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ABSTRACT Recently there have been renewed interests in high order neural networks (HONNs) for its
powerful mapping capability. Ridge polynomial neural network (RPNN) is an important kind of HONNs,
which always occupies a key position as an efficient instrument in the tasks of classification or regression.
In order to make the convergence speed faster and the network generalization ability stronger, we introduce
a regularization model for RPNN with Group Lasso penalty, which deals with the structural sparse problem
at the group level in this paper. Nevertheless, there are two main obstacles for introducing the Group Lasso
penalty, one is numerical oscillation and the other is convergence analysis challenge. In doing so, we adopt
smoothing function to approximate the Group Lasso penalty to overcome these drawbacks. Meanwhile,
strong and weak convergence theorems, and monotonicity theorems are provided for this novel algorithm.
We also demonstrate the efficiency of our proposed algorithm by numerical experiments, and compare
it to the no regularizer, L2 regularizer, L1/2 regularizer, smoothing L1/2 regularizer, and the Group Lasso
regularizer, and also the relevant theoretical analysis has been verified.

INDEX TERMS Convergence, high order neural networks, ridge polynomial neural network, smoothing
Group Lasso.

I. INTRODUCTION
Traditional neural networks have nonlinear mapping capabil-
ity, which can approximate reasonable functions with arbi-
trary precision. In recent years, they have been used in various
diversified areas. However, the performance of this network
is tremendously affected by its parameters. Especially when
the training sample dimension is relatively high, the training
process of the common neural network architecture becomes
extremely slow and tedious [1].

In order to overcome this time-consuming operation and
reduce the complexity of the network. Recently, HONNs
has been playing an increasingly important role in diverse
fields due to its fast convergence speed, strong approxima-
tion ability, strong fault tolerance, and large storage capacity
[2], [3]. Moreover, HONNs has been developing rapidly in
terms of basic theory, model and algorithm, implementation
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and application, and various HONNs models have also been
proposed [4]–[7].

Pi-sigma neural network (PSNN) as a special genre of
HONNs was developed by Shin and Ghosh [4], which with
addition of some higher order logical processing units in the
earlier feedforward neural networks (FNNs). This network
has a powerful function approximation capability and also
avoids the combination blow-up of higher order terms. How-
ever, it is not a universal approximation. In [5], the authors
proposed another type of HONNs, namely the ridge poly-
nomial neural network (RPNN), which is an expansion of
the PSNN and adopts multiple PSNNs act its basic building
blocks. Compared with general feedforward neural networks,
RPNN not only has higher efficiency but also retains strong
nonlinear mapping ability [8]. At present, RPNN has been
widely used in many fields, such as time series prediction
[9], [10], financial signal forecasting [11], pattern recognition
[12], and classifier based on genetic algorithm [13]. However,
along with the order of network becomes excessively high,
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they suffer from the combinatorial explosion of required
higher order terms. Therefore, it is necessary to optimize
the network structure of RPNN to improve its application
efficiency.

Gradient method is one of the classical algorithms for
neural network training [14]–[19]. It uses training sam-
ples to train the connection weights multiple times, updates
the weights after each training, and terminates the training
when certain conditions are met. In addition, learning effi-
ciency and theoretical analysis are important problems in
the study and application of neural networks. For learning
efficiency, most of research is mainly committed to using
less numbers of connections (weights) and nodes to achieve
the same or better accuracy through structural optimization
[20]–[24]. In terms of theoretical analysis, it focuses on
the convergence and stability analysis of the algorithms
[25]–[27]. We know that RPNN has a more efficient and
stable structure, but there are relatively few theoretical studies
on it at present, so it is very necessary to carry out the research
on this related models.

For improving learning efficiency, there is no evidence
that the more hidden nodes yield the better generalization.
The usual strategy is to find the most suitable network
architecture. It can be roughly divided into growing method
[28]–[30], which starts from a small initial network, and then
increases the number of hidden neurons during the training
process. The other is pruning technology, it starts from a
large initial network and then prunes it [31]–[33]. The penalty
term for pruning FNNs is widely used for weight elimination,
which is used to remove the unnecessary connections. Nev-
ertheless, it is particularly important to determine a compact
network structure under the premise of ensuring the general-
ization ability of the network.

For a standard RPNN, the error function is defined as the
sum of the squares of the errors

Ẽ(W ) =
1
2

∑
(Oa − ya)2 (I.1)

whereOa is the ideal output, and ya is the actual output.When
we need to prune the network, a typical strategy is to add a
penalty term to the standard error function, and we can get
the following error function.

E(W ) =
1
2

∑
(Oa − ya)2 + λ‖W‖pp (I.2)

The parameter λ > 0 is the regularization coefficient,
which balances the relative importance between network
complexity and training accuracy. And ‖W‖pp is the regular-
ization term, ‖ · ‖ stands for the Euclidean norm. For any
n dimensional vector, α = (α1, α2, · · · , αn), the Lp norm

defined by ‖α‖p = (|α1|p + |α2|p + · · · + |αn|p)
1
p .

Generally, there are different forms of regularization terms
for different p values. For p = 2 is the weight decay regular-
ization term [34]–[36], the increase of networkweights can be
effectively controlled by weight decay, but this regularization
term does not produce a sparse solution. The L0 regularization

FIGURE 1. Structure of the Pi-Sigma neural network.

term is usually used for variable selection and will produce
the sparsest solutions, but these sparse solutions are difficult
to calculate. For this reason, L1 regularization term is pro-
posed, but its sparsity is weaker than L0 regularization term.
In order to make it produce a sparse solution and also easy to
calculate, the L1/2 regularization term is proposed. Even the
L0, L1, and L1/2 regularizers can generate sparse results, but
only the single sparse weight can be selected. So, it is still
a challenge for us to decide which neuron is redundant [25],
[37]–[40]. As a meaningful extension of Lasso, Group Lasso
mainly has to do with variable selection on groups. It is one of
the most useful tools for the problem of variable selection by
shrinking some estimates of parameters exactly toward zero
[41]–[43]. In addition, practical gradient learning algorithms
with Group Lasso regularization and the relevant theoretical
analysis are still lacking in the literature.

In this study, to improve the sparsity of neural networks
and enhance generalization ability, we will rely on the idea of
group sparsity to optimize the architecture of RPNN (more
details in the next section). Toward this end, we would like to
satisfy both sparsity of groups and within each group, and the
gradient descent method is used to minimize the error func-
tion. However, due to the usual Group Lasso regularization
term is not differentiable at the origin, and the oscillations of
the gradient training process caused. Therefore, we propose a
novel smoothing algorithm to overcome these mathematical
challenges. The main contributions are as follows:

(i) In order to obtain sparse RPNN with gradient training
algorithm, a special smoothing technique is used to approxi-
mate the Group Lasso regularization in a small neighborhood
near the origin of coordinates. In this way, the novel smooth-
ing Group Lasso regularization, which not only overcomes
undifferentiability but also retains the well sparse property.

(ii) This novel pruning algorithm based on Group Lasso
method for RPNN, it penalizes the weights at group level
by reducing the weight vectors to zero, which more efficient
compared with other various pruning strategies.
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FIGURE 2. Structure of the ridge polynomial neural network.

(iii) Under certain assumptions, we give the strong and
weak convergence theorems and monotonicity theorems for
the novel algorithm. Moreover, the theoretical results and the
advantages of this algorithm are also illustrated by numerical
experiments.

The remainder of this article is organized as follows.
The preliminaries for the structure of PSNN and RPNN are
depicted in the section II. In Section III, we show more
details for gradient method with Group Lasso regulariza-
tion for RPNN. Two theorems of monotonicity, weak and
strong convergence are presented in Section IV. Numerical
experimental results are shown in Section V to support our
theoretical results. We conclude this paper with some useful
remarks in Section VI. The detailed proofs of the theoretical
results are provided in Appendix.

II. NETWORK STRUCTURE DESCRIPTION
A. PI-SIGMA NEURAL NETWORK (PSNN)
As a kind ofmore powerful nonlinearmapping network, ridge
polynomial neural network (RPNN) is mainly composed of
some Pi-Sigma neural network (PSNN). So, we first intro-
duce the structure of PSNN. In Fig.1, it shows the topological
structure of PSNN with a single output which is a kth order
neural network.

The number of input units, sum units and output unit of
the PSNN are n + 1, k , and 1, respectively. We use wj =
(wj0,wj1, . . . ,wjn) ∈ Rn+1 to denote the weight vectors from
the sum unit j to the input units. For the convenience of later
calculation, we note w = (w1,w2, . . . ,wk ) ∈ R(n+1)k , and in
order to reduce the training convergence time of the network,
the weight vectors connecting the sum units and product unit
are fixed as 1. Also, let x = (x0, x1, . . . , xn) ∈ Rn+1 be n+ 1
dimensional input vector, and the adjustable threshold x0 = 1.

And y express the output of the product unit as follows:

y = σ (5k
j=1(

n∑
i=0

wjixi)) , σ (5k
j=1〈wj, x〉) (II.1)

where the weights from the sum unit j to the input unit i is
denoted by wji, 〈·, ·〉 and σ (., .) denote the inner product and
sigmoid activation function respectively.

B. RIDGE POLYNOMIAL NEURAL NETWORK (RPNN)
Fig.2 shows the topological structure of RPNN, which con-
sists of k PSNNs, and we call k is the order of the net-
work. PSNNi is the ith PSNN with i summing units. Also,
we noticed that it is different from the traditional feedforward
neural network, only the weights between the hidden layer
and the input layer of RPNN can adjust. The weight vectors
from the sum unit j in PSNNi to the input units is denoted
by wij = (wij0,wij1, . . . ,wijn) ∈ Rn+1. For the sake of
simplicity, we rewrite all the weights into a compact set w =
(w11,w21,w22, · · · ,wi1,wi2, · · ·wii, · · · ,wk1,wk2, · · ·wkk )
∈ R

k(k+1)
2 (n+1).

For any multivariate continuous function defined on the
compact set of multidimensional input space, RPNN can
be used to approximate it with arbitrary precision. A Ridge
polynomial is a polynomial represented by 〈·, ·〉, and any
multivariate polynomial can be indicated in the form of a
ridge polynomial, and implemented by the RPNN, whose
output y is expressed as follows:

y = g(
k∑
i=1

Pi(wi, x)) = g(
k∑
i=1

i∏
j=1

〈wij, x〉) (II.2)

where pi(wi, x) is the output of the PSNN, and the g(·) is
sigmoid activation function.

III. BATCH GRADIENT LEARNING ALGORITHM FOR RPNN
In this section, let the training samples be (xa,Oa)Aa=1, where
xa and Oa are the input and desired output respectively. And
let ya be the actual output for each input xa.

A. THE ORIGINAL GROUP LASSO REGULARIZATION
ALGORITHM
For the batch gradient learning algorithm for RPNN with
Group Lasso regularizer, let E(w) be the mean squared error
function with Group Lasso penalty term. Then, we can get the
following formula

E(w) =
1
2

A∑
a=1

(Oa − ya)2 + λ
k∑
i=1

i∑
j=1

‖wij‖

=

A∑
a=1

1
2
(Oa − g(

k∑
i=1

Pi(xa)))2 + λ
k∑
i=1

i∑
j=1

‖wij‖

(III.1)
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For the sake of brevity, denoted by

fa(
k∑
i=1

Pi(xa)) ,
1
2
(Oa − g(

k∑
i=1

Pi(xa)))2 (III.2)

Pi(xa) , Pi(wi, xa) ,
i∏

j=1

〈wij, xa〉 (III.3)

ϕa,k ,
k∑
i=1

Pi(xa) (III.4)

Then, the following equivalent form can be obtained

E(w) =
A∑
a=1

fa(
k∑
i=1

Pi(xa))+ λ
k∑
i=1

i∑
j=1

‖wij‖

=

A∑
a=1

fa(
k∑
i=1

i∏
j=1

〈wij, xa〉)+ λ
k∑
i=1

i∑
j=1

‖wij‖ (III.5)

the partial derivative ∇wijE(w) of E(w) with respect to wij is

∇wijE(w) , Ewij (w)

=

A∑
a=1

f ′a(
k∑
i=1

Pi(xa))
i∏

s=1,s6=j

〈wis, xa〉 · xa + λ
wij
‖wij‖

(III.6)

So,

Ew = (Ew11 ,Ew21 ,Ew22 , · · · ,Ewk1 ,Ewk2 , · · · ,Ewkk ). (III.7)

And then, in the iteration process, theweights updating rule
as follows:

wm+1 = wm +4wm, m = 0, 1, 2, · · · (III.8)

and

4wmij
= −η∇wmij E(w

m)

= −η[
A∑
a=1

f ′a(
k∑
i=1

Pi(xa))
i∏

s=1,s6=j

〈wmis, x
a
〉 · xa + λ

wmij
‖wmij ‖

]

(III.9)

where η > 0 is the learning rate.
Because this is not differentiable at the origin which may

be prone to yield oscillation phenomenon, and this is a great
challenge for theoretical analysis. So, we proposed the fol-
lowing smoothing Group Lasso regularization algorithm.

B. THE SMOOTHING GROUP LASSO REGULARIZATION
ALGORITHM
In order to overcome the previously mentioned nonderivative
defects. First, define the following smoothing function h(z)

h(z) =

‖z‖, ‖z‖ > α

‖z‖2

2α
+

α
2 , ‖z‖ ≤ α

(III.10)

and then, the gradient of with h(z, α) respect to vector z as
follows:

∇zh(z) =


z
‖z‖

, ‖z‖ > α

z
α
, ‖z‖ ≤ α

(III.11)

Thus, we can get

Ẽ(w) =
1
2

A∑
a=1

(Oa − ya)2 + λ
k∑
i=1

i∑
j=1

h(wij)

=

A∑
a=1

1
2
(Oa − g(

k∑
i=1

Pi(xa)))2 + λ
k∑
i=1

i∑
j=1

h(wij)

=

A∑
a=1

fa(
k∑
i=1

Pi(xa))+ λ
k∑
i=1

i∑
j=1

h(wij)

=

A∑
a=1

fa(
k∑
i=1

Pi〈wi, xa〉)+ λ
k∑
i=1

i∑
j=1

h(wij) (III.12)

where fa(·) is defined as (III.2).
Then starting with an initial valuew0, the weights updating

rule for w is iteratively by

wm+1 = wm +4wm, m = 0, 1, 2, · · · (III.13)

and

4wmij = −η∇wmij E(w
m)

= −η[
A∑
a=1

f ′a(
k∑
i=1

Pi(xa))
i∏

s=1,s6=j

〈wmis, x
a
〉 · xa

+λ∇wmij h(w
m
ij )] (III.14)

where η > 0 is the learning rate.
Remark: In the above definition of h(z), we notice that α is

a very small positive constant.

IV. THEOREMS OF MONOTONICITY AND CONVERGENCE
Throughout this section, some assumptions are needed to
prove the main theorems.
Assumption A1: For any t ∈ R, the f ′a(t) and f ′′a (t) are

bounded, i.e., there exists constant C1 > 0 such that

max{|f ′a(t)|, |f
′′
a (t)|} ≤ C1

Assumption A2: There exists a constant C2 such that

max{|wijxa|, ‖xa‖} ≤ C2, 1 ≤ i ≤ k, 1 ≤ j ≤ i, 1 ≤ a ≤ A

Assumption A3: The learning rate η satisfies the condition
as follows:

0 < η <
4

2A(k − 1)C1Ck
2 + Ak(k + 1)C1C2k

2 + 4Mλ

whereM =
√
6

4
√

a3
.

Assumption A4: The set �̄ = {w ∈ D|
`
w E(w) = 0}

contains finite point and the weight sequence {wn}∞n=0 ⊂ D,
where D is a compact set.
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FIGURE 3. The performance result of the NoPenatly , L2, OL1/2 and OGL.

FIGURE 4. The performance result of the SL1/2 and SGL.

Next, we give the main theoretical results.
Theorem 1: For an arbitrary initial value, the weight

sequence {wn}∞n=0 is generated by (III.13), and the assump-
tions A1− A3 are satisfied, then we have
(i) E(wn+1) ≤ E(wn), n = 0, 1, 2, . . .
(ii) lim

n→∞
E(wn) = E∗ ≥ 0.

Theorem 2: For an arbitrary initial value, the weight
sequence {wn}∞n=0 is generated by (III.13), and the assump-
tions A1− A4 are satisfied, then we have
(i) lim

n→∞
‖∇E(wn)‖ = 0.

(ii) There exists a w∗ ∈ D0 such that lim
n→∞

(wn) = w∗.

V. NUMERICAL EXPERIMENTAL RESULTS
To confirm the validity of the proposed new algorithm based
on the smoothing Group Lasso regularization (SGL) of the
RPNN, we compare it with the no regularizer, L2 regularizer
(L2), the original L1/2 regularizer (OL1/2), the smoothing
L1/2 regularizer (SL1/2) and the original Group Lasso regu-
larizer (OGL) by using two examples: a nonlinear function
approximation and a benchmark problem-parity problem. All
experiments of these algorithms are performed in the Matlab
2017a environment running on aWindows personal computer
with Intel Core i5-10210U 1.60 2.11 GHz CPUs and RAM
8 GB.

A. EXAMPLE 1: FUNCTION APPROXIMATION PROBLEM
In this example, the following nonlinear function has been
thought out to compare the approximation capabilities of the

TABLE 1. Performance comparison on nonlinear function.

above algorithms:

F(x) =
1
2
(sin(x)+ cos(x)).

In this experiment, the network structure model of RPNN
composed of five PSNN modules is adopted, and chooses
the sigmoid function as the activation function, and selects
101 training samples from an evenly spaced interval of
[−4, 4]. The initial weights are chosen randomly within the
interval [−0.5, 0.5], and the learning rate η is 0.003, the reg-
ularization coefficient λ is 0.002. In regard to each learning
algorithm we conducted 10 experiments, and all algorithms
are run 4,000 iterations for per experiment. For computational
complexity, we need to understand the number of iterations
of the algorithm and the number of network layers, and
when calculating the number of network layers, since the
input layer only transmits data and does not participate in
the calculation, it can be ignored. For this we know the time
complexity is O(4000), space complexity is O(3).

The average error and running time of 10 experiments
are presented in Table 1, and we can see that our proposed
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FIGURE 5. The approximation results of nonlinear functions for all algorithms.

FIGURE 6. The performance result based on 5-bit parity problem with NoPenatly , L2, OL1/2 and OGL.

FIGURE 7. The performance result based on 5-bit parity problem with SL1/2 and SGL.

smoothing Group Lasso regularizer (SGL) algorithm for
RPNN is surpass the no regularizer, the L2 regularizer (L2),
the original L1/2 regularizer (OL1/2), the smoothing L1/2
regularizer (SL1/2), and the original Group Lasso regular-
izer (OGL). In addition, the performance results of the
NoPenalty, L2, OL1/2, SL1/2, OGL, and SGL are shown in
the Fig.3 and Fig.4. We presented the error function curves,
the norm of gradient curves and the curves of the norm of
the weights for the no regularizer, L2, OL1/2, and OGL algo-
rithms in Fig.3. And similarly, Fig.4 shown the performance
results of SL1/2, and SGL. It is clear that the error func-
tion decreases monotonously, and the algorithm we proposed
has the smallest error, not only that, it also eliminates the
oscillation phenomenon produced by the original algorithm.
And from Fig.3(c) and Fig.4(c), we can see that it not only
converges faster but also has a better suppression effect in
terms of weight growth.

Fig.5 shows the approximation effect of the above algo-
rithms on the nonlinear function, and compared with other
algorithms, the proposed new algorithm has better approxi-
mation performance.

B. EXAMPLE 2: PARITY PROBLEM
In this experiment, we utilize the solution of the 5-bit parity
problem as an example to verify the theoretical effect of
our proposed algorithm. Similar to the above approximation
experiment, we choose 5 PSNNmodules as the basic building
blocks of the RPNN structure, and also select 101 training
samples from an evenly spaced interval of [−4, 4]. In the
interval [−0.5, 0.5], the initial weights are randomly selected,
and for each learning algorithm, we conducted 10 experi-
ments with the same learning rate η and penalty coefficient λ,
which are 0.003, and 0.002, respectively, and all algorithms
are run 4,000 iterations for per experiment.
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The comparison results of NoPenatly, L2, OL1/2,OGL,
SL1/2 and SGL algorithms based on the 5-bit parity problem
are shown in the Fig.6 and Fig.7. In the figure, we based on
the 5-bit parity problem presented the error function curves,
the norm of gradient curves and the curve of the norm of
the weight for each algorithm, separately. Obviously, we can
see that the error function decreases monotonously and elim-
inates the oscillation phenomenon generated by the original
algorithm. In addition, the weight norm curve confirms that
the new algorithm we proposed can effectively suppress the
weight growth.

VI. CONCLUSION
In this paper, we first propose the Group Lasso regularization
learning algorithm for Ridge Polynomial Neural Networks,
then a novel pruningmodel for Ridge Polynomial Neural Net-
works based on smoothing Group Lasso regularizer is bring
forward. By the smoothing technique, we overcome twomain
drawbacks, one is the difficulty of theoretical analysis and the
other is numerical oscillations. More importantly, with some
proper assumptions, we get the strong and weak convergence
results. Numerical experiments also fully demonstrate that
compared with existing regularization learning algorithms,
such as the original Group Lasso, L2 regularization learn-
ing algorithm and the L1/2 regularization learning algorithm,
the smoothing Group Lasso regularization learning algorithm
has a better sparse effect. In addition, this regularization
method can be used to optimize the traditional BP neural net-
work and fuzzy neural network and extreme learningmachine
and so on.

APPENDIX
In this section, we will provide a thorough mathematical
treatment for Theorem 3 and Theorem 4.

Proof: Theorem 3 (i): Applying Taylor mean value
theorem with lagrange remainder, we have

Pi(w
m+1
i , xa)=Pi(wmi , x

a)+
i∑

j=1

∂Pi(wmi , x
a)

∂wmij
· 4wmij + R

m
a,i

(VII.1)

where

Rma,i =
1
2
(4wmi )∇

2
wiwiPi(t

m
i , x

a)(4wmi )
T (VII.2)

with [∇2
wiwiPi]m,n =

∂2Pi
∂wim∂win

, tmi = (tmi1, t
m
i2, . . . , t

m
ii ), and t

m
ij

(1 ≤ j ≤ i) are between wm+1ij and wmij .
That is

Rma,i

=
1
2
(4wmi )



∂2Pi
∂wi1∂wi1

∂2Pi
∂wi1∂wi2

· · ·
∂2Pi

∂wi1∂wi1
∂2Pi

∂wi2∂wi1

∂2Pi
∂wi2∂wi2

· · ·
∂2Pi

∂wi2∂wii
· · · · · · · · · · · ·

∂2Pi
∂wii∂wi1

∂2Pi
∂wii∂wi2

· · ·
∂2Pi

∂wii∂wii



(4wmi )
T (VII.3)

It is obvious that

∂2Pi
∂wi1∂wi1

= 0,
∂2Pi

∂wi2∂wi2
= 0, · · · ,

∂2Pi
∂wii∂wii

= 0. (VII.4)

Then

Rma,i=
1
2

i∑
j=1

i∑
s=1,s6=j

(4wmij ·
i∏

q=1,q6=s,j

〈wmiq, x
a
〉 · ‖xa‖2

·(4wmis)
T ). (VII.5)

Thus, we have

ϕm+1a,k − ϕ
m
a,k =

k∑
i=1

(Pi(w
m+1
i , xa)− Pi(wmi , x

a))

=

k∑
i=1

(
i∑

j=1

∂Pi(wmi , x
a)

∂wmij
· 4wmij + R

m
a,i) (VII.6)

Apply Taylor mean value theorem to fa(ϕ
m+1
a,k ) at ϕma,k ,

we have

fa(ϕ
m+1
a,k ) = fa(ϕma,k )+ f

′
a(ϕ

m
a,k )(ϕ

m+1
a,k − ϕ

m
a,k )

+
1
2
f ′′a (t

m
a,k )(ϕ

m+1
a,k − ϕ

m
a,k )

2 (VII.7)

where tma,k is between ϕ
m
a,k and ϕ

m+1
a,k .

Therefore, from the above equality (VII.7), we have

E(wm+1)− E(wm)

=

A∑
a=1

fa(ϕ
m+1
a,k )+ λ

k∑
i=1

i∑
j=1

h(wm+1ij )

−

A∑
a=1

fa(ϕma,k )+ λ
k∑
i=1

i∑
j=1

h(wmij )

=

A∑
a=1

[f ′a(ϕ
m
a,k )(ϕ

m+1
a,k − ϕ

m
a,k )+

1
2
f ′′a (t

m
a,k )(ϕ

m+1
a,k − ϕ

m
a,k )

2]

+λ

k∑
i=1

i∑
j=1

[h(wm+1ij )− h(wmij )] (VII.8)

Moreover, by the equality (VII.6), we have

E(wm+1)− E(wm)

=

A∑
a=1

f ′a(ϕ
m
a,k )(ϕ

m+1
a,k − ϕ

m
a,k )+

A∑
a=1

1
2
f ′′a (t

m
a,k )(ϕ

m+1
a,k − ϕ

m
a,k )

2

+λ

k∑
i=1

i∑
j=1

[h(wm+1ij )− h(wmij )]

=

A∑
a=1

f ′a(ϕ
m
a,k )(

k∑
i=1

i∑
j=1

(
∂Pi(wmi , x

a)

∂wmij
· 4wmij ))

+

A∑
a=1

f ′a(ϕ
m
a,k )(

k∑
i=1

Rma,i)+
A∑
a=1

1
2
f ′′a (t

m
a,k )(ϕ

m+1
a,k − ϕ

m
a,k )

2
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+λ

k∑
i=1

i∑
j=1

[h(wm+1ij )− h(wmij )]

=

A∑
a=1

f ′a(ϕ
m
a,k )(

k∑
i=1

i∑
j=1

(
∂Pi(wmi , x

a)

∂wmij
· 4wmij ))

+λ

k∑
i=1

i∑
j=1

[h(wm+1ij )− h(wmij )]+ α1 + α2 (VII.9)

Denote by α1 =
∑A

a=1 f
′
a(ϕ

m
a,k )(

∑k
i=1 R

m
a,i), α2 =

∑A
a=1

1
2

× f ′′a (t
m
a,k )(ϕ

m+1
a,k − ϕ

m
a,k )

2.

Next, we get
∑A

a=1 f
′
a(ϕ

m
a,k )(

∑k
i=1

∑i
j=1(

∂Pi(wmi ,x
a)

∂wmij
·

4wmij ))+ λ
∑k

i=1
∑i

j=1

[h(wm+1ij )− h(wmij )], α1 and α2 are simplified, respectively.

A∑
a=1

f ′a(ϕ
m
a,k )(

k∑
i=1

i∑
j=1

(
∂Pi(wmi , x

a)

∂wmij
· 4wmij ))

+λ

k∑
i=1

i∑
j=1

[h(wm+1ij )− h(wmij )]

=

k∑
i=1

i∑
j=1

A∑
a=1

f ′a(ϕ
m
a,k )

i∏
s=1,s6=j

〈wmis, x
a
〉 · xa · 4wmij

+λ

k∑
i=1

i∑
j=1

[h(wm+1ij )− h(wmij )]

=

k∑
i=1

i∑
j=1

(−
1
η
4wmij − λ∇wmij h(w

m
ij )) · 4w

m
ij

+λ

k∑
i=1

i∑
j=1

[h(wm+1ij )− h(wmij )]

≤ −(
1
η
−Mλ)‖4wm‖2 (VII.10)

where w̃mij is between w
m
ij and w

m+1
ij , ‖∇wmij∇wmij h(w̃

m
ij ))‖ ≤ M .

|

k∑
i=1

Rma,i|

=
1
2

k∑
i=1

i∑
j=1

i∑
s=1,s6=j

((4wmij ·
i∏

q=1,q6=s,j

〈wmiq, x
a
〉

·‖xa‖2 · (4wmis)
T ))

≤
1
2

k∑
i=1

i∑
j=1

i∑
s=1,s6=j

(
1
2
(‖4wmij ‖

2
+ ‖4wmis‖

2))C i−2
2 C2

2

=
1
2

k∑
i=1

i∑
j=1

i∑
s=1,s6=j

1
2
(‖4wmij ‖

2
+ ‖4wmis‖

2)C i
2

=
1
2

k∑
i=1

1
2
[

i∑
j=1

(i− 1)‖4wmij ‖
2
+

i∑
j=1

i∑
s=1,s6=j

‖4wmis‖
2]C i

2

=
1
2

k∑
i=1

1
2
· 2(i− 1)

i∑
j=1

‖4wmij ‖
2C i

2

≤
1
2
(k − 1)Ck

2

k∑
i=1

i∑
j=1

‖4wmij ‖
2

≤
1
2
(k − 1)Ck

2

k∑
i=1

‖4wm‖2 (VII.11)

Therefore, it follows from Assumption A1, Assumption
A2, we have

|α1| = |

A∑
a=1

(f ′a(ϕ
m
a,k )

k∑
i=1

Rma,i)|

≤

A∑
a=1

(|f ′a(ϕ
m
a,k )| · |

k∑
i=1

Rma,i|)

≤

A∑
a=1

C1 ·
1
2
(k − 1)Ck

2

k∑
i=1

‖4wm‖2 (VII.12)

=
1
2
A(k − 1)C1Ck

2

k∑
i=1

‖4wm‖2

|ϕm+1a,k − ϕ
m
a,k |

= |

k∑
i=1

(Pi(w
m+1
i , xa)− Pi(wmi , x

a))|

= |

k∑
i=1

i∏
j=1

〈wm+1ij , xa〉 −
k∑
i=1

i∏
j=1

〈wmij , x
a
〉|

≤

k∑
i=1

|

i∏
j=1

〈wm+1ij , xa〉 −
i∏

j=1

〈wmij , x
a
〉|

≤

k∑
i=1

[|
i−1∏
j=1

〈wm+1ij , xa〉(〈wm+1ii , xa〉 − 〈wmii , x
a
〉)|

+|

i−1∏
j=1

〈wm+1ij , xa〉 −
i−1∏
j=1

〈wmij , x
a
〉||〈wmii , x

a
〉|]

≤

k∑
i=1

[|
i−1∏
j=1

〈wm+1ij , xa〉(〈wm+1ii , xa〉 − 〈wmii , x
a
〉)|

+|

i−2∏
j=1

〈wm+1ij , xa〉(〈wm+1i(i−1), x
a
〉 − 〈wmi(i−1), x

a
〉)|

·|〈wmii , x
a
〉|

+|

i−3∏
j=1

〈wm+1ij , xa〉(〈wm+1i(i−2), x
a
〉 − 〈wmi(i−2), x

a
〉)| ·

|〈wmii , x
a
〉| · |〈wmi(i−1), x

a
〉| + · · ·

+〈|wm+1i1 , xa〉 − 〈wmi1, x
a
〉| · |〈wmii , x

a
〉||〈wmi(i−1), x

a
〉|

· · · |〈wmi2, x
a
〉|] (VII.13)
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By further calculation, we get

|ϕm+1a,k − ϕ
m
a,k |

≤

k∑
i=1

[|
i−1∏
j=1

〈wm+1ij , xa〉〈4wmii , x
a
〉|

+|

i−2∏
j=1

〈wm+1ij , xa〉〈4wmi(i−1), x
a
〉| · |〈wmii , x

a
〉|

+ · · ·

+〈|〈4wmi1, x
a
〉| · |〈wmii , x

a
〉||〈wmi(i−1), x

a
〉| · · · |〈wmi2, x

a
〉|]

≤

k∑
i=1

(C i
2‖4w

m
ii ‖ + C

i
2‖4w

m
i(i−1)‖ + · · · + C

i
2‖4w

m
i1‖)

≤ Ck
2

k∑
i=1

i∑
j=1

‖4wmij ‖ (VII.14)

Therefore, it follows from (VII.14), Assumption A1,
Assumption A2, we have

|α2| = |

A∑
a=1

1
2
f ′′a (t

m
a,k )(ϕ

m+1
a,k − ϕ

m
a,k )

2
|

≤ A · C1 · |ϕ
m+1
a,k − ϕ

m
a,k |

2

≤ A · C1 · (Ck
2

k∑
i=1

i∑
j=1

‖4wmij ‖)
2

≤
1
4
Ak(k + 1)C1 · C2k

2 · ‖4w
m
‖
2 (VII.15)

From (VII.9), (VII.10), (VII.12), and (VII.15), we have

E(wm+1)− E(wm)

=

A∑
a=1

f ′a(ϕ
m
a,k )(

k∑
i=1

i∑
j=1

(
∂Pi(wmi , x

a)

∂wmij
· 4wmij ))

+λ

k∑
i=1

i∑
j=1

[h(wm+1ij )− h(wmij )]+ α1 + α2

≤ −(
1
η
−Mλ)‖4wm‖2 +

1
2
A(k − 1)C1Ck

2

k∑
i=1

‖4wm‖2

+
1
4
Ak(k + 1)C1 · C2k

2 · ‖4w
m
‖
2

= −(
1
η
−

1
2
A(k − 1)C1Ck

2

k∑
i=1

(−
1
4
)Ak(k + 1)

×C1 · C2k
2 −Mλ)‖4w

m
‖
2 (VII.16)

Hence, we get
E(wm+1) ≤ E(wm).
The proof to (i) of Theorem 3 is completed.
Theorem 3 (ii): From the conclusion of (i), we get the

sequence {E(wn)} is monotonic decrease.
Also, we know that E(wm) ≥ 0, for m = 1, 2, 3, · · · , that

is to say {E(wm)} is bounded below.

By monotone bound theory, we know that there must have
E∗ ≥ 0 such that lim

m→∞
E(wm) = E∗.

So, the proof of Theorem 4.1 is completed.
�

Next, so as to get the Theorem 4.2, we need the following
Lemma.
Lemma 1 [44]: D ⊂ Rn is a compact set, let suppose f :

Rn
→ R is continuous and differentiable on D. And �̄ =

{x ∈ D|∇f (x) = 0} contains only finite number of points.
If a sequence {xk} ⊂ D satisfies

lim
k→∞
‖xk+1 − xk‖ = 0, lim

k→∞
‖∇f (xk )‖ = 0,

then, there exists x∗ ∈ �̄ such that lim
k→∞

xk = x∗.

Proof:
Theorem 4 (i):Letβ = 1

η
−

1
2A(k−1)C1Ck

2
∑k

i=1−
1
4Ak(k+

1)C1 · C2k
2 −Mλ > 0 by the assumption (A3), the inequality

(VII.16) is as follows:

E(wm+1)− E(wm) ≤ −β‖4wm‖2 (VII.17)

From (VII.17), we get

E(wm+1) ≤ E(wm)− βσm ≤ · · · ≤ E(w0)− β
m∑
k=0

σ k

Since E(wm+1) ≥ 0, we have

β

m∑
k=0

σ k ≤ E(w0)

Let n→∞, then

∞∑
k=0

σ k ≤
1
β
E(w0) <∞

This results in

lim
n→∞

σ n = 0

It follows from (VII.17) that

lim
m→∞

‖1wm‖ = 0. (VII.18)

Hence,

lim
m→∞

‖∇E(wm)‖ = 0. (VII.19)

Theorem 4 (ii):We noticed the (III.12), the error function
E(w) is continuous and differentiable. Considering (VII.18)
and (VII.19), Assumption (A4) and applying the Lemma (1),
the desired result can be easily obtained, i.e., there exists a
point w∗ ∈ D0 such that

lim
n→∞

(wn) = w∗

This completes the proof of theorem 4.
�
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