entry corresponding to the virtual address at level-
4 will be identified and used, else a free table from
the shared level-4 will be selected and connected to the
level-3 entry to be used. A free physical frame will be
requested from the physical memory service and linked
to the level-4 entry corresponding to the target virtual
address.
Our design closely borrows some design aspects from
inverted page tables [13] and the memory needed for
storing the virtual tables is efficiently reduced. Our
design also has the privilege of allowing to map 2MB
pages from level-3 directly and bypassing pre-allocated
level-4 tables at run time. This allows for better physi-
cal memory utilization and less fragmentation based on
the target application running on the core which can
be controlled flexibly through the service parameters.
The design can be extended to map 1GB pages directly
following the same technique with some minor modifi-
cations.

• Network Service: This service is responsible for han-
dling all the network-related tasks. It should be able
to communicate with remote nodes. Network protocols
can be selectively assigned to specific network cores.
For example, inter-Processor Interrupts over Ethernet
(IPIoE).

• Disk I/O Service: One other service that our
micro-kernel should provide is Disk management. This
service will be able to discover the available disks, con-
figure them and be able to read and write to them using
the ATA transfer mode with Direct Memory Access
DMA support.

• Gossip Service: This service is meant to allow a local
node to discover what resources other nodes are export-
ing to the distributed environment. The gossip service
is utilized by the management core, it is responsible
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for sending gossip messages, receiving gossip messages
and forwarding them to the registry service as well as
relaying them to other nodes through gossiping fur-
ther. To eliminate network contention and overhead, not
everything is being broadcasted, rather only important
events that inform registry services about the availability
of resources. The gossip service is used mainly to min-
imize network traffic. A gossip message is sent based
on some predefined criteria. One such criteria could
be when two cores communicate; when a core invokes
a service in another core the gossip service sends a
gossip message updating it with some information about
other cores and services that it knows about. Initially,
each node broadcasts its cores capabilities once upon
start and incremental updates are performed over the
gossip protocol. The gossip service utilizes the IPIoE
protocol, introduced in subsection III-D, and the payload
of the packet that encapsulates the gossip message is an
extensible one encoded using BOSML [14].

C. SERVICE DEPLOYMENT MECHANISM
A micro-kernel by definition provides a minimal set of ser-
vices that are necessary for process and memory manage-
ment. More services need to be added easily. Additionally,
services need to be linked with the service transport layer. For
that reason, the service deployment mechanism illustrated
in Figure 5 has been introduced. Service developers write a
header file alongside a Cfile and place them in a special direc-
tory. Special preprocessor tags are being used to annotate
service methods. Developers annotate methods that require
kernel privilege using the ‘‘STL_K’’ tag and those that should
run in user mode with ‘‘STL_U’’. The service deployment
preprocessor runs before compiling the micro-kernel sources.
It searches for the special tags and creates 2 new C files, one
containing themethods that should run in kernel mode and the
other contains those which should run in user mode. It also
creates routines for registering the services with the service
transport layer. This allows services and methods to be called
by name using a unified API. This can be extended in the
future to be performed at run time through decoupling the
compilation of the services from that of the micro-kernel and
having the objects ready to be loaded at run time.

D. IPIoE PROTOCOL
Considering that what slows down the performance at the
network level is the generalized deep network stack and
application-level file transfer, we have decided to have a
specially designed control protocol. While designing the pro-
tocol we have kept in mind that the building block of our
distributed system is the core and we wanted to push the
distribution semantics to the kernel level. This way we can
reduce the overheads of having the distribution semantics at
the application level and avoid the deep network stack. Hence,
the need to have a protocol to address a specific core not a
node is apparent. This protocol is not meant for large data
transfer. However, it carries extensible messages as a mean

FIGURE 5. Service deployment mechanism.

for message passing between services. The IPIoE protocol is
considered as an extension to local IPI. It gives the benefit of
transmitting IPIs over the network transparently.

The headers of the IPIoE can differ depending on the
operation requested by the packet sender. However, there
are common attributes among all packet types which were
placed at a fixed position for standardization purposes. As per
Figure 6, the common attributes include the version number
which is very important in the future to avoid any sort of
erroneous communication resulting from protocol version
incompatibilities. To support having dynamic headers for the
network packets, the header length is included and depends
solely on the header type. The opcode attribute refers to the
requested operation and currently includes Request, Reply,
Broadcast Locally, and Gossip operations. This field has the
potential to add up to 256 different operations, including the
ones stated above, in upcoming updates for any future usages.
The header also contains the data length to avoid having fixed
size packets and wasting storage resources. To ensure the
reliability of the protocol, Message ID and Checksum fields
were included to avoid having corrupted packets. Finally,
the flags field, which is in the form of a bitmap, currently
includes encryption and encoding flags and can support up to
16 flags in total; a single flag is represented by a bit.

FIGURE 6. General IPIoE header.
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One of the headers supported by the IPIoE protocol is the
request header presented in Figure 7. The request header con-
tains the same information as the general header in addition
to the service and method numbers the requester wishes to
invoke remotely. Moreover, the source and destination core
identifiers are appended to the header since the main com-
municating entities targeted by this protocol are the cores.

FIGURE 7. General IPIoE request header.

On the other hand, the reply header presented in Figure 8 is
exactly similar to the request header except for the method
number since it is merely a reply and does not need to be
invoked.

FIGURE 8. General IPIoE reply header.

The broadcast header presented in Figure 9 is the same as
the general header since it is only sent when the node boots
up. It only transmits the packet to all nodes in the network so
the only field needed is the opcode to instruct other nodes
to add the sender to their tables. The packet may contain
some extra information to be used for polling further updates
about the sender node and its cores. After the first broadcast
message is sent, further changes are sent via gossip packets
that are directed to certain nodes and destination cores.

FIGURE 9. IPIoE broadcast header.

The gossip header type presented in Figure 10 is used by
gossip packets which transmit information to some destina-
tion core. The gossip header includes only the destination

core, and there is no need for the source core and the service
fields as there is no service to invoke. Any extra service spe-
cific information that needs to be transmitted by any packet
will be encapsulated in the payload encoded in the form of
BOSML.

FIGURE 10. IPIoE Gossip header local and outside.

E. MESSAGE PASSING AND BARE METAL OPERATING
SYSTEM MARKUP LANGUAGE (BOSML)
One of our important design goals is to allow service meth-
ods to be invoked in an extensible and transparent manner
abstracting all information about the physical location of the
cores hosting the target service. To acheive that we have con-
sidered a message passing mechanism between all services
and their methods. This mechanism allows for integrating
services seamlessly. In case the requested service is on the
local node, a shared memory region is allocated in the virtual
tables of the communicating cores and the message is stored
in that shared memory. However, if the requested service
resides on a remote node, the message is encapsulated in the
payload of an IPIoE packet and sent to the target core.

BOSML is a markup language that allows for the exten-
sibility and interoperability of our services. All messages
exchanged between services are in BOSML, giving service
developers the freedom to invoke the methods with minimal
restrictions. XML messages are used regardless of the phys-
ical location of services, whether local or remote. Addition-
ally, a service needs to define a schema that other services
will use to invoke its methods. Any deployed service needs to
expose a method called the Discovery Method which allows
for other services to know its schema. In Figure 11, an exam-
ple of the output of the Discovery Method is shown where
the root tag is the service name followed by its methods’
parameters and information about each parameter, whether it
should be encoded, encrypted, its type and size, etc. allowing
for maximum extensibility and portability.

FIGURE 11. Discovery function output.
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FIGURE 12. Local IPI communication.

F. SYSTEM COMMUNICATION FLOW
In this section the overall system communication flow will be
presented and how different components of the architecture
communicate and interact together. When a user level appli-
cation aims to invoke a method within a service, it initiates
a request to the invoke API of the STL segment running in
the user mode (STL_U). The user passes the service name
and the method desired. If the needed service runs in the
user mode and there is no need for kernel privileges, the STL
will dispatch the service method in the user mode. If a return
value is expected, then the service will return it to the STL
which will relay it to the user application. If the needed
service, or part of it, requires running in privileged mode and
needs the kernel, the STL in the user mode will relay the
request to the STL in the kernel mode (STL_K). The STL_K
then acts similar to the STL_U as explained earlier. It is worth
mentioning that services can call each other. Having a part
of the service running in user mode prevents unnecessary
context switching to the kernel mode when the needed service
can fulfil its target while in user mode.

Service invocation can take place across different cores
within the same node through utilizing local IPI between
cores within the same node as illustrated in Figure 12. The
STL is running on each core and therefore allows services
running on different cores to communicate easily and realize
location transparency. It is essential in that case to switch to
kernel mode to be able to send an IPI to the target core which
will entail triggering the STL dispatch service routines on that
target core. Prior to sending the IPI all the parameters need
to be encapsulated within a BOSML shared buffer that both
cores can access.

In the case of service method invocation between cores
located in two different nodes, the STL has the ability to
identify the location of the target service. It then sends an
IPIoE with information about the origin of the packet and
the target service and method that needs to be invoked. All
the service parameters will need to be compiled into BOSML
and encapsulated within the payload of the IPIoE packet. The
network core will essentially need to be consulted for sending
the packet, as illustrated in Figure 13, to carry out the network
communication. The target service will eventually execute on

FIGURE 13. Remote communication.

the remote node/core and the reply to the calling core/node
will take place over another IPIoE packet.

So far, we have covered the communication flowwithin the
same LAN. One important case that ensures maximum scal-
ability is service method invocation across LANs; source and
destination cores are in two different nodes in two different
LANs. The most famous and widely used standard network
addressing scheme is the IP addressing built on top of the
IP routing protocol. IPIoE is a custom control protocol that
cannot be used for routing purposes across different networks.
To be able to extend our design across different LANs an
IPIoE to IP translator needs to exist within each LAN as
illustrated in Figure 14; an IPIoE gateway for masquerading
packets from IPIoE to IP and vice versa. When a node/core
in a LAN attempts to communicate with another node/core
in a different LAN, it sends an IPIoE to the LAN’s gateway.
The gateway then encapsulates the IPIoE packet into an IP
packet. The gateway’s IP address is used as the source IP
in the IP packet while the destination network gateway is
added as the destination IP. When the IP packet reaches the
destination gateway, the gateway extracts the IPIoE packet
from its IP payload. The IPIoE packet is then sent to the
designated node/core over the destination local LAN. A gate-
way needs to be able to address the other gateways for
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remote communication outside the same LAN via IP. This
requires some sort of a registry service or a service directory
that is well known by all gateways. Once the gateway of
a specific LAN is up, it contacts that service directory and
updates it with information about its status, its resources,
and the services it exposes. In exchange, the gateway gets
to know similar information about the other gateways avail-
able. The gateway directory service should be conceptually a
centralized service deployed over redundant scalable under-
lying infrastructure for maximum scalability, availability, and
fault-tolerance.

FIGURE 14. LAN to LAN communication.

IV. EXPERIMENTS
In this section, for completion purposes, we are presenting
several experiments to assess the performance of a primi-
tive prototype implementation that were conducted and pre-
sented earlier in [2]. The promising results were the main
drive behind the most recent extensions of the micro-kernel
design.

The experiments were designed to test the end-to-end
run time of a real big data standard distributed applica-
tion, including disk I/O and network transfer. They aimed
at comparing the Terasort benchmark [15], [16] run time of
the traditional Hadoop Big Data platform and our proposed
AMP micro-kernel deployed over a distributed environment.
We used a deployment environment of 4 hardware nodes as
per the table in figure 15.

FIGURE 15. TeraSort environment configuration.

The whole environment has a total of 24 physical cores,
16 of which supports hyper-threading resulting in 32 virtual
core threads, and a total memory of 104GB of RAM.We used
the VirtualBox hypervisor to instantiate 21 virtual machines,
each of which has 4 cores and 4 GB of RAM. The total
number of virtual cores perceived by the virtual machines is
84 cores, which is much more than the number of physical
CPUs/Cores.

We have set up 2 different environments with the same
configuration as above. The first environment runs the
Linux Debian Distribution with Hadoop and HDFS [17]–[20]
installed and configured to run Hadoop MapReduce [5]
implementation of TeraSort. The Second environment runs
our proposed AMP distributed micro-kernel. Each virtual
machine has a dedicated management core with the timer
enabled, a dedicated core for networking and disk I/O, and
2 worker cores, which sums up to a total of 40 work-
ers. A C++ implementation of TeraSort that integrates
an implementation of the quick sort algorithm is used to
run the TeraSort benchmark on the proposed micro-kernel
environment.

Figure 16 demonstrates our implementation of the TeraSort
algorithm which is built up of three components: Application
Master, Mapper, and Reducer. There is only one instance
of the application master and it runs on a dedicated worker
core. A number of mappers and reducers can be launched,
each on a dedicated worker core, based on the sort task
configuration. All application components communicate and
synchronize over IPIoE. In Hadoop there is no control over
the number of mappers as it is dependent on where a target
input file distributed blocks are stored over HDFS, but we can
configure a TeraSort task to use a specific number of reducers
which greatly affects the execution time. In our proposed
micro-kernel environment, we fixed the number of mappers
to 20 which will reserve 20 cores for that, and we will change
the number of reducers in different experiment runs.

FIGURE 16. AMP Microkernel TeraSort environment.

In our proposed micro-kernel implementation of TeraSort
the application master starts first, issues IPIoEs to start up
mappers, assigns them their jobs, and provides them with
the intended number of reducers so they can split the data
accordingly. Each mapper loads its data from the disk storage
and applies sampling techniques to identify data partitions.
When the mappers finish their tasks, they notify the appli-
cation master using IPIoE messages to start up the reducers
and hence the shuffling phase. Data partitioning and network
transfer over FDNTP [2], Fast Data Transfer Network Proto-
col, is started to assign each reducer a subset of the data. Each
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reducer launches its quick sort engine to sort its subset of the
data and store its output on disk. The sampling phase carried
out by the mappers ensures that the partitions generated by
different reducers are organizationally sorted. It is important
to mention that all parameters passed to reducers are being
encapsulated in BOSML messages within the payload of the
IPIoE packets.

We have used TeraGen [15], [16] to generate 9 data sets
with different sizes: 2, 4, 8, 12, 16, 24, 28 and 32 GB.
We conducted different runs with different data sizes and
different number of reducers: 10, 12, 14, 16, 18, and 20 reduc-
ers. Some limitations restricted running experiments with
all combinations of sizes and reducers; for example, due to
memory limitations we could not run the sort on data larger
than 12 GB with 10 reducers, and we could not sort 32 GB
except with 20 reducers. Figure 17 shows the gain in the
execution time by the proposed kernel over Linux/Hadoop
using different reducers and input sizes.

FIGURE 17. AMP Microkernel vs Linux Runtime (Reducers/Input Size).

Figure 18 shows the speed up percentage of the AMP
micro-kernel over Linux/Hadoop for different reducers and
input sizes. The performance gain increased as we increased
the number of reducers within the same input size. Increasing
the input size using the same number of reducers has a nega-
tive effect on the performance gain as the physical hardware
resources are fixed across all experiment runs. The average
speedup of the AMP micro-kernel over Linux/Hadoop is
234%; 2.34 folds.

FIGURE 18. AMP Microkernel speed up.

We were able to isolate and measure the shuffling phase
in our TeraSort implementation, yet within the shuffling
phase we could not isolate the network transfer time and
data partitioning. Figure 19 shows the shuffling speed with
respect to the number of reducers used. Up to 18 reduc-
ers, the speed increased proportionally with the number of
reducers. Speed starts to decrease after that because of the
network congestion resulting from communication between
larger number of reducers resulting in higher packet loss rate.
We also attribute this to the target underlying infrastructure
used, where 5 virtual machines are running per physical node
on average, and bridged over and sharing the same physical
network interface.

FIGURE 19. Shuffling speed.

Finally, we have conducted a factorial ANOVA [21]
and regression analysis. Our investigated factors are the
input size, number of reducers, and the environment; AMP
micro-kernel and Linux/Hadoop. The yield is basically the
end-to-end execution time of the overall TeraSort run. Each
run in our experiment has fixed factor values and is executed
3 times to collect 3 readings. Figure 20 presents the ANOVA
and the regression analysis results. The Normal Q-Q graph
demonstrates the normality of the data which is further veri-
fied using Anderson-Darling and Shapio-Wilk [21] normality
tests comparing the P-Values with significance level of 0.01.
The ANOVA results table shows that all the target factors are
significant as well as the interaction between the environment
and the reducers, and the interaction between the input size
and the reducers. More importantly, the mean squares pie plot
shows the magnitude of the influence of each factor. Finally,
a regression analysis is presented with a very high R-Squared
and adjusted R-Squared values which emphasizes that the
model can be used to predict results for factor values outside
the experiment range.

Figure 21 demonstrates the factors interaction using 2-D
and 3-D graphs. It is evident from the graphs that the
environment has a significant effect on the execution time
which emphasizes the gain in performance by the AMP
micro-kernel over Linux/Hadoop.

V. DISCUSSION
NileOS was designed targeting Big Data applications requir-
ing huge computational power and dedicated hardware.
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FIGURE 20. ANOVA results and regression analysis.

FIGURE 21. ANOVA factors interaction models.

There was a need to assign each core a specific role that
could change during run time but needs to be defined at any
given point of time. This division of labor scheme allows the
operating system to have dedicated cores for running user
applications without any interruption to achieve maximum

efficiency. On the other hand, cores that are not dedicated
to executing user applications are assigned to other roles
such as management or I/O. This could only be achieved by
following an asymmetric multiprocessing design that allows
different cores to assume different roles, which stems mainly
from design decisions 1, 2, and 3. UNIX-based operating
systems follow a symmetric design which unfortunately does
not allow for assigning individual roles to cores. In order
to achieve this goal, one would need to actually redesign
the kernel architecture to meet the desired specifications
[10], [22]–[29]. Consequently, it is inherently challenging to
impose roles on individual cores to carry out specific tasks.

GenerOS, an AMP kernel extension built on top of Linux,
allow assigning different roles to different cores, and is able
to run legacy applications. However, GenerOS is designed
as a multi-core operating system that runs only on a single
node and does not support distribution except through the
traditional means at the library level; essentially the distri-
bution semantics are not designed and implemented at the
kernel level [30]. NileOS on the other hand supports assigning
individual roles to different cores on different nodes using the
IPI over network packets that were designed as part of the
kernel network service.

In NileOS, there was a dire need to manage the memory as
efficiently as possible. Generally, general-purpose operating
systems use 4 KB page frames for their memory model
which have the drawback of being slow and having a massive
memory footprint for storing the corresponding virtual page
table. Such virtual page tables are also being built incremen-
tally based on the application needs. Although, one virtue
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about such small page frames is the reduced fragmentation,
but this is insignificant in the case of big data applications
that are characterized by loading large amounts of data in
memory. Big Data applications usually have a fixed pattern
of execution that starts by reading the data from the disk
into the memory, process it, then generating results. It is very
evident that using large page frames and allocating most of
the page table upfront is very essential to achieve perfor-
mance. NileOS allows for choosing between 1GB, 2MB, and
4 KB memory page frames, and avoids memory fragmenta-
tion as much as possible. This is accomplished by dividing
the physical memory into collections of 1 GBs which consist
of 512 × 512 (262144) blocks of physical memory frames
of size 4 KB and the other option is a collection of 2 MBs
which consist of consecutive 512 memory pages of 4 KB
size. If the core requests a 1 GB or 2 MB frame, then they
are provided with one of the free collections. On the other
hand, if a 4 KB frame is requested, the system searches for the
first collection that has the least number of frames available
within.

Current general-purpose operating systems adopt an
abstraction model that is based on the concept of a process,
and hence the need to maintain multiple address spaces; one
for each process. Alternatively, NileOS adopts an abstrac-
tion model that is based on a core with a single process
assigned to it and hence a single address space per core. As an
alternative, user-level multi-threads are being used within a
core whenever needed. This eliminates overheads resulting
from process context switching and using multi-threading
within a core whenever needed as an alternative. All security
issues resulting from adopting a single address space, such as
malicious processes possibly accessing privileged informa-
tion of another process [31]–[33], will not be valid in the new
proposed architecture; basically, one process per core.

IPI and IPIoE use BOSML to exchange messages locally
and remotely. NileOS assumes that the data is initially dis-
tributed prior to processing it and this allows the adoption of
‘‘move-code-to-data’’ mechanism considering that the data
is always larger than the code. Loading the right code to
the proper core is done using synchronization constructs
built on top of IPI/IPIoE and BOSML. This also mitigates
any issues with BOSML performance, as big data appli-
cations usually fetch the data at the beginning and then
process it for a long time. There are some limitations on
the packet size of IPIoE. For transparency purposes max-
imum BOSML message that can be exchanged between
cores, either local or remote, is fixed and need to fit within
a network packet. The net payload size that can store a
BOSML message should be 1486 bytes after subtracting the
Ethernet and the IPIoE headers. Nevertheless, since IPIoE
messages can be exchanged between different networks over
the IP protocol as described in subsection III-D, then we
need to take into account the IP header size which is another
20 bytes. This will make the maximum payload space avail-
able to store a BOSML message 1466 bytes. This allows

NileOS to have an overall extendable architecture that scales
as needed without sacrificing performance nor generality.
Of course, using larger network packets, such as jumbo pack-
ets, can increase the BOSML message size, but this will
entail either restricting transmission to be within the same
LAN, or make sure to adjust routers MTUs to accommodate
larger sizes.

NileOS follows a micro-kernel architecture approach;
hence, everything that is not needed in the kernel,
is abstracted in the form of services to reduce the overhead
of context switching especially when run in the user-mode.
Therefore, a service deployment mechanism that deploys
these services in a distributed environment transparently is
needed. The service that needs to be deployed can then be
locally or remotely deployed without the need for the service
developers to know the underlying architecture, they only
need to know the programming model. Therefore, the pro-
gramming model was simplified using simple special pre-
processor tags over the service methods to identify whether it
requires kernel privileges or not. This will allow the service
developer to optimize the overall system through minimizing
the need to switch to the kernel. The deployment service
will make sure to deploy the service methods accordingly
at the right levels; kernel-level or user-level. This provides
transparency for the developer and adds to the extendibility
of NileOS.

Experimentally, it is evident from the experiment results
presented in section IV that building a special purpose kernel
for Big Data processing achieves considerable performance
gain. Taking into account the network transfer and optimiz-
ing it to suit distributed Big Data processing has a consid-
erable contribution to the performance gain we observed.
It is worth mentioning that we were forced to oversub-
scribe the CPUs/Cores in our test environment because of
the limited availability of HW resources. A resource con-
tention is realized over the physical CPUs/Cores assigned
to different virtual machines simultaneously. We antici-
pate that if the experiments are repeated with dedicated
CPU/Cores for each virtual machine a better performance
gain can be achieved, which we believe needs to be verified
experimentally.

The ANOVA analysis shows that the input size has a large
and significantmagnitude over the execution time. Thismight
give the illusion of poor scalability, yet the fixed physi-
cal resources used explains the inflated impact of the input
size. Increasing the virtual resources pressures the underlying
fixed physical resources through the aggressive multiplexing
of different virtual machines over the limited CPUs/Cores
available. We believe that increasing the physical hardware
resources in proportion to the workload will keep the pro-
portional gain in performance constant. A larger hardware
environment than the onewe usedwill be needed to verify this
aspect experimentally. In any case, the underlying physical
environment is common in both cases, AMP Tickless and
Linux/Hadoop.
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It is evident that the added tickless feature to the worker
cores contributed largely to the gain in performance. The
major gain of the tickless approach, other than dedicating
CPUs/Cores for processing tasks, is the realization of a sin-
gle address space per CPU/Core which saves up a lot of
TLB flushing. Moreover, soft irqs are being handled by the
management cores which relieves the processing cores from
having to check and handle them.

One major aspect of the success of the proposed AMP
micro-kernel is the transparent interaction of the different
CPUs/Cores irrespective of their location through the trans-
parent IPIoE messaging mechanism. The TeraSort applica-
tion was written in a way that the user level logic does not
perceive the distributed nature of the underlying environment
which realizes a Single System Image (SSI) allowing easy
and reliable scalability without any changes to the application
logic.

One important feature that needs to be in place in the
future is the dynamic run-time assignment of roles to cores
based on the run-time workload. A number of efficient opti-
mization algorithms have shown a great improvement in task
scheduling especially in cloud computing environments, such
as moth search, moth-flame optimization, monarch butter-
fly optimization, and elephant herding optimization. We do
believe that the extensible service-oriented design we adopt
for our proposed kernel enables the seamless integration of
such algorithms.

VI. CONCLUSION AND FUTURE WORK
Big data applications will soon be one of the computingmain-
stream areas. Existing general-purpose operating systems
cannot cater for their special resource utilization require-
ments and thus could not provide optimum performance.
Our approach differs from general purpose operating systems
by trading the generality for maximizing performance with
a set of goals and design decisions that were inspired by
other approaches. Multiple approaches were combined to
formulate an efficient scalable platform for big data process-
ing characterized by being similar to Map-Reduce execution
profile. We rely on the concept of move-code-to-data as it
depends on the distribution of the data in the first place and
avoids moving huge amounts of data across the network.
An asymmetric multiprocessing architecture model was pre-
sented in which a core is the building block of the system
and roles can be assigned to specific cores. To minimize
the interrupts on the big data processing cores, a specific
role of being a ‘‘Worker’’ core is now possible and hence
we could disable the timer from cores assigned that role.
Memory management is being taken seriously at the core of
the design and a single address space is adopted to reduce
performance overhead resulting from cache and TLB flush-
ing. Moreover, some ideas were borrowed from inverted page
tables to enhance both the page table footprint and speed
of allocating memory by an application. A distributed exe-
cution model was established through utilizing extensible
messaging framework over BOSML. Local cores exchange

BOSML messages using local IPIs and shared memory, and
remote cores exchange messages using the special control
protocol IPIoE. All distribution semantics and mechanisms
are being pushed down into the kernel with maximum trans-
parency at the application level. A transparent deployment
mechanism is presented to completely shield the developer
of the micro-kernel service from the underlying distribution
infrastructure and decouple the application implementation
from its deployment perspective. Based on the initial proto-
type and the experiments presented, a considerable gain in
performance of average 2.34 folds was achieved using the
distributed TeraSort benchmark over Linux/Hadoop.

In the future, there needs to be further iterations over
the IPIoE network protocol to enhance the communication
between the nodes within the same LAN and across differ-
ent LANs. The dynamic nature of the protocol header will
allow for such revisions. One of the most important protocols
needed as well would be a data transfer protocol since IPIoE
is only designed for control purposes. The service transport
layer has also enabled future development on other services
that would be vital for the operation of the micro-kernel.
Services such as the directory service, distributed file system
and heap manager need to be designed and implemented.
Furthermore, the standard libraries need to be imported to
NileOSmicro-kernel. Features like distributed exception han-
dling support as well as extending the ELF format to support
loading distributed applications need to be in place. This will
allow for porting applications previously developed based on
these libraries as well as giving this platform the capability
to do further tests, experiments, and benchmarks to com-
pare the overall performance between NileOS and different
competitors.
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