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ABSTRACT Detecting community structure is an important problem in complex networks. Recently,
the community detection method based on centers and neighbors (DCN) has been proposed, which is divided
into two stages: community center point detection and label propagation. It has a better result on community
detection of simple undirected graph than other algorithms. However, when there are two community centers
connected directly, the method of DCN fails to find both centers. Based on the DCN algorithm, this paper
proposes an optimization method based on visually-aided user interactions. By showing the local structure
of the discovered center point through the force-directed layout, the potential community centers that are
missing in DCN can be detected. We further propose the hierarchical visual clustering to assist users to
detect more community centers easier. In addition, to make the propagation of labels more stable, we propose
the multi-label propagation strategy based on importance which also preserves the labels proportion during
propagation. The experimental results on both artificial and real-world networks demonstrate that our
improved algorithm RefineDCN obtains better community detection results than the DCN algorithm.

INDEX TERMS Community detection, density peak, visualization assistance, multi-label propagation.

I. INTRODUCTION
The graph structure is an effective way to represent com-
plex network in reality, and community structure [1] is the
main feature of the network. A community [2] is a set of
closely-related nodes in the network. The nodes between dif-
ferent communities are only sparsely connected. The process
of finding a community from the graph is called community
detection, namely graph clustering. The purpose of commu-
nity detection is to assign nodes to different communities.
The correct division of node communities in the network
can be used for recommendation, such as recommending
friends or predicting what kind of movies a new user might
like based on the tastes of members in the same community.

A popular way of community detection is to detect the
community centers first, and then assign the remaining points
to different communities, so as to achieve community detec-
tion [3], [4]. The algorithm of FCC [3] uses the DPC
algorithm [5] to detect the community centers for network
data and propagate labels to the remaining points according
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to the label coverage rate of neighbor points. The method of
DCN [4] improves FCC with more reasonable definition of
node degree and uses the label coverage rate to propagate
labels to unlabeled nodes. These two methods [3], [4] can
detect communities effectively for many graph structures.
However, there are some cases that these two methods have
difficulties in dealing with. We find two specific situations in
which the above twomethods are unable to detect community
centers correctly or propagate the labels to nodes properly.
In the first situation, we find that two directly-connected
nodes of large densities can not be detected as center points
since they have low distances values according toDPC. So the
above algorithms based on DPC would fail to detect such
directly-connected centers. However, for some real graph
data such nodes need to be identified as centers. For the sec-
ond situation about label propagation, the propagation order
is based on the label coverage rate of neighbor points. The
node is assigned the most frequently-appeared label of neigh-
bor points. However, such strategy does not consider the label
distribution of neighbor points. It is possible that there is no
dominant label in the distribution of neighbor point labels
and multiple labels are equally the most frequent. Under such
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circumstance, the label is randomly selected to be assigned
to the node. This makes the propagation process unstable and
the result inaccurate.

In this paper, we propose refineDCN, which improves
DCN in terms of both community center points detection
and label propagation. For the directly-connected community
center points which can not be detected in DCN, we propose
an interaction-based approach to enable users find the missed
center points. Specifically, we propose to visually layout the
local graph structure of the nodes and enable users to inter-
actively specify the community centers based on visually-
encoded graph features. For the second problem of unstable
label propagation in DCN, we propose the importance-based
multi-label propagation strategy to improve the stability and
accuracy of label propagation.

In summary, the main contributions of this paper include:
1) More accurate community center points detected

through user interaction:The visually-encoded inter-
active interface helps users identify the community
center points that can not be detected by the original
DCN algorithm.

2) More stable network clustering results by
importance-based multi-label propagation algo-
rithm:The multi-label propagation algorithm based on
node importance improves both the stability and the
accuracy of label propagation to achieve more stable
clustering results.

3) Comprehensive experiments performed to demon-
strate the effectiveness of our method: We perform
comprehensive experiments on artificial benchmarks
and real-world network data to demonstrate the effec-
tiveness of our proposed method.

The rest of this paper is organized as follows. In Section 2,
we introduce the related work about graph community detec-
tion methods and label propagation algorithms. In Section 3,
we review DCN and discuss its problems. In Section 4,
we describe our method to optimize the DCN algorithm
in detail. We perform experiments on artificial and real-
world network data and compare the results in Section 5.
In Section 6, we combine hierarchical ideas with our
algorithm. And the summary and discussion are given in
Section 6.

II. RELATED WORK
In this section, we introduce the work related to our method,
including graph community detection and label propagation.

A. GRAPH COMMUNITY DETECTION
There are many clustering algorithms for graph community
detection. The work of KL algorithm [6], FM algorithm [7],
and spectral partitioning method [8] directly divide the graph
into several parts based on the graph partitioning method.
GN algorithm [1] obtains graph partition by continuously
removing the relatively important edges in the graph and the
concept of modularity is introduced in the GN algorithm. In
the work [2], [9] after GN algorithm, modularity is also used

as a criterion to evaluate the quality of graph partitioning.
Besides, general clustering algorithms can also be used for
community detection, such as distance-based k-means clus-
tering [10], density-based DBSCAN [11], and so on.

Recently, the graph clustering approaches have become
a hot research point which firstly identify the cluster num-
ber and cluster centers and then assign other nodes to
clusters [3], [4]. Li et al. [12] have reported a new commu-
nity detection method to estimate the optimal cluster num-
ber. A novel algorithm was proposed by Li et al. [13] for
detecting the leaders in dynamical network based on game
theory. Rodriguez et al. proposed the density-based clustering
algorithm DPC [5] to identify the cluster centers, which is
based on two assumptions: (1) the local density of the cluster
center is greater than the local density of its neighbors; (2)
the distance between the centers of different cluster is rel-
atively larger. The DPC regards the points satisfying these
two conditions as the cluster center points and then assigns
the remaining points according to the idea similar to k-means
clustering.

FCC [3] and DCN [4] use the DPC method for graph
clustering. FCC directly regards node degree as the node
density or considers the tightness of the relationship between
the node neighbors. DCN regards the sum of the node degree
and all its neighbors’ degrees as the node density. Both FCC
and DCN use the minimum graph distance as the distance
between the nodes. Then label propagation is performed from
the identified community center points by a multi-strategy
label propagation algorithm. However, if there is a direct con-
nection between two high-density nodes belonging to differ-
ent communities, they would not be identified as community
center points (The reason is explained in Section III). The
missing of proper community centers would greatly affect
the clustering effect since the subsequent label propagation
algorithm is based on the identified community center points.
In this paper, we propose a visually-aided method to show the
local structure of detected points for user to identify potential
community center points which are undetected in DCN.

B. LABEL PROPAGATION
Raghavan et al. use the Label Propagation Algorithm
(LPA) [14] for community detection. Each network node
is assigned a unique label. After the algorithm is finished,
nodes of the same label are assigned to the same community.
According to the label updating rule, the most frequent label
is selected from the node’s neighbors’ to be assigned to this
node. However, when there are multiple labels which are of
the same most frequent uses in its neighbor nodes, only one
is selected randomly according to LPA. This leads to the
problem of unstable label propagation and low accuracy of
community detection.

Recently-proposed methods tend to use the idea of multi-
label, that is, not to immediately reject other labels with
weaker attribution, but to preserve the label distribution of
each node during label propagation. LPANNI [15] considers
the similarity between the current node and its neighbors
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when updating the label, and the node inherits the label of its
neighbor according to the similarity. However, LPANNI does
not detect the community center points and it is unknown how
many communities there should be. LPANNI has to update all
nodes in each iteration, which increase the time complexity.

By detecting the community center points and then allo-
cating the remaining nodes, many unnecessary label updating
operations can be saved. CLBLPA [16] calculates the influ-
ence value of each node according to the weighted Leader
Rank algorithm [17], and then randomly selects k local max-
imum influence nodes as the community center points. The
label update order of CLBLPA is chosen randomly without
considering the impact of different update sequences, which
results in unstable results.

In this paper, we propose a multi-label propagation algo-
rithm, which considers the density value and distance value
of each node calculated in DPC as the importance of the node.
We perform label propagation according to the importance
order of the nodes, which maintains the stability of the label
propagation result.

III. DCN ALGORITHM AND ITS PROBLEMS
In this section, we describe DCN algorithm in detail and
analyze its inherent problems.

A. DCN ALGORITHM
The DCN algorithm contains two parts, the first part is
to identify the community center points, and the second is
multi-strategy label propagation.

1) IDENTIFY COMMUNITY CENTER POINTS
DCN adopts DPC algorithm to select the community center
points, in which the densities and the distances of the nodes
are calculated to determine cluster centers. The density of a
node in DCN is defined as the sum of the degree of itself and
its neighbors’ degrees.

The density of node i is calculated as:

ρi =
∑
j

ηj + ηi (1)

where ηj is the degree of the neighboring node j, and ηi is the
degree of node i itself.

The distance of node i is defined as the minimum of the
shortest path distance between node i and all other nodes
of higher densities in Equation (2). The path distance is
calculated according to Eta-reach-distance(ERD)

δi =


1min(dij) = 1
2min(dij) = 2
3min(dij) ≥ 3

(2)

dij is the shortest path length between node i and node j and
node j represents any node of the higher density than that of
node i.

Based on ρi and δi, γ is calculated to represent the normal-
ized density-distance value, which is defined as:

γi = ρ
∗
i × δ

∗
i (3)

ρ∗
i
and δ∗i are the normalized values of ρi and δi after

standard deviation normalization.
Chebyshev inequality [18] is adopted to set an upper bound

for selecting the nodes with abnormally large γ as community
center points, and unique labels are assigned to the center
points for label propagation in the next step.

2) MULTI-STRATEGY LABEL PROPAGATION
First the seed region is formed by traversing all nodes in the
network and assigning the same label to the nodes directly
connected to the center points. Then we compute the labeled
rate for all nodes as:

ψi =
ni
Ni

(4)

where ni is the number of labeled neighbor nodes of node i
and is Ni the number of all neighbor nodes of node i.
The node of highest labeled rate is chosen to be assigned

the label which is of the highest occurrences in the neigh-
bor nodes. Then the labeled rate of the neighbor nodes are
recalculate.

B. PROBLEMS
There are two main problems in DCN.

First, the density-distance value γ involves both the density
value and the distance value. When there are two community
center points (the groundtruth center points that have not been
all identified) directly connected in the network, the distance
value of the lower-density node is set to 1 according to the
definition of the distance. Therefore, it is highly possible that
the lower-density node will be not be detected due to its low
distance value. This leads to the missing of one community
center point and affects the subsequent multi-strategy label
propagation result. For example, in Figure 4 we show the
network containing two directly-connected nodes which are
the dark blue node and the node of yellow circle. Although
these two nodes are directly-connected, we can see clearly
there are two clusters corresponding to them and they should
both be detected as the center nodes. However, only the dark
blue node is identified as the center point by DCN and the
yellow circle one is not due to its distance value being 1.
So we need to address this situation where both directly-
connected nodes are center points. We find the visual layout
result of network structure provides helps for users to select
the center points, so we propose the visual exploration for
new center points in the next section.

Second, in the part of multi-strategy label propagation, the
DCN calculates the labeled rate of each unlabeled node, and
choose the node of the highest labeled rate to update its label.
The larger the labeled rate is, the richer neighbor information
the node contains. The node is updated to be assigned the
label of the most occurrences in its neighbors. However,
the most frequently-occurred label in the neighbors of the
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FIGURE 1. The Hierarchical Visual Clustering model has three views to assist users to participate in iterative clustering. (a) The Decision View contains
decision graph and density-distance list, which help users identify the initial center points; (b) The Super-Nodes View shows the clusters represented as
nodes obtained by importance-based multi-label propagation. According to the ratio of the inner and outer radius of the super nodes, the users find
the cluster that need to be further improved by detecting more center nodes within it; (c) The Cluster View shows the node-link structure of the cluster
selected by users to be improved. After observing the local structures of the cluster, nodes of large densities in the sub-cluster are added as the new
center points.

largest-labelled-rate node is not necessarily the label that
occupies the dominant position of the neighbors of all nodes.
For example, if the node of largest labelled rate has many
different labels of close proportions for its neighbor nodes,
the most-occurred label may not be dominant compared with
other nodes’ labelled neighbors. Besides, in some cases there
will be multiple labels of the same highest occurrences in
the neighbor nodes. Under current multi-strategy label prop-
agation algorithm of DCN, one of these multiple labels is
randomly selected, which affects the stability and accuracy
of the label propagation result. So specifying a certain label
for a node during label propagation is not good in some
situations as we analyzed above. It is better to keep the label
algorithm.

IV. THE PROPOSED ALGORITHM
We improve the above two problems in DCN. For missing
community center points, we visualize the local structure of
the identified community center point for users to interac-
tively search for potential center points of high density. For
the problem in the multi-strategy label propagation, we pro-
pose a propagation algorithm based on node importance. The
above two parts are integrated to form our hierarchical visual
clustering model for network data. In the following of this
section, we first give the overview of our hierarchical visual
clustering, then the details of each part are described in the
following sub-sections.

A. OVERVIEW OF THE HIERARCHICAL VISUAL
CLUSTERING
The flowchart of the proposed Hierarchical Visual Cluster-
ing model is shown in Figure 1. We design three views to
assist users to participate in clustering, which are the Deci-
sion View(a), the Super-Nodes View(b) and the Cluster
View(c). The users interact with these three views to get the
final clustering results.

The Decision View contains a decision graph and
density-distance (γ ) list as shown in Figure 1(a). From the
Decision View, users can identify initial center points for
clustering. We explain the details of the Decision View in the
sub-section B.
After we get the initial center points, the importance-based

multi-label propagation is invoked to obtain the clustering
result as shown in the Super-Nodes View in Figure 1(b). The
multi-label propagation for class labeling is described in the
sub-section C.
The three nodes in Figure 1(b) represent the three clusters

after propagation, called Super-Nodes. We visually encode
each super node as a black ring containing a red circle. The
size of each super-node is proportional to the number of nodes
in the cluster. The thickness of the black ring is inversely
proportional to the Aggregation Coefficient (AC), which is
defined as:

AC =
2E

K (K − 1)
(5)
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where E is the number of edges in the cluster,K is the number
of nodes in the cluster. The closer AC is to 1 (i.e. the thinner
the black ring is), the closer the cluster is to the complete sub-
graph. For example, for the super-node A in Fig 1(b), the thin
black ring indicates that the cluster structure of super-node A
is close to a complete graph shown in Figure 2.

FIGURE 2. The cluster structure of super-node A. All nodes in the cluster
are closely related, which is close to a complete graph.

By observing the thickness of the black ring in the Super-
Nodes View, we detect clusters less tightly connected and
that are need to be further divided, such as the super-node B
in Figure 1(b). To further decompose super-node B, we design
the Cluster View (Figure 1(c)), which shows the node-link
graphs of the super-node B where users find new center
points. The details of new center point detection are shown
in sub-section D.

After new center points detected, the label propagation is
re-used to get the new Super-Nodes View. Users again find
the super-node to be improved in the Super-Nodes View and
detect the new potential center points in the Cluster View. The
above process is iteratively executed to achieve a hierarchical
network clustering, in which users are actively involved by
interacting with the three views to get the final clustering
results.

Algorithm 1 Hierarchical Visual Clustering
Require: Center_points C
For node in density-distance list:
If node’s γ > Threshold ε
C+ = node

End if
End for

Super-nodes View←Multi-label propagation (C)

For each Super node in Super-nodes View:
s_node← Super node
If s_node’s black circular ring > threshold θ
C+ = Detect new center points in the Cluster View of

the s_node
End if
Update Super-nodes View← Multi-label propagation (C)

End for

Ensure: each Super node’s black circular ring > δ

The whole process of hierarchical visual clustering in
shown in Algorithm 1. The interactive algorithm stops
when users find there is no need to divide the super-node.

Alternatively, we can define a threshold value θ to make our
algorithm stop when the thicknesses of all super-nodes’ black
ring meet the threshold. To do this, we compute the value
of the thickness of the black ring as 1 minus the ratio of
radii of red circle to that of the black circle, i.e. 1 minus
AC coefficient. When the value is below θ , our algorithm
indicates to users that they can stop finding new center points.
The value of θ is set to be 0.1. The details of Algorithm 1
including functions and parameters are explained in the fol-
lowing sub-sections.

To explain our method conveniently without losing gen-
erality, we describe our method on the synthetic net-
work LFR2. LFR2 is an artificial data set generated
by the Lancichinetti-Fortunato-Radicch (LFR) benchmark
network [19]. LFR2 contains 3 communities, 1200 nodes
and 3576 edges. The relevant parameters of LFR2 are shown
in Table 1.

TABLE 1. Data sets used in the experiments.

B. IDENTIFYING COMMUNITY CENTER POINTS
For LFR2, two community center points can be identified
by the original DCN algorithm, and the decision graph is
shown in Figure 3. The decision graph is computed by DPC
algorithm to help users find the center points with obviously
higher density-distance value. Here, the x-axis shows the
node index, and the y-axis represents the density-distance
value γ . The two scatter points above the red solid line
which is computed by the Chebyshev inequality are two
points that are of significantly larger density-distance val-
ues than other points. In our algorithm, the parameter ε of
the Chebyshev inequality is set to be 2. The corresponding
nodes in the network (node 1198 and 1199) are the identi-
fied community center points, each one is assigned a unique
label.
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FIGURE 3. Decision graph for LFR2.

Sometimes multi-points of close density-distance values
would be so close in the view that it becomes difficult for
users to discern all these points. So in the Decision View
the decision graph combined with the density distance list
provide the interfaces for users to choose the initial center
points. For example, although it is difficult to find three center
points in the decision graph in Figure 1(a), combined with the
density-distance list, we know that there are actually three
nodes that can be used as the initial center points.

C. CLASS LABELING BY MULTI-LABEL PROPAGATION
BASED ON IMPORTANCE
In order to avoid randomly selecting the label of the node
needs from multiple most frequent labels of the neighbor
nodes, we use the multi-label idea to preserve the influence
proportions of multiple labels of its neighbors. Different from
the original propagation algorithm, we consider the propor-
tions of multiple labels during the propagation process. In our
algorithm, we sort the nodes according to their importance
which is defined by the density-distance value γ of the node.
We propagate the labels according to the order of the sorted
nodes from the highest importance to the lowest.

Firstly, we set an initial multi-label l for each node in
the network. The initial multi-label of node i is defined as a
c-dimensional vector:

li = 〈0, 0, ..., 0〉 (6)

where c is the number of all center points. Every center point
has a unique serial number from 1 to c. The i th center
point’s multi-label is: 〈0, . . . 1, . . . , 0〉, where the ith item
of the vector is set to 1 and all the other items are 0. The
nodes directly connected to only one of the center points are
assigned the same label with the center point to form the seed
region.

Then for each iteration, the unlabeled node with the highest
importance is chosen to assign the calculated label. The new
label of node i is calculated as:

li =
∑n

m=1
Ji,m × lm (7)

where n is the number of labeled neighbor nodes of node i,
and the Ji,mis the Jaccard similarity [20] between node i and
the neighbor node m. The similarity is calculated as:

Ji,m = J (A,B) =
|A ∩ B|
|A ∪ B|

(8)

A and B are the sets of neighbor nodes of two points. The
more have both sets the same neighbor nodes, the greater the
similarity is.

From Equation (7) and (8), we can see that more similar
nodes contribute more to the computation of the label of
current node.

The multi-label li is normalized to get the normalized
multi-label l∗i which is used as the final multi-label of node i.
The normalization is computed as:

l∗i =
li∑c

k=1 li,k
(9)

where li,k is the kth item of normalized multi-label of node i.
The normalized multi-label l∗i is the final multi-label of
node i.

The propagation stops when the number of unlabeled node
is zero. For each node, the label of the maximum proportion
is chosen as the final label. The algorithm of multi-label
propagation based on importance is shown in Algorithm 2.

Algorithm 2Multi-Label Propagation
Require: Network G = (V ,E), |V | = n, |E| = m, community
centers C, |C| = v.

For i = 1:v do
If the ith center’s neighbors only connect to one center
then Propagate the center’s label to them

End if
End for

Sorting the remained unlabeled nodes in a descending order
by their importance

While the number of unlabeled node is larger than zero Do

1. Select the node with highest importance
2. Assign the label according to its neighbors’ labels and

the structural similar between them
3. Normalize the multi-label of the node

End while

For i = 1: n do
Select the label of the maximum proportion as the final

label of the ith node
End for

Ensure: the partition result

D. VISUAL EXPLORATION FOR NEW CENTER POINTS
We adopt the force-directed graph layout method [19] to
show the network structure. The force-directed graph layout
is a widely-used method to draw graphs in an aesthetically-
pleasing way, which provides the overview of the network
structure. The users can identify obvious cluster structure
from force-directed layout.

From the Cluster View in Figure 1(c), there are three dis-
tinct sub-cluster structures after force-directed graph layout,
and the center point (the red point b) is located in one of
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these sub-clusters. From this cluster view of super-node B,
users find new center points and add them to the center points
queue by clicking it. In Figure 1(c), users select two red
points d and e as new center nodes which are added into the
center point queue. The updated center point queue is passed
to the procedure of label propagation in the Super-Nodes
view for new pass of label propagation to get the updated
clustering result. Next, we explain the visualization details
of graph-layout of the Cluster View.

First, in order to make users easily find the node of the
largest density, we render the nodes in the cluster view in a
way that their sizes are proportional to their density values
(Figure 4). The larger the nodes are, the more likely they are
the center nodes. When the sizes of nodes are too close to tell
the difference, there is a list above the Cluster View which
shows the concrete density values. For the sake of showing
structures clearly, the nodes are of the same size in the Cluster
View of Figure 1(C). In real operations, the nodes are of sizes
proportional to densities to enable users find proper center
pints.

FIGURE 4. The 2nd-order local subgraph of node 1199 in LFR2.

Secondly, when there are too many nodes or edges in the
Cluster View, it would be difficult for users to detect potential
center points due to visual clutter. In this situation, it is not a
good choice to display the whole graph of the super-node for
users to explore. Here, we define the 2nd-order local subgraph
of a center point. The 2nd-order subgraph contains the set
of nodes that are less than or equal to 2 in terms of the
shortest path distance to the current center point. The 2nd-
order subgraph is visualized as the local structural diagram of
a center node. The 2nd-order local subgraph of node 1199 in
LFR2 is shown in Figure 4, where the two blue nodes are
the two identified community center points (node 1198 and
1199), and the remaining gray nodes represent the nodes that
has not been assigned a label.

The 2nd-order local subgraph show the local structure of
one detected point for user to determine if there is any cluster
with no detected center points, which solves the problem of
limited display and reduces the computational complexity of
graph layout.

We can clearly see that there are three clusters in Figure 4,
and only two clusters have the labeled center nodes (in blue).
For the cluster in the lower right part of the figure, there is
no identified center point in this cluster since all nodes are
gray. So we interactively mark the node with the largest size
as the community center point, which is shown by the yellow

circle. This node is directly connected to the dark blue node,
so its distance value is set to 1. Such distance value results
to a relatively small density-distance value γ that cannot be
recognized in the DCN algorithm. However, in our method,
users can find this center point by visually exploring the local
graph structures.

So far, the three center points (Figure 4) are added to the
center points queue. Next, the same visual exploration is
performed on the remaining center points of super node B
in the queue. Other center points found in the exploration
process are also added to the center points queue. We keep
performing such visually-aided exploration process until all
the center points of super node B in the queue have been
explored.

E. THE TIME AND SPACE COMPLEXITY OF OUR METHOD
Assume the network has n nodes and m edges, the time
complexities to compute all nodes’ densities and distances are
O(n) and theO(m) respectively. Assume the average degree of
each node is k , the time complexity ofmulti-label propagation
is O(kn). So the whole time complexity for the first pass is
O(kn+ m), which is the same with DCN.
As for each iteration in the following pass, only multi-label

propagation is needed to be invoked to get the new clustering
results, so the time complexity of each later iteration isO(kn).
Compared with DCN, our model has more computing time
in terms of hierarchical refine passes to find more new center
points. This additional computing time is dependent on spe-
cific network. For some network we can find all cluster with
few passes, yet for others multiple passes are needed to find
all clusters. However, the more additional time our method
costs, the more new clusters are found which is beneficial to
more accurate clustering result.

Next, we analyze the space complexity of our algorithm.
The space complexity of computing all nodes’ densities and
nodes’ distances are both O(n). Assume the number of com-
munities is c, the space complexity of label propogating is
O(cn). So the whole space complexity of our algorithm is
O(cn), which is linearly related to the number of nodes. Our
algorithm’s space complexity is nearly the same with DCN’s
space complexity O(n). The procedures to compute nodes’
densities and distances are the same for both methods. As for
label propagation, our algorithm saves the neighbor labels’
distribution which makes it O(cn) compared with O(n) of
DCN. Since the number of communities c is far less than n,
we consider the space complexities of both methods almost
the same.

V. EXPERIMENTS AND RESULTS
In this section, we perform experiments to verify the effec-
tiveness of our improved methods.

A. DATA SETS
The experiment was conducted on six data sets, including two
artificial data sets and four real-world data sets. The data sets
are shown in Table 1.
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LFR1 and LFR2 are generated by the Lancichinetti-
Fortunato-Radicch (LFR) benchmark network [19] and the
parameters of LFR1 and LFR 2 are shown in Artificial data
sets in Table 1. Karate, Dolphins, Polbooks and Football are
real-world data sets. Here n denotes the numbers of vertices.
km is the averaged node degree, µ is the mixing parameters,
t1 is the negative exponent for the degree distribution, t2 is the
negative exponent for the community size distribution, cmin
and cmax is the minimum and maximum size of communities
respectively.

B. EVALUATION INDICATIONS AND COMPARISON
ALGORITHMS
Four evaluation indicators are used as indicators for evalu-
ating community detection, which are Accuracy (Acc) [23],
Standard Mutual Information (NMI) [24], Rand Index
(ARI) [25], and Modularity (Q) [1].

Acc is calculated as [23]:

Acc =

∑c
i=1 ai
n

(10)

where ai is the number of correctly classified nodes which
belong to the ith community, c is the number of communities,
and n is the number of nodes.
Assume we have the ground-truth communities partition

R = {R1,R2, · · ·RP}, whereP is the number of communities.
We also have S = {S1,S2, · · · ST}which is the partition result
obtained from community detection algorithm and T is the
number of detected communities.

NMI is defined as [24]:

NMI =
MI (R, S)
√
H (R)H (S)

(11)

where MI(R,S) is the mutual information between R and S,
H(R) and H(S) are the entropy of R and S respectively [24].
ARI is calculated as [25]:

ARI=
2(N00N11−N01N10)

(N00+N01)(N01+N11)+(N00+N10)(N10+N11)
(12)

where N11 is the number of node pairs belonging to the same
community inR and S.N00 is the number of node pairs that do
not belong to the same community in the community division
in R and S. N01 is the number of pairs not belonging to the
same community in the community division S obtained by the
algorithm but belonging to the same community in the actual
community division R. N10 is the number of pairs belonging
to the same community in S but not belonging to the same
community in R.
Q is defined as [1]:

Q =
1
2m

∑
ij
(Aij −

KiKj
2m

)δ(Ci,Cj) (13)

where m is the number of edges. Aij is the element of the
adjacency matrix, Ki(Kj) is the degree of node i (j), and δ()
is the Kronecker function, Ci (Cj) is the ith (jth) community.

And the five algorithms used to compare with our algo-
rithm are: Louvain [26], Label Propagation Algorithm (LPA),
Infomap [27], Eigenvector [28] andDCN algorithm. The time
complexities of the above five compared algorithms are listed
in Table 2.

TABLE 2. The time complexities of the five compared algirthms.

In Table 2, n is the number of nodes andm is the number of
edges in the network. I is the number of iterations executed
in Infomap. Compared with these five algorithms our method
has linear complexity with regard to the number of nodes and
edges, which makes it efficient.

C. EXPERIMENTAL RESULTS
In Table 3-8 we show the experimental results of our method
compared with that of the other five algorithms.

TABLE 3. Experimental results of LFR1 dataset using different community
detection algorithms.

TABLE 4. Experimental results of LFR2 dataset using different community
detection algorithms.

Table 3-8 list the ground truth and the results of six data sets
by six algorithms. Community is the number of communities
detected by the algorithm. NMI, ARI, Acc and Q are the four
indicators adopted in this paper.

We identify new center points for data sets LFR2 (Table 4)
and Football (Table 8) with the hierarchical visual cluster-
ing method. Comparing the results of DCN and refineDCN
in Table 4 and Table 8, we see the results by refineDCN are
better than original DCN for all indicators.
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TABLE 5. Experimental results of Karate dataset using different
community detection algorithms.

TABLE 6. Experimental results of Dolphins dataset using different
community detection algorithms.

TABLE 7. Experimental results of Polbooks dataset using different
community detection algorithms.

TABLE 8. Experimental results of Football dataset using different
community detection algorithms.

For data sets in Table 3, 5, 6, 7, no new center points are
identified by our visually-aided method, which means that
refineDCN only worked one pass to get the clustering results.
However, all results by refineDCN are still better than that

of DCN except for data set Karate in Table 5 where both
methods produce the same best result. This is due to our
importance-based multi-label propagation algorithm.

From the results in Table 3-8, we find that our method
has improvements over original DCN. Besides DCN, our
method gets better results for nearly all data sets than other
five algorithms. As for the football dataset which has many
centers, our method is not as good as that of Infomap. Still
our result is comparable with Louvain’s and much better than
that of DCN.

VI. CONCLUSION
In this paper we propose an improved clustering method
based on DCN. The first improvement is the visually-guided
interactive approach for users to find potential center points.
The local structural diagram of the identified community
center point is displayed by the force-directed graph layout.
Users can explore the local structural diagram to see if there
exist potential community center points. For data set with
many clusters, in this paper we adopt the idea of hierar-
chical clustering. According to visual cues associated with
the Aggregation Coefficients of the cluster, users can select
the cluster which is not tight enough to detect the potential
cluster centers within it. The second is the improved multi-
label propagation algorithm based on node importance to
determine the clusters. We compare our method to DCN and
other algorithms to show that our algorithm generate better
results nearly for each indicator on all data set.

However, there are still some limitations for our method
in this paper. The potential community is explored through
the local 2nd-order structural diagram. Although the number
of nodes and edges has been reduced, for some large-scale
network, the number of nodes of the local structural diagram
may still be so large that the local graph is visually cluttered
with force-directed layout.

Since the graph layout is an independent stage of our
algorithm, in our future work, we plan to replace it with other
scalable dimensionality reduction layout algorithms such as
MDS [29] and t-SNE [30] to handle large-scale local graphs
to find potential center points.

In the complex networks research community, there are
more andmore work devoted to multiplex networks [31], [32]
and dynamic networks [33] with the development of wire-
less network or social networks, in the future we will work
on to extend our method to deal with multiple correlated
networks or dynamic network topology by integrating more
advanced local subspaces projection techniques [34] for users
to detect the center points.
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