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ABSTRACT High-resolution radar imaging has to be accomplished within the constraints of aperture size,
frequency, and acquisition time. To achieve effective and reliable imaging, we introduce a compressed
sensing (CS) technology to spread spectrum through-the-wall radar imaging. Using the sparseness of
the spread spectrum through-the-wall radar echo in the correlation domain and the sparsity of the target
information in the imaging region, the feasibility of CS technology for reducing the number of observation
points and the number of samples per observation point is verified.Moreover, considering the high sensitivity
of CS technology to clutter, receiver cancellation is adopted to remove the strong clutter information present
in echo signals. The results of numerical simulations show that CS technology can provide very efficient
sampling, thereby significantly reducing the amount of data required. Compared to back-projection imaging
based on traditional sampling technology, the proposed CS technique can obtain almost the same satisfactory
resolution and quality imaging results using only 0.72% of the total data. This will reduce the hardware costs
and significantly shorten the data-acquisition and data-transfer times.

INDEX TERMS Compressed sensing, radar imaging, signal processing, spread spectrum, through-the-wall.

I. INTRODUCTION
Counterterrorism, disaster relief, fire assistance, and building
layout determination require the detecting of objects behind
obstacles. Compared with other penetration technologies,
through-the-wall radar imaging (TWRI) has gained research
interest owing to its good penetrability and high-resolution
imaging capabilities [1], [2]. According to the different sig-
nals that are transmitted, through-the-wall radars (TWRs)
can be approximately classified into impulse radar, stepped-
frequency continuous wave radar, frequency modulated con-
tinuous wave radar, noise radar, and pseudorandom noise
radar [3]. As a type of pseudorandom noise radar, spread
spectrum radar has been widely applied in TWR surveillance,
owing to its easy implementation, low probability of intercep-
tion, strong anti-noise performance, compact equipment, and
accurate time-of-arrival (TOA) estimation [4]–[6].

Considering a spread spectrum TWRI scenario, to obtain
sufficiently accurate target imaging results with high resolu-
tion in both azimuth and range, large-aperture radar systems
and ultra-wideband signals for TWRs are required. However,
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large-aperture radar systems require costly physical sensors
with a large physical aperture, or the placement of single
sensors at many different positions to form a large synthetic
aperture. This increases the hardware costs, acquisition time,
and data storage requirements [7], [8]. Similarly, thewider the
bandwidth of the transmitted signal, the higher the sampling
frequency of the analog-to-digital converter (ADC) required
by the radar receiver; thus, the sampling data will include a
large amount of echo data. This places tremendous pressure
on the processing, transmission, and storage of the signal.
Furthermore, these echo data are mainly redundant, and it
is wasteful to acquire and process data samples that will be
discarded later. Therefore, new methods for efficient data
acquisition are needed to reduce hardware costs and speed
up radar imaging.

Compressed sensing (CS) is a signal-processing method
used to reconstruct a signal using fewer measurements or sig-
nal samples without compromising the imaging quality [9].
CS is an appropriate approach to solve the above-mentioned
problems. If the signal is sparse or has a sparse represen-
tation in a known dictionary, CS can recover the signal
from a small amount of measurement data using a nonlinear
algorithm [7].
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Because the target behind the wall occupies fewer pixels in
the imaging domain, its imaging information is sparse in the
spatial domain. Based on this sparsity, Yoon and Amin were
the first to use CS technology in stepped-frequency radar
imaging [10]. Baraniuk and Steeghs subsequently applied
CS to synthetic aperture radar imaging systems that use
pulsed chirp or pseudo-noise sequence [11]. Huang et al. [12]
reported that the amount of data required to reconstruct
the target spatial image combined with CS theory is only
7.7% of the delay-and-sum beamforming. Moreover, CS
technology was further developed in [13], [14], and [15].
Zhang et al. used the singular value decomposition algo-
rithm to obtain the singular value of compressed radar data,
and discussed through-the-wall human detection using ultra-
wideband radars [13]. Lagunas et al. used a reduced set
of spatial-frequency observations in stepped-frequency radar
platforms to achieve joint wall clutter mitigation and CS
application [14]. In [15], CS significantly reduced the number
of receivers and could still obtain accurate focus imaging of
a target that is behind single or multilayer walls. Zhang et al.
studied CS with spread spectrum radar, based on the sparsity
of target information in the imaging area [16]. When the
scene is sparse, CS provides very efficient sampling, which
significantly reduces the amount of data required. Therefore,
the study of spread spectrum TWRI based on CS technology
will help expand the practical uses and application areas of
spread spectrum radar.

In this work, considering the spread spectrum TWRI, the
transmitted signal was a sinewavemodulated by a pseudoran-
dom code (M-sequence), after which its TOA was obtained
from the correlation domain after despreading and correlation
processing [6], [17]. To reduce the influence of strong clutter
on the CS performance, the receiver cancellation method was
introduced. Based on the sparseness of the spread spectrum
radar echo after demodulation and correlation processing [6],
the Gaussian random measurement matrix compresses the
time domain signal, and the orthogonal matching pursuit
(OMP) algorithm is used to recover the correlation domain
data samples from a small number of measured values [18],
[19]. Based on the spatial sparseness of the target informa-
tion in the imaging area, data obtained from fewer obser-
vation points are used to complete high-quality imaging of
the target behind the wall, which further reduces the total
amount of data required for imaging. In this work, we intro-
duced the theoretical basis of this method, and simulated
and analyzed the feasibility and performance of CS technol-
ogy applied to spread spectrum TWRI from many aspects.
Numerical simulation results fully prove its effectiveness, and
this research promotes the process of practical application of
CS technology.

The remainder of this paper is organized as follows:
Section II describes the basic theory of CS technology;
Section III illustrates how CS is used in the data-acquisition
process of spread spectrum radar; Section IV presents the
results of numerical simulations and their analysis; conclud-
ing remarks are presented in Section V.

II. CS THEORY
This section introduces the basic theory of CS. Further details
can be found in [20], [21]. The sparseness or compressibility
of signals is an important prerequisite and the theoretical
basis for CS technology [22]. Assuming, the original signal
X ∈ RN×1 is S-sparse,8 is a knownmeasurement matrix that
projects a high-dimensional signal X into a low-dimensional
space, and the sampling result Y can be expressed as

Y = 8X. (1)

Therefore, the CS problem is to solve the underdetermined
equation Y = 8X to obtain the original signal X based on
the known measured valueY and the measurement matrix 8.
However, the general natural signal X itself is not sparse and
requires sparse representation on a sparse basis, i.e.,

X = 92, (2)

where 2 ∈ RN×1 is the sparse coefficient vector of X in
dictionary 9 ∈ RN×N . Then, the final equation can be
described as

Y = 8X = 892 = V2, (3)

where V = 89 is called the sensing matrix.
Under normal circumstances, the number of equations

is significantly smaller than the number of unknowns. The
equation has no definite solution and cannot reconstruct the
signal. However, because the signal is S-sparse, assuming
that 8 in the above equation satisfies the restricted isometry
property (RIP) [23], the S coefficients can be accurately
reconstructed from the M measurements to obtain an opti-
mal solution. Then, the underdetermined equations Y = V2

can be obtained by solving the problem of minimizing the
0-norm, which is expressed as

min ‖2‖l0 s.t. Y = V2, (4)

Knowing Y and V, and solving 2, the original signal X is
then obtained using (2) [14].

III. APPLYING CS IN DATA ACQUISITION OF SPREAD
SPECTRUM RADAR
In this section, the data measurement and processing of
spread spectrum radar are introduced, and the application of
CS for data acquisition is explained.

A. DATA PROCESSING OF SPREAD SPECTRUM
RADAR SIGNAL
The transmitted signal of the spread spectrum radar can be
expressed as

ST (t) = Ms(t) sin(2π f0t), (5)

whereMs(t) is anM-sequence (a type of pseudorandom code)
of period TM and f0 is the center frequency. After despreading
and correlation processing, the received signal R(n) can be
transformed from the time domain to the correlation domain,
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FIGURE 1. Despreading and sliding correlation processing of the spread
spectrum radar signal.

FIGURE 2. Spread spectrum radar time-domain echo signal and its
corresponding correlation-domain signal waveform.

and then the TOA of the received signal can be obtained from
the peak position in the correlation domain.

The data-processing method [24] adopted in this study is
illustrated in Fig. 1. First, R(n) is multiplied by a sine wave
and a cosine wave with center frequency f0, respectively. Sec-
ond, after despreading, the signal is multiplied by the locally
generated M-sequence, and the integrals for those products
are computed over the M-sequence period TM . Once the time
exceeds TM , theM-sequence is regenerated after a phase shift
of τ = phase(TM

/
(1023)). The demodulated signal is then

multiplied by the regenerated M-sequence. These steps are
repeated until 1023 periods of TM have passed. Finally, the
correlation-domain signal X [k] can be acquired.
Fig. 2 shows a set of time-domain echo signals received

by a spread spectrum TWR receiver and its corresponding
correlation-domain signal waveform. The time-domain sig-
nal does not contain any zero points; thus, it is not sparse.
However, after processing the data using the method illus-
trated in Fig. 1, the signal includes only a few non-zero
points, as shown in its corresponding correlation-domain sig-
nal waveform. The correlation-domain signal is sufficiently
sparse for the application of the CS technique.

B. APPLYING CS IN DATA ACQUISITION
This section explains the application of CS for data acquisi-
tion. As shown in Fig. 1, the despreading can be described
as

Rexp = R ∗ e−2π f0t , (6)

where Rexp is the received signal after despreading. Con-
sidering that the M-sequence moves one chip at a time, the

correlation processing can be expressed as

Ms1 Ms2 Ms3 · · · Ms1021 Ms1022 Ms1023
Ms1023 Ms1 Ms2 · · · Ms1020 Ms1021 Ms1022
Ms1022 Ms1023 Ms1 · · · Ms1019 Ms1020 Ms1021
Ms1021 Ms1022 Ms1023 · · · Ms1018 Ms1019 Ms1020
...

...
...

. . .
...

...
...

Ms4 Ms5 Ms6 · · · Ms1 Ms2 Ms3
Ms3 Ms4 Ms5 · · · Ms1023 Ms1 Ms2
Ms2 Ms3 Ms4 · · · Ms1022 Ms1023 Ms1



×



Rexp−1
Rexp−2
Rexp−3
Rexp−4
...

Rexp−1021
Rexp−1022
Rexp−1023


=



X1
X2
X3
X4
...

X1021
X1022
X1023


MJ ∗ Rexp = X (7)

where Msi is the ith chip of the M-sequence (which con-
tains 1023 chips), MJ is a matrix that includes 1023 shifted
M-sequences, Rexp−i is the ith element of the received signal
Rexp, and Xi is the ith element of the correlation-domain
signal X. Equation (7) is an example of the M-sequence
including 1023 chips, and can be transformed as

Rexp =MJ−1 ∗ X = 9 ∗ X, (8)

where (·)−1 is the inverse operation. Similar to Fig. 2,
the time-domain signal Rexp contains many non-zero points
and the correlation-domain signalX contains only a few non-
zero points; therefore, Rexp is sparse on MJ−1. Thus, MJ−1

can be the dictionary 9 of CS. The detailed CS processing
procedure is illustrated in Fig. 3.
Before applying CS, the very strong clutter in the received

time-domain signal R(t) must be suppressed, because the CS
technique is very sensitive to clutter. After clutter suppres-
sion, the signal is demodulated, and Rexp is measured by a
known Gaussian random matrix 8. The measurement vector
YJ×1 can then be obtained as

YJ×1 = 8J×N ∗ RexpN×1 , (9)

where J is the projection measurement dimension. The mea-
surement matrix 8 compresses the N -dimensional signal
Rexp into a J -dimensional (J � N ) signalY. From a physical
point of view, the random measurement matrix increases the
degree of freedom of the measurement data, thereby reducing
the amount of sampled data.
Assuming that 8 satisfies the RIP criterion, the CS theory

can first solve the sparse coefficient 2 by solving the inverse
problem of (3). Then, it can correctly recover the signal X
with S-sparse from the M-dimensional measured projection
value Y. This is a 0-norm minimization problem (see (4)),
which is a nondeterministic polynomial complete problem;
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FIGURE 3. Data-processing flow of the application of CS for data
acquisition of spread spectrum radar.

thus, it is often transformed into a 1-norm minimization
problem:

min ‖X‖l1 s.t. Y = VX. (10)

At present, the OMP is the most important reconstruction
algorithm in CS. The computational complexity of the OMP
algorithm is O(J2S2). It is implemented as follows:
Step 1: Initialize the residual r0 = Y, number of iterations

t = 1. V0is an empty matrix, index set 30 is empty.
Step 2: Select the column number of the column most

relevant to the margin nt = arg max
j=1,··· ,N

(rt−1,Vj) in V, and

store it in the index set 3t = 3t−1 ∪ nt .
Step 3:Update the selected column spaceVt =

[
Vt−1,Vj

]
.

Step 4: Solve the least-squares problem by QR decompo-
sition, ensuring the minimum residual, and update the vector
2̂ = argmin

2̂

∥∥∥Y− Vt2̂

∥∥∥
2
.

Step 5: Update the residual rt = Y− Vt2̂.
Step 6: If the stopping condition t = S is achieved, stop

the OMP operation. Otherwise, set t = t + 1 and return to
Step 2.

IV. NUMERICAL SIMULATIONS AND RESULTS ANALYSIS
This section verifies the feasibility of applying CS in the data
acquisition of spread spectrum radar and analyzes the factors
that influence the results of TWRI with CS.

A. DETECTION ENVIRONMENT
To reduce the hardware costs and time required for ana-
lyzing the factors that influence TWRI [25], we adopted
a full-wave simulation technique—specifically, the finite-
difference time-domain (FDTD) method [26]—to simulate
the signal. The FDTD method is an accurate approach for
numerous electromagnetic applications. It is formulated by
discretizing Maxwell’s curl equations over a finite volume
and approximating the derivatives with centered difference
approximations. The FDTD method requires a large number

FIGURE 4. FDTD through-the-wall model.

of data update calculations, and the running time of the
program that computes the simulated signal is significantly
lengthened, especially because a complete spread spectrum
cycle needs to be simulated. The C# programming language,
the TeeChart plug-in (Visual Studio 2012), and the parallel
computing capabilities of the CUDATM architecture graphics
card GPU (NVidia GeForce GTX 760) are used for FDTD
programming, which greatly reduces the signal simulation
time.

As shown in Fig. 4, a two-dimensional FDTD through-
the-wall model was developed with a spatial size of 1x =
1y = 0.5 cm and time-step of1t = 8.333 ps. The imaging
region was a 2 m × 2 m rectangle and the thickness of the
perfectly matched layer (PML) was 0.5 m. The targets were
metal squares with side lengths of 5 cm. There were two
targets in the region, with coordinates of (0.5 m, 1.25 m) and
(1.5 m, 1.25 m). The thickness, conductivity, and permittivity
of the wall were 20 cm, 0.03, and 4.5, respectively. The trans-
mitter T (−0.5 m, 0 m) and two receivers (R1(−0.55 m, 0 m)
and R2(−0.45 m, 0 m)) were placed next to the wall. The
transmitter antenna T transmits a spread spectrum signal
with a central frequency of 2 GHz and an M-sequence fre-
quency also of 2 GHz; the spread spectrum signal includes
1023 chips. Once a signal is received at one observation point,
the transmitter and receivers move to the next observation
point simultaneously. They move simultaneously 151 times
at 2 cm intervals.

The time-domain echoes of 151 observation points com-
plete the projection measurement of CS through the same
measurement matrix 8 (projection measurement dimension
J = 500); thus, the total amount of data was 500 × 151.
After reconstruction by theOMPmethod, the relevant domain
information of all observation points was obtained and con-
verted into a TOA signal, as shown in Fig. 5(a). The TOA
signal recovered by all the observation points was processed
by the BP imaging algorithm to complete the target imag-
ing [27], as shown in Fig. 5(b). Only clear wall information
is obtained in the image, with no information on the target
image behind the wall.

The traditionally sampled TOA signal and its BP imaging
results are shown in Figs. 5(c) and 5(d), respectively. In the
imaging results, the wall and target information are visible.
The ADC parameters are 2 GHz and 16 bits. Comparing
Figs. 5(b) and 5(d), there is a significant difference in imaging
results, which indicates that CS projection measurements are
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FIGURE 5. Comparison of CS projection measurement and traditional
ADC sampling measurement imaging results. (a) TOA signal recovered
after CS projection measurement, (b) BP imaging result of (a),
(c) traditionally sampled TOA signal, (d) BP imaging result of (c).

very sensitive to direct waves and wall clutter with strong
amplitudes. Therefore, before the measurement matrix is
used for CS projection measurement, we need to suppress the
strong clutter in the echo signal.

B. CLUTTER MITIGATION METHODS
Clutter mitigation is very important for TWRI, because strong
direct waves and clutter reflected from the wall will reduce
the ability of the OMP algorithm to recover TOA signals.
Thus, in this section, we introduce several clutter mitigation
methods.

The first clutter mitigation is background subtraction [28],
which is the ideal approach because clutter can be removed
completely. However, background subtraction needs to mea-
sure the same scene both with and without the targets, which
is impossible in practical applications. The second method
is adaptive exponential averaging [29], which is one of the
most widely applied methods for clutter mitigation. However,
the receiver cannot guarantee that the two sets of echoes mea-
sured at different observation points will have the same start
times. The direct wave and wall-reflected wave information
in the two sets of echoes cannot be consistent, so adaptive
exponential averaging cannot be used for CS clutter elimina-
tion processing.

The third method is receiver cancellation, which is illus-
trated in Fig. 6. The spacing of the receiving antennas (R1 and
R2) and the transmitting antenna T remains consistent and as
small as possible to avoid dispersion of the target information
energy after the clutter is removed. The echoes received at R1
and R2 are directly cancelled, and the obtained signals are
recorded as Rd (t). Signals R1(t) and Rd (t) are simultane-
ously projected and measured, and the measurement vectors
Yd and Y are obtained and reconstructed by the OMP algo-
rithm. We can then compute the correlation-domain vectors

FIGURE 6. Diagram of receiver cancellation processing.

FIGURE 7. Influence of projection measurement dimension on TOA signal
recovery. (a) J = 500, (b) J = 50, (c) J = 20, (d) J = 10.

Xd and X. Signal X only recovers direct waves and strong
clutter, and signal Xd only recovers the target information.
Xd will then refer to the direct wave position information in
signalX to complete the conversion of the correlation-domain
signal to the TOA signal.

C. MEASUREMENT DIMENSION ANALYSIS
The projection measurement dimension J directly affects the
number of observations required. In this study, we set J =
500, 50, 20, and 10, respectively, and performed projection
measurements and reconstruction on the cancellation echo
Rd (t) of 151 observation points. The restored TOA signal is
shown in Fig. 7. As J decreases, the recovery of the target
information in the TOA signal declines, especially for the area
where the aggregation of the target information is damaged
by the receiver cancellation method. Obviously, the larger the
value of J , the better the recovered TOA signal. However,
the total amount of data required for the CS projection mea-
surement will also be greater. Therefore, it is necessary to find
a suitable measurement dimension J based on the recovery
requirements.

The TOA signals shown in Fig. 7 were processed by the
BP imaging algorithm; the results are presented in Fig. 8.
Comparing the four subfigures, it can be seen that the imaging
result for J = 50 is no worse than that for J = 500, and
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FIGURE 8. Influence of projection measurement dimension on BP
imaging results. (a) J = 500, (b) J = 50, (c) J = 20, (d) J = 10.

the erythema in the focal area is actually smaller. This also
explains from another perspective that a large J is not always
beneficial. The imaging result for J = 20 is slightly worse
than that for J = 50; however, the red spot representing the
target can still be clearly identified. When J = 10, the red
spot becomes slender and unfocused, although both targets
can still be identified.

Comparing the amount of data required to generate
Figs. 5(d) and 8(c), it is apparent that the CS projection
measurement reduces the total amount of data required for
imaging, from at least 1023 × 151 to 20 × 151. The CS
technology significantly reduces the amount of data collected
by the spread spectrumTWR and reduces the data storage and
operation requirements.

D. ROBUST PERFORMANCE ANALYSIS
TWR functions in complex environments with external noise
that are likely to have a significant impact on target detection
imaging. In this section, we focus on the robust performance
of the CS approach for spread spectrum TWRI. Gaussian
white noise with SNR = 20dB was added to the echo signals;
the obtained TOA signal is shown in Fig. 9. Comparing
Figs. 7(b) and 9(a), it can be seen that when J = 50, the pres-
ence of noise significantly interferes with the recovery effect
of the TOA signal. Most of the target information could not be
successfully recovered, and many error messages appeared in
the developed algorithm. When J = 120, most of the target
information in the TOA signal was restored.

Fig. 10 shows the results of BP imaging using the above
TOA information. It can be observed that increasing J
can significantly improve the imaging quality of the tar-
get. When the CS projection measurement technique is
used for the spread spectrum TWR, the robust performance
can be improved by increasing the projection measure-
ment dimension J . In summary, CS projection measurement

FIGURE 9. Effect of noise on TOA signal recovery. (a) J = 50, SNR = 20 dB,
(b) J = 120, SNR = 20 dB.

FIGURE 10. Effect of noise on the results of BP imaging. (a) J = 50, SNR =
20 dB, (b) J = 120, SNR = 20 dB.

technology is feasible in practical applications of spread
spectrum TWRI.

E. FEASIBILITY OF REDUCING THE NUMBER OF
OBSERVATION POINTS
Although the number of measurements per observation point
has been reduced from 1023 to 20 by the application of CS
technology, BP imaging still uses data from 151 observation
locations. To reduce the total amount of data required for
imaging further, this section explores the feasibility of using
CS technology to reduce the number of observation points.

In general, the number of target pixels in the imaging
region is much smaller than the total number of pixels therein.
Therefore, in theory, the sparsity of the target information in
the imaging region can be utilized to complete the imaging
of the target by CS technology. Fig. 11 compares BP imaging
and CS imaging results under different amounts of data.
The CS technology was executed on an Inter(R) Core(TM)
i5-6500 CPU @ 3.2 GHz, with 8 GB DDR4 2133 MHz
memory. The runtime of the experiment was 574.4 s.

Figs. 11(a) and 11(b) show the target image obtained by
the BP algorithm. The ADC sample length is 1023, and
the echo data of four and nineteen observation points are
extracted at equal intervals. The total data volume is 1023×4.
Fig. 11(c) is a BP imaging result using partial data (35× 4).
Fig. 11(e) shows the clear target image obtained by the CS
algorithm [30] and the total data volume is 35×4. Obviously,
the CS algorithm reduces the total amount of data required for
spread spectrum TWRI to 0.72% ((35× 4)

/
(1023× 19) =

0.72%) of the BP algorithm. Comparing Figs. 11(a), 11(c),
and 11(e), the total amount of data used for CS imaging
is not only much less than that for BP imaging, but the
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FIGURE 11. Comparison of BP imaging and CS imaging results under
different total amounts of data. (a) BP imaging (1023× 4), (b) BP imaging
(1023× 19), (c) Partial data BP imaging (35× 4), (d) Partial data BP
imaging (20× 6), (e) CS imaging (35× 4), (f) CS imaging (20× 6).

proposed technique also obtains better imaging results, which
verifies that CS can be applied to each observation point.
The amount of data and the number of observation points
have both been reduced, and the data requirements for spread
spectrum TWRI have been decreased.

When the CS projection measurement dimensionM = 20,
the total amount of data is 20× 4, and the CS imaging result
is very poor. This indicates that CS technology cannot reduce
the total amount of imaging data without limitation. When
the number of observation points increases to six, the total
amount of data rises to 20 × 6 and the CS imaging result is
improved, as shown in Fig. 11(f). This indicates that increas-
ing the number of observation points when the CS projection
measurement dimension J is low can improve the CS imaging
result.

F. TWRI FOR A HUMAN BODY
In TWRI, the most interesting detection target is the human
body. The dielectric constant of the human body is tested in
the frequency range of 1 GHz to 3 GHz, wherein a uniform
dielectric human body model replaces the complete human
body model [31], as shown in Fig. 12(a). In Fig. 12(b),
an approximate ellipse is used to represent the standard
human body cross section (0.35 m × 0.25 m) and the center

FIGURE 12. Comparison of BP imaging and CS imaging results of a
human body. (a) TWRI of a human body, (b) Standard human body cross
section (0.35 m× 0.25 m).

FIGURE 13. Comparison of BP imaging and CS imaging results for a
human body. (a) BP human body imaging (1023× 35), (b) CS human body
imaging (35× 6).

point coordinates (1 m, 1 m); the parameters of the human
body model are εr = 50 and σ = 1 S/m.
Using partial data BP imaging (1023×35) and CS imaging

(35×6), we obtained the imaging results for a human body as
shown in Fig. 13(a) and Fig. 13(b). By comparing these two
results, it can be clearly seen that the result of CS imaging
is clear and there is less clutter, which further verifies the
effectiveness of CS technology.

V. CONCLUSION
In this study, we verified the feasibility of combining CS
technology with spread spectrum TWR to reduce the total
imaging data requirements. Although the receiver cancella-
tion method may affect the target information, it can remove
the strong clutter very effectively, making it possible to com-
bine CS projection measurement with spread spectrum TWR.
At each observation point, the amount of data to be mea-
sured by spread spectrum TWR can be significantly reduced,
alleviating the requirement of data storage during operation.
Compared with BP imaging, CS technology can reduce the
total amount of data required for imaging, using just 0.72% of
the total data used by spread spectrum TWR, and can achieve
the same excellent image resolution as fully sampled data
without threshold processing. In addition, the CS projection
measurement completes the high-frequency ‘‘analog sam-
pling’’ in the analog signal domain, significantly reducing
the requirements of the spread spectrum TWR for ADCs
and related processing circuits. Moreover, the latest signal
recovery algorithm can shorten the calculation time, improve
the reconstruction accuracy, and enhance the robustness of
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the reconstructed signal to noise. Therefore, the combination
of CS technology and spread spectrum TWR has extensive
application and actual measurements will be conducted in
future work.
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