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ABSTRACT Since optimal portfolio strategy depends heavily on the distribution of uncertain returns,
this article proposes a new method for the portfolio optimization problem with respect to distribution
uncertainty. When the distributional information of the uncertain return rate is only observable through a
finite sample dataset, we model the portfolio selection problem with a robust optimization method from the
data-driven perspective.We first develop an ambiguous mean-CVaR portfolio optimization model, where the
ambiguous distribution set employed in the distributionally robust model is aWasserstein ball centeredwithin
the empirical distribution. In addition, the computationally tractable equivalent model of the worst-case
expectation under the uncertainty set of a cone is derived, and some theoretical conclusions of the box,
budget and ellipsoid uncertainty set are obtained. Finally, to demonstrate the effectiveness of our mean-CVaR
portfolio optimization method, two practical examples concerning the Chinese stock market and United
States stock market are considered. Furthermore, some numerical experiments are carried out under different
uncertainty sets. The proposed data-driven distributionally robust portfolio optimization method offers some
advantages over the ambiguity-free stochastic optimization method. The numerical experiments illustrate
that the new method is effective.

INDEX TERMS Portfolio optimization, data-driven, mean-CVaR, Wasserstein metric, distributionally
robust.

I. INTRODUCTION
The portfolio optimization problem was studied by
Markowitz [1] in 1952, who first proposed a systematic
method of mean-variance to quantify portfolio return and
risk. The mean-variance methodology has become the most
popular way to solve the problem of portfolio optimization.
Moreover, it was subsequently expanded into a pioneering
book [2]. For more recent researches on portfolio opti-
mization, the reader may refer to [3]–[5], which provides a
useful reference for handling portfolio selection problems
for both researchers and practitioners. The core of modern
portfolio theory involves balancing return and risk, determin-
ing an effective portfolio strategy, and allocating capital to
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multiple available assets, to minimize risk while maximizing
returns [6]. In the case of maximizing the portfolio return
while minimizing risk, the optimal portfolio strategy depends
heavily on the underlying hypothesis on the uncertainty of
asset return and the choice of risk measure.

In general, the expectation is used to describe return, and
a widely accepted measure of risk is value at risk (VaR)
[7], [8]. However, to overcome the limitations of VaR, such
as the lack of subadditivity, Rockafellar and Uryasev [9]
proposed a modified version of conditional value at risk
(CVaR), which was defined as the mean of the tail distri-
bution exceeding VaR. Further, Alexander and Baptista [10]
demonstrated that a CVaR constraint is tighter than a VaR
constraint if the CVaR and VaR bounds coincide for a
given confidence. Ben-Tal et al. [11] illustrated that the
CVaR approximation of the probability constraint is the
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best among the approximations yielded by our generating-
function-based approximation scheme. CVaR is currently a
popular risk measure suggested by theoreticians and market
practitioners [12], [13].

To accommodate the uncertainty of return in the portfolio
optimization model, we usually use mathematical methods
to analyze the historical data in the market and attempt to
establish an optimization model. However, in the context of
massive data in the financial market, identifying how to use
historical data reasonably and effectively is the key to solving
the portfolio optimization problem [14]. Decision makers
hope to obtain available information about the future return
of stocks through historical data and to describe the distri-
bution information of uncertain return as much as possible.
To avoid the loss caused by unsuccessful investment, several
optimization methods have been proposed. According to the
way in which the uncertainty is described, these methods can
primarily be classified into two groups: stochastic optimiza-
tion and robust optimization. Stochastic optimization takes
advantage of known distribution information, which governs
the random return. However, it is often impossible to obtain
the full knowledge of future returns and determine the true
distributions in reality: instead, they should be estimated from
historical data. Moreover, the distribution of forecast errors is
inferred from the historical data, and therefore, sufficient his-
torical data are needed but are nearly always unavailable [11].
Such difficult unpredictability provides a strong incentive for
an investor to adopt distributionally robust optimization.

Distributionally robust optimization is a modeling pro-
gram, adopting the worst-case approach, where the worst case
is chosen from a proscribed ambiguity distribution set. Dis-
tributionally robust optimization research was first proposed
by Scarf [15], and much progress has been made in recent
years [16]–[19]. Among these researchers, Chang et al. [16]
investigated a distributionally robust scheduling problem on
identical parallel machines based on a distributional set,
specified by the support and estimated moment informa-
tion. Delage and Ye [17] proposed a model that described
uncertainty in both the distribution form (discrete, Gaussian,
exponential, etc.) and as moments (mean and covariance
matrix). Xu et al. [19] proposed two discretization schemes
for solving the distributionally robust optimization: one for
the dual approach and the other directly through the ambigu-
ity set. More recently, the distributionally robust optimization
method has also become increasingly popular in the portfolio
field with respect to ambiguous sets. Liu and Liu [20] devel-
oped a novel parametric credibilistic optimization method for
the project portfolio selection problem. Kang et al. [14] pre-
sented a computationally tractable optimization method for a
robust mean-CVaR portfolio selection model under the con-
dition of distribution ambiguity. Rujeerapaiboon et al. [21]
designed fixed-mix strategies that offered similar per-
formance guarantees as the growth-optimal portfolio by
using methods from distributionally robust optimization.
Van Parys et al. [22] discussed a stock portfolio pricing
problem, where the distributional information was limited to

second-order moment information in conjunction with struc-
tural information.

The key ingredient is to choose the ambiguity distribution
set for the distributionally robust optimization model. A good
ambiguous set should better facilitate a tractable represen-
tation of the distributionally robust optimization model as
a structured mathematical problem that can be solved with
optimization software. Scholars usually construct a distribu-
tion set according to large-scale historical data. It is necessary
for a good ambiguous set to contain the true data-generating
distribution with high probability guarantee.

The data-driven method has been subsequently pro-
posed. For the time being, there are several data-driven
approaches for distributionally robust optimization to con-
struct ambiguous sets: see, for example, [23], [24] and the
references therein. Sample average approximation is a widely
used method for data-driven decision making under the
condition of uncertainty [25]. For further understanding
regarding the data-driven method of distributionally robust
optimization, interested readers can refer to the following
literature. Çetinkaya and Thiele [26] investigated an iterative
data-driven approximation of a problem where the investor
sought to maximize the expected return of his or her portfolio,
subject to a quantile constraint, given historical realizations of
stock returns. Fernandes et al. [27] provided a new perspec-
tive on robust portfolio optimization, wherein they imposed
an intuitive loss constraint for the optimal portfolio consid-
ering asset returns in a data-driven polyhedral uncertainty
set. Chi et al. [28] proposed a data-driven robust model of
portfolio optimization with relative entropy constraints based
on an instance-based credit risk assessment framework.

Data-driven studies concern data analysis and var-
ious statistical methods to construct ambiguous sets.
Bertsimas et al. [29] presented a new, systematic schema
for constructing uncertainty sets from data using statis-
tical hypothesis tests, including the χ2-test, G-test, and
Kolmogorov-Smirnov test. Wang et al. [30] adopted likeli-
hood estimation to structure the ambiguous set. Gupta [31]
proposed a Bayesian framework for assessing the relative
strengths of data-driven ambiguity sets in distributionally
robust optimization. Jiang and Guan [32] and Zhao and
Zhang [33] formulated data-driven optimization models with
phi-divergence.

The distributionally robust optimization program with the
Wasserstein ambiguity set can often be reformulated as a
finite convex program. The Wasserstein ambiguity set con-
tains all distributions that satisfy certain convex constraints.
It is close to a nominal or most likely distribution with respect
to the prescribed probability metric. The Wasserstein ambi-
guity set was first used by Pflug and Wozabal [34] in the
context of portfolio selection optimization. Recently, research
on the Wasserstein metric has become increasingly popular.
Hanasusanto and Kuhn [35] demonstrated that the distribu-
tionally robust linear program was equivalent to a co-positive
program or that it could be approximated arbitrarily closely
by a sequence of co-positive programswhen the ambiguity set
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was composed of a 2-Wasserstein ball centered at a discrete
distribution. Carlsson et al. [36] considered a distributionally
robust version of the Euclidean traveling salesman problem,
in which the authors computed the worst-case spatial distri-
bution of demand against all distributions whose Wasserstein
distances to an observed demand distribution were bounded
from above. Duan et al. [37] proposed an optimal power flow
model that minimized the expectation of the quadratic cost
function with respect to the worst-case probability distribu-
tion and guaranteed that the chance constraints were satisfied
for any distribution in the ambiguity set with the Wasserstein
ball centered at the empirical distribution.

To some extent, our work in this article has a relationship
with the research [39], which supposes a polytope uncertainty
set, while our paper develops a more general form of uncer-
tainty set, i.e., the uncertainty set of random return is cone.
There is no discussion about the Wasserstein ambiguity set
under a cone representation in the existing literature, which
motivates us to address this issue in this article. Due to the
difficulty of obtaining the optimal portfolio strategy, the semi-
infinite portfolio optimization problem is transformed into
a finite convex programming problem under the convexity
assumption, in which the support set of random return is a
cone. It is worth noting that the equivalent models derived
under various uncertainty sets are also different. As a result,
three kinds of equivalent models are obtained under the
conditions in which the uncertainty set is a box, budget or
ellipsoid. Furthermore, some practical cases pertaining to the
Chinese stock market are considered to illustrate our new
modeling ideas.

In comparison with the exiting literature, the contribu-
tions to the area of distributionally robust portfolio opti-
mization and management include the following summarized
aspects.

1) A new data-driven mean-CVaR portfolio optimization
framework for the distributionally robust linear opti-
mization model is developed, in which the ambiguous
set employed in the distributionally robust model is the
Wasserstein ball centered at the empirical distribution
and the empirical distribution is based on a sample
dataset.

2) In our new model, the worst-case expectation reduces
to the optimal value of a linear convex program when
the cone representation is used in the proposedWasser-
stein ambiguous set. To obtain the computationally
tractable linear convex programming model, some the-
oretical results are discussed in detail. Specifically,
three equivalent models under the cones of box, budget
and ellipsoid are derived.

3) To demonstrate the effectiveness of our proposed
model, we address some practical cases pertaining to
the Chinese stock market and analyze the parame-
ters of the model through the computational results.
To demonstrate the advantage of our new method,
we compare the proposed data-driven distribution-
ally robust portfolio optimization method with the

traditional ambiguity-free stochastic optimization
method via numerical experiments.

4) A general modeling method for portfolio optimization
problem is presented in this article. The model is also
applicable to stock markets in other countries, except
for the Chinese stock market. Further, some numerical
experiments based on the United States stock market
are performed to demonstrate the generality of the
model.

This article is structured as follows. Section II presents
mean-CVaR portfolio optimization for the distributionally
robust linear optimization model. Moreover, we develop
the computationally tractable equivalent representation of
the robust mean-CVaR portfolio model with respect to the
Wasserstein ambiguous set. In Section III, a small-scale prac-
tical case study is addressed to demonstrate the validity of
proposed equivalent models, and the models are based on the
box and budget support sets. The computational results of
the two models under different parameters are analyzed and
discussed. Furthermore, a large-scale numerical experiment
is presented in Section IV. The comparison of data-driven
distributionally robust portfolio optimization method and the
ambiguity-free stochastic optimization method is included in
this section. Section V concludes the paper.
For simplicity, the following notations and variables are

employed throughout this article to develop the data-driven
mean-CVaR portfolio optimization model. ξ ∈ Rm represents
the random return vector of m stocks. x ∈ Rm denotes
the portfolio allocation proportion in m stocks. r(·, ·) is the
function of portfolio return. loss(·) is the expectation of loss
function. P ∈ P is the distribution of random vector ξ ,
where P is a set of family distributions. The support set of
distribution family P is4, which is the available information
set for describing the distribution family. 4̂N denotes the
dataset comprising N independent samples of stock returns.
P̂N is a discrete empirical probability distribution supported
by 4̂N . dw(·, ·) refers to the Wasserstein metric. ε denotes
the distance of Wasserstein metric, that is, the radius of
Wasserstein ball. K is a closed convex pointed cone with a
nonempty interior, and K∗ is its dual cone. The semidefinite
cone of size n, denoted by Sn+. H

n
+ denotes the Hermitian

semidefinite cone of size n. A is a data matrix of dimension
n × m, B is a data matrix of dimension n × k, and c is an
n-dimensional vector. Diag(·) represents a diagonal matrix
with the elements of the vector on the main diagonal. Given a
norm ||ξ ||p = (

∑m
i=1 |ξi|

p)
1
p on Rm, the dual norm is defined

by ||ξ ||q = (
∑m

i=1 |ξi|
q)

1
q ,where p, q 6= 0 and 1/p+1/q = 1.

ξ̂ i is a m-dimensional vector, which represents the i-th real-
ized value of random return vector for i = 1, . . . ,N . The
conjugate of h(ξ ) is defined as h∗(y) = supξ∈Rm y

Tξ − h(ξ ).
δ4 denotes the conjugate of the characteristic function of
support 4. ϕi and ψi are m+ 1 dimensional decision vectors
for i = 1, . . . ,N . In addition, 3,0 and � are the parameters
of uncertainty set of box, budget and ellipsoid respectively.
α is referred to as the risk level coefficient of CVaR. η denotes
the weight coefficient.
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II. PORTFOLIO OPTIMIZATION PROBLEM UNDER
WASSERSTEIN METRIC
The portfolio optimization problem pertains to allocating
capital over a number of available stocks in order tomaximize
the return on the investment while minimizing the risk. In this
section, wewill study the portfolio optimization problemwith
respect to the Wasserstein metric. A new robust mean-CVaR
portfolio optimization model is established firstly, and then,
the computationally tractable equivalent form is derived with
respect to the Wasserstein metric.

A. ROBUST MEAN-CVaR PORTFOLIO OPTIMIZATION
MODEL
Investors select m stocks from the Chinese stock market
whose returns are captured by the random vector ξ =
(ξ1, . . . , ξm)T. The vector of percentage weights x = (x1,
. . . , xm)T denotes the amounts of investment in m stocks, and

x ∈ D = {
m∑
j=1

xj = 1, x ≥ 0}.

When portfolio x invests the percentage of available
capital xj in stock j for j = 1, . . . ,m, its return equals

r(x, ξ ) = xTξ .

Moreover, −r(x, ξ ) is called a loss function.
Investors always attempt to distribute their capital to dif-

ferent stocks in the hope of maximizing returns. However,
the return of a stock is affected by various factors, such as eco-
nomics, politics, law and culture. Under the influence of such
multitudinous factors, investors usually employ the expected
value of return to measure the quality of portfolio allocation
strategies. A natural approach to generate optimal values r
is to approximate the distribution P of random vector ξ with
a discrete empirical probability distribution, which is also a
data-driven view [39].

The expected value of the loss function is

loss(ξ ) = EP[−r(x, ξ )], (1)

where P is the distribution of the stock return. When the
distribution P of random vector ξ is obtained, the optimal
approximation of Eq. (1) is closely related to the CVaR.
It is defined as

CVaRα(−r) = min
e∈R
{e+

1
α
EP
{max[−r(x, ξ )− e, 0]}, (2)

the min in the right-hand side of Eq. (2) is attained, and

Pr{−r(x, ξ ) > CVaRα(−r)} ≤ α,

where α ∈ (0, 1) is referred to as the risk level of the CVaR
with respect to the distribution P. The distribution informa-
tion of random vector ξ is always described by historical data
in parctice. However, the estimated CVaR may contain con-
siderable estimation errors with limited historical data. It is
very difficult for investor to deal with the worst-case situation
over the set of probability distributions, which is defined by

the limited information available [14]. In order to effectively
deal with the problem, the worst-case CVaR risk measure
with distribution ambiguity is provided in this article. When
the parameter of risk level α ∈ (0, 1) is given, the worst-case
CVaR of portfolio x = (x1, . . . , xm)T is defined by

max
P∈P

e+
1
α
EP
{max[−r(x, ξ )− e, 0]},

the distribution of random vector ξ belongs to an ambiguity
distribution setP . Thus, we obtain the following distribution-
ally robust bi-objective portfolio optimization model:

min
x

max
P∈P

EP[−r(x, ξ )]

min
x,e

max
P∈P

e+
1
α
EP
{max[−r(x, ξ )− e, 0]}

s.t. x ∈ D, e ∈ R. (3)

To find the optimal portfolio strategy or the optimal
value of return, we first solve the bi-objective optimiza-
tion model (3) by using a weighted sum method. The
two objective functions of model (3) can then be com-
bined into the following single objective function with
weight η ∈ [0, 1],

min
x∈D,e∈R

max
P∈P
{ηEP[−r(x, ξ )]+ (1− η)(e

+
1
α
EP
{max[−r(x, ξ )− e, 0]})}

= min
x∈D,e∈R

max
P∈P
{EP[max{−(

1− η
α
+ η)xTξ

+ e(1− η)(1−
1
α
),−ηxTξ + e(1− η)}]}.

While the weight coefficient η transforms the dual-objective
function model (3) into a single-objective model, it expresses
an attitude of investors towards loss and risk. Put it differently,
the values of η indicate whether investors pay more attention
to loss or risk. The weight coefficient η is also called risk
preference parameter, which quantifies the investor’s risk-
aversion [39]. Therefore, the robust mean-CVaR portfolio
optimization model can be reexpressed as

min
x,e

max
P∈P

EP[f (x, ξ )]

s.t. x ∈ D, e ∈ R, (4)

where

f (x, ξ ) = max{−(
1− η
α
+ η)xTξ + e(1− η)(1−

1
α
),

−ηxTξ + e(1− η)},

and the distribution family P is supported on 4.
From the model (4), we can observe that it has a finite

number of decision variables, and the inner maximization
over probability distribution of the worst-case expectation
program is infinite dimensional. In order to better understand
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model (4), we introduce an artificial variable t and rewrite the
model into the following equivalent form:

min
x,e

t

s.t. EP[f (x, ξ )] ≤ t, ∀P ∈ P,
x ∈ D, e ∈ R. (5)

It is obvious that the model (5) is a semi-infinite pro-
gramming with a finite number of variables and an infi-
nite number of constraints. In optimization theory, many
optimization problems involve some set of variables and
some set of constraints. If the optimization problem has a
finite number of variables and an infinite number of con-
straints, or an infinite number of variables and a finite
number of constraints, then the optimization problem is
called semi-infinite programming [38]. Therefore, the robust
mean-CVaR portfolio optimization model (4) is equivalent
to a semi-infinite programming. It is necessary to determine
the structure of the ambiguous distribution set before solv-
ing it. In the existing literature, there are many ambiguous
sets based on different measures, such as φ-divergence [31]
and Kullback-Leibler divergence [32]. In recent years, some
researchers ( [17] and [39]) try to solve the problem by
means of the Wasserstein metric. In the following subsection,
we will develop a more general form of the uncertainty set.

B. EQUIVALENT MODEL UNDER WASSERSTEIN METRIC
In this subsection, the equivalent form of the robust
mean-CVaR portfolio optimization model will be derived
with respect to the Wasserstein metric. In practice, the exact
distribution information of random variables must be deter-
mined according to a large amount of historical data. Due
to the noise and outliers in the data or the imperfect data
of newly listed assets, determining the exact distributions of
future returns is often a difficult assignment.

This is not to suggest that there are no successful solu-
tions. Note that the distribution P is not precisely known
and is often partially observable through a finite set of N
independent samples of past realizations of the random vec-
tor ξ . The dataset comprising these samples is denoted by
4̂N = {ξ̂ i}i≤N ⊆ 4. To generate data-driven solutions,
we approximate the distribution P with a discrete empirical
probability distribution P̂N supported by 4̂N . Thus,

min
x∈D,e∈R

{EP̂N [f (x, ξ )] =
1
N

N∑
i=1

f (x, ξ̂ i)}. (6)

This formulation is a widely popular method for data-driven
decision making under the condition of uncertainty [29].

Next, model (4) will be addressed by an alternative method
of distributionally robust optimization that can resist the
uncertainty of distribution. Specifically, we use 4̂N to design
an ambiguity set PN , which contains all distributions gener-
ated by these samples with high probability level, i.e.,

PN (P) = {P is supported on 4 : dw(P, P̂N ) ≤ ε}. (7)

Kantorovich and Rubinstein [40] originally established the
following result for distributions with bounded support

dw(P, P̂N ) = sup
g
{

∫
4

g(ξ )P(dξ )−
∫
4

g(ξ )P̂N (dξ )},

where g indicates Lipschitz functions with |g(ξ1)− g(ξ2)| ≤
||ξ1 − ξ2|| for all ξ1, ξ2 ∈ 4.
The ambiguity set PN (P) can be viewed as a Wasser-

stein ball of radius ε centered at the empirical distribution
P̂N , named the Wasserstein ambiguous set. The Wasserstein
metric is a widely used probability metric, which is rep-
resented by distance functions on the space of probability
distributions. Moreover, it enables us to define the following
data-driven distributionally robust optimization problem that
minimizes the worst-case expected value:

min
x∈D,e∈R

max
P∈PN (P)

EP[f (x, ξ )]. (8)

Obviously, the worst-case expectation program constitutes
an infinite-dimensional optimization problem over probabil-
ity distributions, and it appears to be intractable. To help
investors obtain the optimal portfolio allocation proportions,
it is necessary to effectively address the infinite-dimensional
optimization problem. How on earth should we solve this
problem? In the existing literature, the problem of infinite
dimensions can be transformed into finite convex program-
ming under the certain convexity assumption [39], in which
the conclusion of convex reduction inspires us to seek other
computationally tractable forms for data-driven distribution-
ally robust portfolio selection optimization models. In the
following, we will demonstrate that the data-driven distri-
butionally robust portfolio optimization model (8) can be
represented as a finite-dimensional convex problem, which
can be solved via existing commercial optimization software.
Amajor result of computational tractability of the data-driven
distributionally robust portfolio optimization program is pro-
vided in the following theorem.
Theorem 1: Assume that the uncertainty set is a cone rep-

resentation, that is, 4 = {ξ ∈ Rm : ∃u ∈ Rk : Aξ + Bu+ c ∈
K}. K is a closed convex pointed cone with a nonempty inte-
rior, A,B are fixed matrices and c is a fixed vector. Moreover,
consider the function f (x, ξ ) = max{h(ξ ), l(ξ )}, where

h(ξ ) = −(
1− η
α
+ η)xTξ + e(1− η)(1−

1
α
),

l(ξ ) = −ηxTξ + e(1− η).

Then the worse-case expectation of (8) equals to

min
x,e,λ,si,ϕi,ψi

λε +
1
N

N∑
i=1

si

s.t. − (
1− η
α
+ η)xTξ̂ i + e(1− η)(1−

1
α
)

+ ϕTi (c+ Aξ̂ i) ≤ si ∀i ≤ N

− ηxTξ̂ i + e(1− η)+ ψ
T
i (c+ Aξ̂ i)

≤ si ∀i ≤ N
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|| − ATϕi + (
1− η
α
+ η)x||∗ ≤ λ ∀i ≤ N

|| − ATψi + ηx||∗ ≤ λ ∀i ≤ N

BTϕi = 0,BTψi = 0 ∀i ≤ N

ϕi ∈ K∗, ψi ∈ K∗ ∀i ≤ N

x ∈ D, e ∈ R, (9)

where || · ||∗ is the dual norm of || · ||.
Proof: According to Theorem 4.2 [39] about the result

of convex reduction, we have

min
x,e,λ,si,yi,zi,ai,bi

λε +
1
N

N∑
i=1

si,

s.t. [−h(ξ )]∗(yi − ai)+ δ4(ai)− yTi ξ̂ i ≤ si,

[−l(ξ )]∗(zi − bi)+ δ4(bi)− zTi ξ̂ i ≤ si,

||yi||∗ ≤ λ, ||zi||∗ ≤ λ, ∀i ≤ N , (10)

where [−h(ξ )]∗(yi − ai) is the conjugate of −h(ξ ) evaluated
at (yi − ai), [−l(ξ )]∗(zi − bi) is the conjugate of −l(ξ )
evaluated at (zi − bi), and δ4 represents the conjugate of the
characteristic function of support 4.
By the definition of the conjugate operator, we have

[−h(ξ )]∗(y) = sup
ξ

yTξ+(
1−η
α
+η)xTξ−e(1−η)(1−

1
α
),

when [−h(ξ )]∗ equals to 0 if y is −( 1−η
α
+ η)x, and equals to

∞ otherwise. Moreover,

[−l(ξ )]∗(z) = sup
ξ

zTξ + ηxTξ − e(1− η)

and [−l(ξ )]∗ equals to 0 if z is −ηx, and equals to∞ other-
wise.

In addition,

δ4(v) = sup
ξ ,v
{vTξ : Aξ + Bu+ c ∈ K}

= inf
γ
{cTγ : BTγ = 0,ATγ = −v, γ ∈ K∗},

where the second equality follows from the conic duality
theorem, which holds as the uncertainty set is non-empty.
As a consequence, model (9) follows by substituting the
above expressions into to model (10). �
Remark 1: Theorem 1 presents an equivalent form of

the loss function’s worst-case expectation under uncertainty
set4 of a coneK , whereK is a given convex cone. It considers
a rather general case when the uncertainty set4 is given by a
conic representation4 = {ξ ∈ Rm : ∃u ∈ Rk : Aξ+Bu+c ∈
K}. Theorem 1 indicates that as long as the uncertainty set
can be expressed as a cone, an equivalent tractable form
of a robust portfolio optimization model can be obtained
on this basis. The conclusion presented in Theorem 1 is
general. To the best of our knowledge, there are four common
choices of the conic representation K , including the simplest
one-dimensional cone, Lorentz cone, semidefinite cone, and
Hermitian semidefinite cone. Specifically, we characterize
different cones in the following four cases.

(i) When the cone K is the simplest one-dimensional cone,
that is, K = {q ∈ Rn : qi ≥ 0, i = 1, . . . , n}. Thus, we can
obtain the uncertainty set

4 = {ξ ∈ Rm : ∃u ∈ Rk : q = Aξ + Bu+ c :

qi ≥ 0, i = 1, . . . , n}.

The simplest one-dimensional cone is regular and self-dual,
so its dual conic K∗ = K . In addition, if Aξ = [ξ ; 0] and
c = [0m×1;C1], then the uncertainty set 4 becomes

4 = {[ξ ;C1] ∈ Rm × R : ξj ≥ 0, C1 ≥ 0, j = 1, . . . ,m}.

If Aξ = [6−1ξ ; 0] with 6 = Diag{1′1, . . . ,1
′
m}, c =

[0m×1;C2], then the uncertainty set 4 can be reformulated

4={[6−1ξ ;C2]∈Rm×R :
ξj

1′j
≥0, C2≥0, j = 1, . . . ,m}.

(ii) When the cone K is Lorentz cone, that is, K = {[q; t] ∈
Rn × R : t ≥

√∑n
i=1 q

2
i }. Therefore, the uncertainty set 4 is

as follows

4 = {ξ ∈ Rm : ∃u ∈ Rk : [q; t] = Aξ + Bu+ c :

t ≥

√√√√ n∑
i=1

q2i }.

Note that the Lorentz cone is regular and self-dual, its dual
conic K∗ = K . If Aξ = [ξ ; 0] and c = [0m×1;C1], we can
obtain the uncertainty set

4 = {[ξ ;C1] ∈ Rm × R : C1 ≥

√√√√ m∑
j=1

ξ2j }.

Moreover, if Aξ = [6−1ξ ; 0] with 6 = Diag{1′1, . . . ,1
′
m},

c = [0m×1;C2], then the uncertainty set 4 can be
reexpressed

4 = {[6−1ξ ;C2] ∈ Rm × R : C2 ≥

√√√√ m∑
j=1

(
ξj

1′j
)2}.

(iii) When the cone K is semidefinite cone, that is, K =
{[q; t] ∈ Sn × R : tIn − q ∈ Sn+}. Thus, we have

4 = {ξ ∈ Rm : ∃u ∈ Rk : [q; t] = Aξ + Bu+ c :

tIn − q ∈ Sn+}.

The semidefinite cone is regular and self-dual, its dual conic
K∗ = K . Further, the uncertainty set 4 can be rewritten as

4 = {[ξ ;C1] ∈ Sm × R : C1Im − ξ ∈ Sm+},

where Aξ = [ξm×m; 0] and c = [0m×m;C1]. Moreover,
if Aξ = [6−1ξm×m; 0] with 6 = Diag{1′1, . . . ,1

′
m}, c =

[0m×m;C2], then the uncertainty set 4 can be reexpressed

4 = {[6−1ξ ;C2] ∈ Sm × R : C2Im −6−1ξ ∈ Sm+}.
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(iv) When the cone K is Hermitian semidefinite cone, that
is, K = {[q; t] ∈ Hn

× R : tIn − q ∈ Hn
+}. Thus,

the uncertainty set is

4 = {ξ ∈ Rm : ∃u ∈ Rk : [q; t] = Aξ + Bu+ c :

tIn − q ∈ Hn
+}.

Same as the one-dimensional cone, Lorentz cone and semidef-
inite cone, the Hermitian semidefinite cone is regular and
self-dual, its dual conic K∗ = K . Further, when Aξ =
[ξm×m; 0] and c = [0m×m;C1], the uncertainty set 4 can
be rewritten as

4 = {[ξ ;C1] ∈ Hm
× R : C1Im − ξ ∈ Hm

+}.

Moreover, the uncertainty set 4 can be reformulated

4 = {[6−1ξ ;C2] ∈ Hm
× R : C2Im −6−1ξ ∈ Hm

+},

where Aξ = [6−1ξm×m; 0] with 6 = Diag{1′1, . . . ,1
′
m},

c = [0m×m;C2].
In the following, we will build tractable reformulations of

the portfolio selection model (8) based on Theorem 1. Three
commonly used uncertainty sets for cone representations,
i.e., box, budget, and ellipsoid uncertainty sets, are discussed
in detail. The equivalent models under these uncertainty sets
are presented, and some effective numerical experiments are
carried out in the ensuing sections.
Setting ϕi = [υ1i ; τ

1
i ], ψi = [υ2i ; τ

2
i ] with m-dimensional

υi and one-dimensional τi for each i ≤ N . The equivalent
model with respect to the box uncertainty set is as follows in
Corollary 1.
Corollary 1: Let the uncertainty set 4 be a box, that is,

4 = {ξ ∈ Rm : |ξj| ≤ 3, j = 1, 2, . . . ,m}. The model (9)
can be reduced to

min
x,e,λ,si,υi,τi

λε +
1
N

N∑
i=1

si

s.t. − (
1− η
α
+ η)xTξ̂ i + e(1− η)(1−

1
α
)

+ (υ1i )
Tξ̂ i +3τ

1
i ≤ si ∀i ≤ N

− ηxTξ̂ i + e(1− η)+ (υ2i )
Tξ̂ i +3τ

2
i

≤ si ∀i ≤ N

|| − υ1i + (
1− η
α
+ η)x||∗ ≤ λ ∀i ≤ N

|| − υ2i + ηx||∗ ≤ λ ∀i ≤ N

τ 1i ≥ ||υ
1
i ||1, τ

2
i ≥ ||υ

2
i ||1 ∀i ≤ N

x ∈ D, e ∈ R. (11)
Proof: For the box uncertainty set, its cone representa-

tion is as follows:

4 = {ξ ∈ Rm : Aξ + c ∈ K},

where
Aξ = [ξ ; 0], c = [0m×1;3], and K = {[ω;π ] ∈ Rm ×

R : π ≥ ||ω||∞}, its dual conic K∗ = {[ω;π ] ∈ Rm × R :
π ≥ ||ω||1}.

By substituting the above expression intomodel (9), we can
get model (11). �

Furthermore, the equivalent forms of distributionally
robust portfolio optimization model (9) are derived when
the cone K is assumed to be a budget uncertainty set. The
theoretical result is summarized as the following Corollary 2.
Corollary 2: Let the uncertainty set be budget, i.e., 4 =
{ξ ∈ R

m
:
∑m

j=1 |
ξj
1j
| ≤ 0}. The equivalent representation of

model (9) is

min
x,e,λ,si,υi,τi

λε +
1
N

N∑
i=1

si

s.t. − (
1− η
α
+ η)xTξ̂ i + e(1− η)(1−

1
α
)

+ (υ1i )
TQ−1ξ̂ i + 0τ

1
i ≤ si ∀i ≤ N

− ηxTξ̂ i + e(1− η)+ (υ2i )
TQ−1ξ̂ i + 0τ

2
i

≤ si ∀i ≤ N

|| − Q−1υ1i + (
1− η
α
+ η)x||∗ ≤ λ ∀i ≤ N

|| − Q−1υ2i + ηx||∗ ≤ λ ∀i ≤ N
τ 1i ≥ ||υ

1
i ||∞, τ

2
i ≥ ||υ

2
i ||∞ ∀i ≤ N

x ∈ D, e ∈ R. (12)
Proof: Budget uncertainty set 4 has the conic represen-

tation as follows:

4 = {ξ ∈ Rm : Aξ + c ∈ K},

where, Aξ = [Q−1ξ ; 0] with Q = Diag{11, . . . ,1m}, c =
[0m×1;0] and K = {[ω;π] ∈ Rm × R : π ≥ ||ω||1}, whence
K∗ = {[ω;π ] ∈ Rm × R : π ≥ ||ω||∞}.
Model (12) can be obtained by substituting the above

expression into model (9). �
The ellipsoid uncertainty set is significantly different for

the box and budget uncertainty sets since its constraints are
nonlinear. Therefore, according to Theorem 1, the distribu-
tionally robust portfolio optimization model (9) is equivalent
to a conic quadratic optimization model. It is presented in
Corollary 3.
Corollary 3: Let 4 be an ellipsoid uncertainty set, that is,

4 = {ξ ∈ Rm :
√∑m

j=1(
ξj
1′j
)2 ≤ �}. The model (9) can be

reduced to

min
x,e,λ,si,υi,τi

λε +
1
N

N∑
i=1

si

s.t. − (
1− η
α
+ η)xTξ̂ i + e(1− η)(1−

1
α
)

+ (υ1i )
T6−1ξ̂ i +�τ

1
i ≤ si ∀i ≤ N

− ηxTξ̂ i + e(1− η)+ (υ2i )
T6−1ξ̂ i +�τ

2
i

≤ si ∀i ≤ N

|| −6−1υ1i + (
1− η
α
+ η)x||∗ ≤ λ ∀i ≤ N

|| −6−1υ2i + ηx||∗ ≤ λ ∀i ≤ N

τ 1i ≥ ||υ
1
i ||2, τ

2
i ≥ ||υ

2
i ||2 ∀i ≤ N

x ∈ D, e ∈ R. (13)
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TABLE 1. The assets from Chinese stock market.

TABLE 2. The daily returns of stock 000966 from March 1, 2019 to April 30, 2019.

Proof: For the ellipsoid uncertainty set, it also has the
following conic representation:

4 = {ξ ∈ Rm : Aξ + c ∈ K }.

Moreover, Aξ = [6−1ξ ; 0] with 6 = Diag{1′1, . . . ,1
′
m},

c = [0m×1;�] and K = {[ω;π ] ∈ Rm × R : π ≥ ||ω||2},
whence K∗ = K .
By substituting the above expression into model (9),

the model (13) is obtained. �

III. SMALL-SCALE EXPERIMENTS BASED ON DAILY
RETURN IN 2019
In this section, we conduct some small-scale experiments
based on real market data of the daily returns of twenty stocks
over two months by utilizing the distributionally robust port-
folio optimization model. All of the numerical experiments
in this article were performed on a personal computer with
an Inter(R) Core(TM)i5-4200U 1.60GHz CPU and 4.00GB
of RAM. To better demonstrate the feasibility and effective-
ness of the proposed models, the LINGO 11.0.0.20 solver is
employed to find the robust optimal portfolio strategy.

A. DATA AND METHODOLOGY
To perform the experiments, twenty stocks from the Chinese
stock market were selected by the Straight Flush stock soft-
ware. The stock codes are summarized in Table 1, and the
stock return ξ = (ξ1, . . . , ξ20) is a twenty-dimensional vector.
It is generally known that the stock market is an extremely
unstable market. Stock returns are affected by various factors,
for instance, macro factors, corporate factors, and market
factors. Among them, macro factors include economic, polit-
ical and legal factors; corporate factors refer to the impacts
of the operations of listed companies on stock prices; and
market factors refer to various stock market operations that
can affect stock market prices. Most importantly, the eco-
nomic or noneconomic factors will all cause the drift of
stock returns, and so the return ξj, j = 1, . . . , 20 of the
j-th stock is uncertain. Fig. 1 depicts the changes in the daily
return of Stock 000966. It is easily deduced that stock returns

FIGURE 1. The return of stock 000966 on March 21, 2019.

nearly always change between opening quotation and closing
quotation.

The daily returns of twenty stocks are recorded as the
dataset for numerical experiments. The sample period of
these historical return values is March 1 to April 30, 2019, for
42 observations in total, i.e., N = 42, as shown in Table 2.
The daily returns of twenty investments over two months
are set according to the closing quotation. For example, for
stock 000966, U1 invested at 9:30 a.m. on March 5, 2019,
was worth U1.0120 by 15:00 p.m., and therefore, its daily
return was U1.0120.

Because of the limited number of samples, it is impossible
to determine the true distribution of stock return without
ambiguity. In this article, the ambiguous distribution of stock
return is estimated via some observations from datasets.More
specifically, the central distribution of Wasserstein ambiguity
sets is a discrete empirical distribution P̂N , and the radius ε of
theWasserstein ambiguity set represents the inaccuracy of the
distribution. We derive some theoretical results in Section II
under the proposed Wasserstein ambiguity set. Moreover,
to obtain the optimal portfolio strategy, models (11) and (12)
are solved in this subsection.

B. COMPUTATIONAL RESULTS
Some key parameters, such as 3, ε, η and α, are involved
in model (11), and they exert different effects on the
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TABLE 3. The optimal portfolio strategy under ε = 0.01, η = 0.5, and α = 0.10 (%).

computational results. In this subsection, the optimal portfo-
lio strategy and optimal value of model (11) under different
parameters are discussed.

1) THE INFLUENCE OF UNCERTAINTY SET PARAMETER 3
As shown in Corollary 1, parameter 3 limits the possi-
ble values of stock returns, i.e., |ξj| ≤ 3, j = 1, . . . 20
when the support set of uncertain return is a box. This
means that 3 is larger than the maximum return of these
twenty stocks. According to the data in Table 2, several
values of 3 are selected for small-scale experiments: 3 =
1.2, 4.8, 6.0, 7.2, 8.4, 9.6, 10.8 and 12.0. The computational
results of optimal portfolio allocation proportions under dif-
ferent values of 3 are reported in Table 3. To better illus-
trate the change of the optimal portfolio allocation under
different 3, Figs. 2 and 3 are depicted.

FIGURE 2. The variation of optimal portfolio strategy under ε = 0.01,
η = 0.5 and α = 0.10.

Figs. 2 and 3 show the variation of portfolio allocation
ratios of twenty stocks with respect to3. From Fig. 2, we can
identify that the proportions of stocks 000039 (x1), 000685
(x5), 002024 (x10), 600000 (x11), 600016 (x12), 600028 (x13),

FIGURE 3. The variation of optimal portfolio strategy under ε = 0.01,
η = 0.5 and α = 0.10.

600340 (x16), 600519 (x18) and 600737 (x20) are gradually
increasing and that the ratios of stock 600624 (x19) are
decreasing with respect to 3. Fig. 3 illustrates that when
3 = 1.2, stock 600624 (x19) has the largest proportion of
portfolio allocation, while stock 600276 (x15) has the largest
proportion of portfolio allocation at 3 = 4.8, 6.0, 7.2, 9.6.
When 3 = 8.4, stock 000488 (x3) has the largest portfolio
allocation proportion; if3 = 10.8, stock 002001 (x9) has the
largest portfolio allocation proportion. Further, Fig. 4 is plot-
ted to show the effect of parameter3 on the optimal value of
model (11). It is easy to find that the optimal value increases
with the growth of the value of parameter 3. In other words,
as the value of parameter 3 becomes increasingly larger,
the solution of the model (11) becomes more conservative
with respect to the box uncertainty set.

To avoid duplicate conclusions, the box uncertainty set
parameter is set to 1.2 (i.e., 3 = 1.2) in the following
subsections.

2) THE INFLUENCE OF WASSERSTEIN RADIUS ε
Parameter ε denotes the radius of the Wasserstein ambiguity
set, and its value determines the size of a Wasserstein ball.
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TABLE 4. The optimal portfolio strategy under α = 0.10, η = 0.5 (%).

FIGURE 4. The optimal value under ε = 0.01, η = 0.5 and α = 0.10.

To put it differently, the value of the radius implies the number
of distributions contained inWasserstein ambiguity set. There
are more distributions in the Wasserstein ambiguity set when
ε is larger. To get a relatively appropriate Wasserstein radius,
we refer to some related literature, such as the literature [39],
to select the values of radius ε for numerical experiments.
Esfahani and Kuhn [39] plotted a figure to visualize the cor-
responding optimal portfolio proportion as a function of the
radius, where the value of radius belonged to some intervals
([0.001, 0.01], [0.01, 0.1], and [0.1, 1]). To better show the
changes in the portfolio allocation proportions of different
stocks under the radius ε, we focus on the situation when
ε belongs to the interval [0.01, 0.1]. In the numerical experi-
ment, we make ε equal to 0.01, 0.02, . . . , 0.08. The compu-
tational results imply that a slight change in ε exerts a great
impact on the solution of the model. Therefore, model (11)
is very sensitive to parameter ε. We refer to reference [39]
for the selection of ε. The computational results of portfolio
strategies with different values of ε are reported in Table 4.
The results show that the optimal portfolio allocations vary
according to the radius of the Wasserstein ambiguity set, and
we obtain a relatively decentralized portfolio strategy.

Based on Table 4, we plot Fig. 5, which represents the
variation of portfolio allocation proportion of each stock with
respect to Wasserstein ball radius ε. In Fig. 5, the allocation
proportions of stocks 000789 (x6), 002001 (x9), 600000 (x11),
600276 (x15) and 600624 (x19) change obviously, but the
variations in allocation proportions of the other stocks are not
as obvious. Moreover, when ε = 0.01, stock 600000 (x11)
accounts for the largest allocation proportion; 002001 (x9)
accounts for the largest allocation proportion at ε = 0.02
and 0.08; 000789 (x6) accounts for the largest allocation
proportion at ε = 0.03 and 0.05; 600276 (x15) accounts for
the largest allocation proportion at ε = 0.04; 600000 (x11)
accounts for the largest allocation proportion at ε = 0.06; and
000886 (x7) accounts for the largest allocation proportion at
ε = 0.07.

FIGURE 5. The variation of optimal portfolio strategy with different ε
under η = 0.5, α = 0.10.

Furthermore, Fig. 6 is depicted to illustrate the variation
tendency of objective value. The optimal objective value is
proportional to the radius of the Wasserstein ambiguity set,
and its value is enlarged according to the increase of radius.
As the radius of the Wasserstein ambiguity set becomes
larger, the computational results become more conservative.
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FIGURE 6. The optimal objective value under η = 0.5, α = 0.10.

3) THE INFLUENCE OF WEIGHT COEFFICIENT η
Parameter η is theweight coefficient of the objective function,
and its value indicates whether investors pay more attention
to loss or risk. If η > 0.5, investors want to reduce investment
losses as much as possible; if η < 0.5, investors want to
reduce the risk of investment as much as possible. In addition,
we consider two critical cases: risk aversion, i.e., η = 1, and
risk neutrality i.e., η = 0.

To illustrate the variation of portfolio allocation propor-
tions under different weight coefficients, Fig. 7 is depicted as
follows. This figure shows that the portfolio allocation pro-
portions of stocks are relatively decentralized under different
parameter values of weight coefficient η. Investors will invest
in twenty stocks in different proportions. More specifically,
stock 000039 (x1) accounts for the largest portfolio allocation
proportion at η = 0.1; stock 000151 (x2) accounts for
the largest portfolio allocation proportion at η = 0.5; and
stock 000488 (x3) accounts for the largest portfolio allocation
proportion at η = 0.2.When η = 0, stock 000886 (x7) has the
largest proportion of portfolio allocation, and when η = 1.0,
stock 002024 (x10) has the largest proportion of portfolio
allocation. Further, the relationship between the optimal value
and the parameter of weight coefficient η is shown in Fig. 8.

FIGURE 7. The optimal portfolio allocation proportion under ε = 0.01,
α = 0.02.

4) THE INFLUENCE OF RISK LEVEL α
As defined in Eq. (2), the parameter α ∈ (0, 1) is referred to as
the risk level of the CVaR. In Subsections III-B1 and III-B2,

FIGURE 8. The optimal value at weight coefficient η under ε = 0.01,
α = 0.02.

the results are reported at risk level α = 0.10, while
the results in Subsection III-B3 is computed at risk level
α = 0.02. Taking into account the effect of risk level on opti-
mal portfolio allocation proportions and objective optimal
value, some experiments in α are conducted. Table 5 presents
the optimal portfolio allocation proportion of model (11)
under different risk level α. To better demonstrate the vari-
ation of optimal portfolio strategy at different parameter val-
ues of risk level α, Fig. 9 is plotted. It illustrates that the
change range of allocation proportions of stocks 000039 (x1),
000685 (x5), 002001 (x9), 600016 (x12), 600276 (x15) and
600624 (x19) is relatively large under different risk levels,
while the change amplitudes of allocation proportions of the
other stocks are relatively small. More specifically, stock
000151 (x2) has the largest allocation proportion at α = 0.02;
stock 002001 (x9) accounts for the largest allocation pro-
portion at α = 0.04; stock 600276 (x15) accounts for the
largest allocation proportion at α = 0.06, 0.16; stock 600016
(x12) accounts for the largest allocation proportion at α =
0.08; stock 600624 (x19) accounts for the largest allocation
proportion at α = 0.10; stock 000685 (x5) accounts for
the largest allocation proportion at α = 0.12; and stock
000039 (x1) accounts for the largest allocation proportion at
α = 0.14. Furthermore, Fig. 10 is plotted, which shows the
optimal value ofmodel (11) under different risk levelα.When
the risk level α increases, the optimal value of the model
also increases. This means that the higher the risk level α is,
the more conservative the solution of the model.

C. COMPARISONS BETWEEN BOX AND BUDGET
UNCERTAINTY SET
In the previous section, the optimal portfolio allocation strat-
egy and optimal value of the equivalent model are dis-
cussed with respect to the box uncertainty set with different
parameters, including the coefficient of the box uncertainty
set 3, the radius ε of the Wasserstein ambiguity set, weight
coefficient η and risk level α.

Without loss of generality, we set the parameter 1j = 1,
j = 1, . . . ,m in model (12). Note that the constraints on the
box and budget uncertainty set are both linear. The character-
istic of the box uncertainty set is to limit the random return
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TABLE 5. The optimal portfolio strategy under ε = 0.01, η = 0.5 (%).

FIGURE 9. The variation of optimal portfolio strategy of model (11) under
different risk level α.

FIGURE 10. The optimal value of model (11) under different risk level α.

of each stock to within a fixed interval, i.e., |ξj| < 3, j =
1, . . . , 20. In contrast, the budget uncertainty set limits the
total return of twenty stocks to within a certain interval, that
is,

∑20
j=1 ξj < 0. From this point of view, if 0 < 203, then

the computational results under the box uncertainty set are
more conservative than those under the budget uncertainty
set, while if 0 > 203, then the computational results under
the budget uncertainty set are more conservative than those
under the box uncertainty set.

To confirm the above assertion, some numerical experi-
ments are performed, and Fig. 11 is plotted. It shows the
optimal objective values of model (11) and (12) at different
risk levels with 1j = 1, j = 1, . . . , 20. It reveals that the
objective value increases with the escalation of risk level.
In other words, as the risk level α becomes increasingly
higher, the solutions of model (11) and (12) become more
conservative. Moreover, when 0 = 10 and 0 = 20,
model (11) is more conservative than model (12); in con-
trast, when 0 = 36 and 0 = 46, model (12) is more
conservative.

FIGURE 11. Comparisons of the objective values of models (11) and (12)
under η = 0.5, ε = 0.01.

IV. LARGE-SCALE EXPERIMENTS BASED ON MONTHLY
RETURN OF TEN YEARS
To illustrate the proposed model and method in the
data-driven context, this section addresses the portfolio opti-
mization problem with respect to a large set of historical
data. In large-scale experiments, the following discussion
intends to apply the monthly returns of stocks over ten years
for solving the proposed model with respect to the ellipsoid
uncertainty set.
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TABLE 6. The monthly returns of stock 000521.

A. DATA AND METHODOLOGY
Similarly, the real return data from the Chinese stock market
are collected. Our dataset is also extracted from the stock
software Straight Flush, including the monthly returns of
twenty stocks. The sample period of these values of stock
returns is January 2009 to December 2018 for 120 obser-
vations in total, i.e., N = 120. The monthly return for
each of the twenty stocks is obtained for ten years, and it
describes the fluctuation of the return value of each stock
within a month. Here, the initial return value of a month is
regarded as the opening price, and the end of a month is the
closing price. We choose the closing price at the end of the
month as the monthly return value of the stock. Fig. 12 shows
the fluctuation in the monthly return of stock 000521 from
January 2009 to December 2018. Moreover, some of the
monthly returns of stock 000521 are shown in Table 6. This
table provides the monthly returns of stock 000521 from
January 2009 to December 2012. For instance, U1 invested
in stock 000521 on January 1, 2009, was worth U1.1308 on
January 30, 2009.

FIGURE 12. The monthly return of stock 000521 from 2009 to 2018.

To find the optimal portfolio policy, we first derive the
equivalent form of the distributionally robust portfolio opti-
mization model (9) under the ellipsoid uncertainty set. The
distributionally robust portfolio optimization model is equiv-
alent to a conic quadratic optimization model (13). Thus,
the numerical experiments in this subsection are devoted to
solving model (13).

B. COMPUTATIONAL RESULTS
Based on the historical return data of stocks collected above,
the LINGO 11.0.0.20 solver is employed, and the equivalent
model (13) is solved in large-scale numerical experiments.
To test the accuracy of the model, some sensitivity analy-
ses on different parameters in model (13) are applied. The
optimal portfolio allocation proportion and optimal value of
model (13) are presented in the following subsections.

1) THE INFLUENCE OF UNCERTAINTY SET PARAMETER �
The radius of the ellipsoid uncertainty set � reflects the size
of the ellipsoid. Without losing generality, we set 1′j =
1, j = 1, . . . ,m, and the constraint in the ellipsoid uncer-
tainty set becomes

√∑m
j=1 ξ

2
j ≤ �, i.e.,

√
20maxj ξ2j ≤

�. Several values of ellipsoid uncertainty parameter � are
selected for the experiments, and the portfolio allocation
proportions of model (13) under different � are reported
in Table 7.

To better illustrate the variation of optimal portfolio allo-
cation proportions in Table 7, we depict Fig. 13, which dis-
plays the change of portfolio ratios of twenty stocks with
respect to �. More specifically, with the increase in param-
eter �, the portfolio allocation proportions of stocks 000488
(x3), 002001 (x9), 002040 (x10), 600000 (x11), 600016 (x12),
600028 (x13), 600276 (x15) and 600519 (x18) are gradually
decreasing, while those of the other stocks are increasing.
Further, Fig. 14 displays the change in the optimal value
of model (13) with respect to �. The optimal value of
model (13) escalates with increasing�, which means that the
larger � is, the more conservative the solution.

To avoid duplicate conclusions, the ellipsoid uncertainty
set parameter is set to 6.0 (i.e. � = 6.0) in the following
subsections.

2) THE INFLUENCE OF WASSERSTEIN RADIUS ε
In this subsection, we solve model (13) to determine the
optimal portfolio strategy under different parameter values of
Wasserstein’s spherical radius and report the computational
results in Table 8; furthermore, Fig. 15 is depicted. From
this figure, we can determine the changing trend of portfolio
allocation proportions at different values of Wasserstein’s
spherical radius ε. Specifically, the proportion of each stock
portfolio allocation is obviously distinct under the same
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TABLE 7. The optimal portfolio strategy under ε = 0.01, η = 0.5, and α = 0.10 (%).

TABLE 8. The optimal portfolio strategy of model (13) at α = 0.10, η = 0.5 (%).

FIGURE 13. The variation of optimal portfolio strategy under ε = 0.01,
η = 0.5 and α = 0.10.

parameter value. With ε approaching 0.10, the portfolio
allocation ratio of each stock tends to be relatively stable.

FIGURE 14. The optimal value of model (13) under ε = 0.01, η = 0.5 and
α = 0.10.

Taking into account the difference in portfolio strategies
under different ε, the relationship between optimal objective
values and the values of Wasserstein’s spherical radius ε is
given in Fig. 16. It shows that the optimal objective value
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FIGURE 15. The variation of optimal portfolio strategy under different
values of ε.

FIGURE 16. The optimal objective value of model (13) at different
values ε.

enlarges with the increase in ε. Therefore, as the radius ε of
the Wasserstein ambiguity set becomes increasingly larger,
the solution of model (13) becomes more conservative.

3) THE INFLUENCE OF WEIGHT COEFFICIENT η
In order to test the impact of the weight coefficient η,
Fig. 17 is plotted to show the optimal portfolio strategy of
model (13). It is easy to determine that the portfolio allocation
proportion fluctuates around 5%. Especially, the allocation
proportions are closest to 5% at η = 0 or η = 1.0.
This result is estimated from a large representation of his-
torical data. Practice shows that investors often acquire a
relatively uniform proportion of portfolio allocation when
they try to estimate stock information based on histori-
cal data. From Fig. 17, we can find that when the weight
parameter η is between 0.3 and 0.8, the portfolio allocation
ratio of each stock is relatively different. In contrast, when
η < 0.3 or η > 0.8, the portfolio allocation ratio of
each stock is close to 5%. To better illustrate this point,
Fig. 18 is plotted and displays the optimal value of the model
under different values of weight coefficient η. From this
figure we also can determine that when the value of weight
coefficient η is small, the solution of model (13) is more
conservative.

FIGURE 17. The variation of optimal portfolio strategy of model (13)
under different weight coefficient η.

FIGURE 18. The optimal value of model (13) at different weight
coefficient η under ε = 0.01, α = 0.02.

4) THE INFLUENCE OF RISK LEVEL α
In this subsection, the change in the optimal portfolio strategy
with respect to different risk levels is shown in Fig. 19,
which vividly displays the change of the portfolio allocation
proportion of each stock with respect to risk level α. Specif-
ically, with the increase in risk level α, the portfolio alloca-
tion proportions of stocks 000488 (x3), 000966 (x8), 002001
(x9), 002040 (x10), 600000 (x11), 600016 (x12), 600028 (x13),
600276 (x15) and 600519 (x18) are gradually increasing,
while those of the other stocks are decreasing. Particularly,
the proportion of portfolio allocation is closer to 5% at
α = 0.02. Further, Fig. 20 depicts the optimal objective
values of model (13) with respect to different risk levels.
It is easy to see that the smaller the risk level is, the more
conservative the solution of model (13).

C. COMPARISON WITH AMBIGUITY-FREE CASE
If the radius of the Wasserstein ambiguity set decreases to
zero, i.e., ε = 0, then the ambiguity set is reduced to a set
containing only one distribution. In this case, the distribu-
tionally robust problem reduces to an ambiguity-free stochas-
tic program [39]. Moreover, the optimal portfolio allocation
decision and optimal value of the convex program shrink to
the equivalent model under the discrete empirical probability
distribution in the ambiguity-free limit.
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FIGURE 19. The optimal portfolio strategy of model (13) at risk level α
under ε = 0.01, η = 0.5.

FIGURE 20. The optimal value of model (13) at risk level α under
ε = 0.01, η = 0.5.

For better comparison, some computational results under
the ambiguity-free condition are represented. When the
radius ε of the Wasserstein ambiguity set decreases to zero,
Figs. 21- 24 are plotted. Among them, Figs. 21 and 22
present the optimal portfolio allocation strategy under dif-
ferent weight coefficients η under the ambiguity-free con-
dition. Fig. 21 shows that when η = 0, 0.1, 0.2, . . . , 0.9,
the portfolio allocation proportion of each stock is relatively
concentrated, and that they are primarity distributed between
3% and 6%. However, in the case of risk aversion, i.e., η = 1,
the computational results show that investors should maxi-
mize investment in the first stock 000039. Further, Fig. 22
shows that weight coefficient has no significant effect on
the results of distributionally robust portfolio optimization
models with respect to the ellipsoid uncertainty set under the
ambiguity-free condition, except in the case of risk aversion.
Moreover, Figs. 23 and 24 are depicted, which present the
impact of risk level α on optimal portfolio allocation strategy
under the ambiguity-free condition. It is easy to determine
that the change in risk level α exerts little effect on the opti-
mal portfolio allocation proportion under the ambiguity-free
condition and that the portfolio allocation ratio of each stock
is concentrated between 4.5% and 5.3%. This also proves that
the inaccuracy in the distribution of random returns cannot be
ignored.

FIGURE 21. The variation of optimal portfolio strategy with different η
under α = 0.01, ε = 0.

FIGURE 22. The variation of optimal portfolio strategy under α = 0.01,
ε = 0.

FIGURE 23. The variation of optimal portfolio strategy with different α
under η = 0.5, ε = 0.

Note that the objective value of all experiments conducted
under the ambiguity-free condition is zero. It seems that the
computational results of the portfolio optimization model
under the ambiguity-free condition are more considerable.
However, there is no doubt that the optimal portfolio strategy
of the proposed distributionally robust portfolio optimization
model has the ability to immunize against distribution uncer-
tainty. Even if the radius of the Wasserstein ambiguity set has
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FIGURE 24. The variation of optimal portfolio strategy under η = 0.5,
ε = 0.

a small perturbation, its influence on the optimal portfolio
strategy and expected loss cannot be neglected.

V. CONCLUSION
In this article, we study the mean-CVaR portfolio optimiza-
tion problem under distribution uncertainty from a new per-
spective, where the uncertainty set is described by a cone
representation. A distributionally robust linear optimization
framework for the portfolio optimization problem is devel-
oped first. Moreover, we use the Wasserstein metric to con-
struct a ball in the space of probability distributions centered
at the empirical distribution of the sample dataset. Then, a lin-
ear convex program under a cone representation that performs
best in view of the worst-case expectation within the Wasser-
stein ambiguous set is presented. To calibrate the levels of
the Wasserstein ambiguous set, we introduce a data-driven
standard to provide an essential modeling guide. Specifically,
we develop a new method to describe the distribution infor-
mation of stock returns by constructing Wasserstein ambi-
guity set, which is generated based on the historical data of
stock. A new data-driven mean-CVaR portfolio optimization
framework for the distributionally robust linear optimization
model is proposed in this article. Moreover, the proposed
portfolio model is a general model. It can be employed in
different stock markets.

To demonstrate the effectiveness of our proposed method,
we provide some practical cases pertaining to the Chinese
stock market. Numerical experiments are carried out based
on the respective daily and monthly returns of twenty stocks,
and the influence of different model parameters on the com-
putational results is analyzed. Further, we discuss three new
equivalent models with respect to box, budget, and ellip-
soid uncertainty sets. A small-scale experiment based on
the daily returns of stocks is carried out with respect to the
box uncertainty set. To show the advantage of our method,
we compare the computational results of the portfolio opti-
mization model under different uncertainty sets, i.e., box
and budget. Under the ellipsoid uncertainty set, the large-
scale experiment based on the monthly returns of twenty
stocks is conducted. Moreover, the comparison between the

proposed data-driven distributionally robust portfolio opti-
mizationmethod and the traditional ambiguity-free stochastic
optimization method is presented via numerical experiments.
In the appendix, we perform some numerical experiments
based on the United States stock market to demonstrate the
generality of the model.

APPENDIX
NUMERICAL EXPERIMENT BASED ON THE UNITED
STATES STOCK MARKET
In order to further demonstrate the generality of the
data-driven mean-CVaR portfolio optimization model pro-
posed in this article, we conduct some new numerical experi-
ments in this section based on the United States stock market.

A. DATA AND METHODOLOGY
The daily returns of twenty stocks from the United States
stock market are recorded as a data set to perform the exper-
iments. Similarly, the daily returns of twenty stocks from
the United States stock market are set according to the clos-
ing quotation. The sample period of historical return values
of twenty stocks is August 3 to September 30, 2020, for
42 observations in total, that is, N = 42. Table 9 summarizes
the daily returns of these twenty stocks from the United States
stock market on September 14. We would like to estimate
the distribution of twenty stocks via the 42 × 20 observa-
tions in dataset. Owing to the limited historical data, it is
impossible to determine the true distribution of stock return
without ambiguity. Wasserstein ambiguity set with a discrete
empirical distribution P̂N is constructed in this article, where
P̂N is supported by 42 × 20 observations values of stock
returns.

To find the optimal portfolio strategy, the numerical exper-
iments in this subsection are devoted to solving model (11),
which is the equivalent representation of data-driven mean-
CVaR portfolio optimization model under box uncertainty
set.

B. COMPUTATIONAL RESULTS
Similarity, some sensitivity analyses on different parameters
in model (11) are presented in the following subsections to
test the accuracy of the model.

1) THE INFLUENCE OF UNCERTAINTY SET PARAMETER 3
Consistent with the Section III-B1, here we take the param-
eter 3 of box uncertainty set equals to 1.2, 4.8, 6.0, 7.2, 8.4,
9.6, 10.8 and 12.0. In order to illustrate the change of the
optimal portfolio allocation proportion under different 3,
Fig. 25 is plotted, which shows the variation of portfolio
allocation proportion of twenty stocks with respect to the
parameter of box uncertainty set. From Fig. 25, we can
identify that the stock AAPL (x1) has the largest proportion
of portfolio allocation at 3 = 7.2. When the parameter 3
of box uncertainty set equals to 1.2, 12, stock LBTYA (x7)
has the largest proportion of portfolio allocation, while stock
GOOG (x9) has the largest proportion of portfolio allocation
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TABLE 9. The assets from United States stock market.

FIGURE 25. The optimal portfolio strategy based on United States stocks
under different 3.

at 3 = 6.0. If the parameter 3 equals to 4.8, 8.4, 9.6, 10.8,
the largest proportion of portfolio allocation are stocks AVGO
(x15), CHKP (x19), BKNG (x17), and BIIB (x16) respectively.
It is not difficult to find that the influence of uncertainty set
parameter on the optimal portfolio strategy is visible. Further,
Fig. 26 is depicted to reveal the effect of uncertainty set
parameter 3 on the optimal value. Fig. 26 illustrates that
the optimal value of model (11) increases with the growth
of the value of parameter 3. Put it differently, as the value
of 3 becomes increasingly larger, the solution results of the
model (11) becomes more conservative with respect to the
box uncertainty set.

FIGURE 26. The optimal value of model (11) based on United States
stocks under different uncertainty set parameter 3.

2) THE INFLUENCE OF WASSERSTEIN RADIUS ε
In this subsection, the value ofWasserstein radius ε is primar-
ily based on the result of literature [39], we make ε equal to

0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08 in the numerical
experiment. To better present the optimal portfolio strategy
under different values ofWasserstein radius ε, Figs. 27 and 28
are depicted. From the two figures, it is easy to catch sight of
the sensitivity of the optimal portfolio strategy toWasserstein
radius ε. In Fig. 27, the portfolio allocation proportions of
stocks TSLA (x2), PEP (x4), NVDA (x5), MSFT (x6), LBTYA
(x7), GOOG (x9), ADI (x12), AMD (x13), AMZN (x14), BIIB
(x16), CDW (x18), andCHKP (x19) change obviously, the vari-
ations in allocation proportions of the other stocks are not
as obvious. In addition, Fig. 28 illustrates that the stock
LBTYA (x7) accounts for the largest allocation proportion
at ε = 0.01; ADI (x12) accounts for the largest allocation
proportion at ε = 0.02; BIIB (x16) accounts for the largest
allocation proportion at ε = 0.03, 0.06; CDW (x18) accounts
for the largest allocation proportion at ε = 0.04; AMD
(x13) has a largest allocation proportion at ε = 0.05, 0.07;
CHKP (x19) has a largest allocation proportion at ε = 0.08.
Further, we plot Fig. 29, which illustrates the variation of
optimal value of model (11) under different Wasserstein
radius. The optimal objective value is enlarged according to
the increase of Wasserstein radius. Put it differently, the com-
putational results of model (11) become more conservative as
the Wasserstein radius becomes larger.

FIGURE 27. The variation of optimal portfolio strategy based on United
States stocks under different ε.

3) THE INFLUENCE OF WEIGHT COEFFICIENT η
It is well known that weight coefficient η indicates whether
investors pay more attention to loss or risk. Investors would
like to reduce the portfolio losses as η > 0.5, and investors
would like to reduce the risk of investment as η < 0.5.
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FIGURE 28. The optimal portfolio strategy based on United States stocks
under different ε.

FIGURE 29. The optimal value of model (11) based on United States
stocks under different Wasserstein radius ε.

In this subsection, Fig. 30 is depicted, which illustrates the
optimal portfolio allocation proportion under different weight
coefficients. When the weight coefficient equals to 0, i.e.,
η = 0, the investor is risk neutrality. At η = 0, the investor
invests 47% of his or her assets in stock CDW (x18), which
accounts for a largest portfolio allocation proportion. If the
weight coefficient equals to 1, i.e., η = 1, the investor is
risk aversion and invests 44% of his or her assets in stock
ZW (x20). ZW (x20) has a largest portfolio allocation pro-
portion at η = 1. In addition, stock NVDA (x5) accounts
for a largest portfolio allocation proportion at η = 0.4;
stock MSFT (x6) accounts for a largest portfolio allocation
proportion at η = 0.5; stock AAPL (x1) accounts for a
largest portfolio allocation proportion at η = 0.6; and the
portfolio allocation proportions are relatively decentralized at
η = 0.1, 0.2, 0.3, and η = 0.7. Furthermore, the relationship
between the optimal value of model (11) and weight coeffi-
cient is present in Fig. 31.

4) THE INFLUENCE OF RISK LEVEL α
Some numerical experiments with respect to risk level are
conducted in this subsection to show the effect of risk level on
optimal portfolio allocation and optimal value of model (11).
In order to better illustrate the variation of optimal portfolio
strategy at different risk level, Fig. 32 is depicted. In Fig. 32,
the change amplitudes of portfolio allocation proportions of

FIGURE 30. The optimal portfolio strategy based on United States stocks
under different η.

FIGURE 31. The optimal value of model (11) based on United States
stocks under different weight coefficient η.

stocks SBUX (x3), LBTYA (x7), INTC (x8), ADBE (x11),
AMZN (x14), BIIB (x16), and BKNG (x17) is relatively large
under different risk levels, while the change range of portfolio
allocation proportions of the other stocks are relatively small.
More specifically, stock MSFT (x6) has a largest allocation
proportion at α = 0.02; stock BIIB (x16) has a largest alloca-
tion proportion at α = 0.04; stock SBUX (x3) accounts for a
largest allocation proportion at α = 0.06, 0.16; stock INTC
(x8) has a largest allocation proportion at α = 0.08, 0.14;
stock LBTYA (x7) accounts for a largest allocation proportion
at α = 0.10; stock ADBE (x11) accounts for a largest
allocation proportion at α = 0.12. Further, we plot Fig 33,
which shows the optimal value of model (11) under different
parameters of risk level. It illustrates that the optimal value
increases as the value of risk level increases. Put it differently,
the higher the risk level α is, the more conservative the
solution of model (11).

C. DISCUSSION
A new modelling method is developed to describe the distri-
bution information of stock returns by constructing Wasser-
stein ambiguity set, which is generated based on the historical
data of stock. The methodology developed by us is general
and can naturally be used on the stock markets of other
countries, except for the Chinese stock market. Therefore,
we implement some numerical experiments based on United
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FIGURE 32. The optimal portfolio strategy of model (13) at risk level α
under ε = 0.01, η = 0.5.

FIGURE 33. The optimal value of model (13) at risk level α under
ε = 0.01, η = 0.5.

States stock market in this section. The modification is to
reconstruct Wasserstein ambiguity set based on the historical
data of stock return from United States stock market.

When the model is used in a specific situation, histori-
cal data is needed to construct Wasserstein ambiguity set.
Thus, Wasserstein ambiguity set contains different distribu-
tion information in comparison with the numerical experi-
ments based on Chinese stock market. However, whether it
is a numerical experiment based on the Chinese stock market
or a numerical experiment based on United States stock mar-
ket, the trend of the optimal objective value affected by the
key parameters of box uncertainty parameter 3, Wasserstein
radius ε, weight coefficient η and risk level α is consistent.
Specifically, the optimal value increases with the growth of
the value of parameters 3, ε and α respectively. To put it
differently, as the values of 3, ε and α become increasingly
larger, the solution of model becomes more conservative with
respect to the three parameters.

CONFLICTS OF INTEREST
No potential conflict of interest was reported by the authors.

ACKNOWLEDGMENT
This authors would like to thank the editor and the anonymous
referees for their useful comments and suggestions, which
helped to improve the presentation of this article.

REFERENCES
[1] H. Markowitz, ‘‘Portfolio selection,’’ J. Finance, vol. 7, no. 1, pp. 77–91,

1952.
[2] H. Markowitz, Portfolio Selection: Efficient Diversfication of Investments.

New York, NY, USA: Wiley, 1959.
[3] Y. Y. Zhang, X. Li, and S. N. Guo, ‘‘Portfolio selection problems with

Markowitz’s mean–variance framework: A review of literature,’’ Fuzzy
Optim. Decis. Making, vol. 17, no. 2, pp. 125–158, 2018.

[4] M. Altinoz and O. T. Altinoz, ‘‘Systematic initialization approaches for
portfolio optimization problems,’’ IEEE Access, vol. 7, pp. 57779–57794,
2019.

[5] R. Gao, Y. Li, Y. Bai, and S. Hong, ‘‘Bayesian inference for optimal risk
hedging strategy using put options with stock liquidity,’’ IEEE Access,
vol. 7, pp. 146046–146056, 2019.

[6] N. Du, Y.-K. Liu, and Y. Liu, ‘‘New safe approximation of ambiguous
probabilistic constraints for financial optimization problem,’’ Discrete
Dyn. Nature Soc., vol. 2019, pp. 1–19, May 2019.

[7] C. Francq and J.-M. Zakoïan, ‘‘Estimation risk for the VaR of portfolios
driven by semi-parametricmultivariatemodels,’’ J. Econometrics, vol. 205,
no. 2, pp. 381–401, Aug. 2018.

[8] K. T. Lwin, R. Qu, and B. L. Maccarthy, ‘‘Mean-VaR portfolio opti-
mization: A nonparametric approach,’’ Eur. J. Oper. Res., vol. 260, no. 2,
pp. 751–766, 2017.

[9] R. T. Rockafellar and S. Uryasev, ‘‘Optimization of conditional value-at-
risk,’’ J. Risk, vol. 2, no. 3, pp. 21–41, 2000.

[10] G. J. Alexander and A. M. Baptista, ‘‘A comparison of VaR and CVaR
constraints on portfolio selection with the mean-variancemodel,’’Manage.
Sci., vol. 50, no. 9, pp. 1261–1273, Sep. 2004.

[11] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimization.
Princeton, NJ, USA: Princeton Univ. Press, 2009.

[12] Y. Takano, K. Nanjo, N. Sukegawa, and S. Mizuno, ‘‘Cutting plane algo-
rithms for mean-CVaR portfolio optimization with nonconvex transaction
costs,’’ Comput. Manage. Sci., vol. 12, no. 2, pp. 319–340, Apr. 2015.

[13] Q. Xu, Y. Zhou, C. Jiang, K. Yu, and X. Niu, ‘‘A large CVaR-based
portfolio selection model with weight constraints,’’ Econ. Model., vol. 59,
pp. 436–447, Dec. 2016.

[14] Z. Kang, X. Li, Z. Li, and S. Zhu, ‘‘Data-driven robust mean-CVaR
portfolio selection under distribution ambiguity,’’ Quant. Finance, vol. 19,
no. 1, pp. 105–121, Jan. 2019.

[15] H. E. Scarf, ‘‘A min-max solution of an inventory problem,’’ Stud. Math.
Inventory Prod., vol. 25, no. 2, pp. 352–367, 1957.

[16] Z. Chang, J.-Y. Ding, and S. Song, ‘‘Distributionally robust scheduling on
parallel machines under moment uncertainty,’’ Eur. J. Oper. Res., vol. 272,
no. 3, pp. 832–846, Feb. 2019.

[17] E. Delage and Y. Ye, ‘‘Distributionally robust optimization under moment
uncertainty with application to data-driven problems,’’ Oper. Res., vol. 58,
no. 3, pp. 595–612, Jun. 2010.

[18] W. Wiesemann, D. Kuhn, and M. Sim, ‘‘Distributionally robust convex
optimization,’’ Oper. Res., vol. 62, no. 6, pp. 1358–1376, Dec. 2014.

[19] H. Xu, Y. Liu, and H. Sun, ‘‘Distributionally robust optimization with
matrix moment constraints: Lagrange duality and cutting plane methods,’’
Math. Program., vol. 169, no. 2, pp. 489–529, Jun. 2018.

[20] Y. Liu and Y.-K. Liu, ‘‘Distributionally robust fuzzy project portfolio opti-
mization problem with interactive returns,’’ Appl. Soft Comput., vol. 56,
pp. 655–668, Jul. 2017.

[21] N. Rujeerapaiboon, D. Kuhn, andW.Wiesemann, ‘‘Robust growth-optimal
portfolios,’’Manage. Sci., vol. 62, no. 7, pp. 2090–2109, Jul. 2016.

[22] B. P. G. Van Parys, P. J. Goulart, and M. Morari, ‘‘Distributionally robust
expectation inequalities for structured distributions,’’ Math. Program.,
vol. 173, nos. 1–2, pp. 251–280, Jan. 2019.

[23] A. Ben-Tal, D. den Hertog, A. De Waegenaere, B. Melenberg, and
G. Rennen, ‘‘Robust solutions of optimization problems affected by uncer-
tain probabilities,’’Manage. Sci., vol. 59, no. 2, pp. 341–357, Feb. 2013.

[24] D. Klabjan, D. Simchi-Levi, andM. Song, ‘‘Robust stochastic lot-sizing by
means of histograms,’’ Prod. Oper. Manage., vol. 22, no. 3, pp. 691–710,
May 2013.

[25] D. Bertsimas, V. Gupta, and N. Kallus, ‘‘Robust sample average approxi-
mation,’’Math. Program., vol. 171, nos. 1–2, pp. 217–282, Sep. 2018.

[26] E. Çetinkaya and A. Thiele, ‘‘Data-driven portfolio management with
quantile constraints,’’ OR Spectr., vol. 37, no. 3, pp. 761–786, Jul. 2015.

[27] B. Fernandes, A. Street, D. Valladão, and C. Fernandes, ‘‘An adaptive
robust portfolio optimization model with loss constraints based on data-
driven polyhedral uncertainty sets,’’ Eur. J. Oper. Res., vol. 255, no. 3,
pp. 961–970, Dec. 2016.

VOLUME 9, 2021 3193



N. Du et al.: New Data-Driven Distributionally Robust Portfolio Optimization Method Based on Wasserstein Ambiguity Set

[28] G. Chi, S. Ding, and X. Peng, ‘‘Data-driven robust credit portfolio opti-
mization for investment decisions in P2P lending,’’ Math. Problems Eng.,
vol. 2019, pp. 1–10, Jan. 2019.

[29] D. Bertsimas, V. Gupta, and N. Kallus, ‘‘Data-driven robust optimization,’’
Math. Program., vol. 167, no. 2, pp. 235–292, Feb. 2018.

[30] Z. Wang, P. W. Glynn, and Y. Ye, ‘‘Likelihood robust optimization for
data-driven problems,’’ Comput. Manage. Sci., vol. 13, no. 2, pp. 241–261,
Apr. 2016.

[31] V. Gupta, ‘‘Near-optimal Bayesian ambiguity sets for distributionally
robust optimization,’’ Manage. Sci., vol. 65, no. 9, pp. 4242–4260,
Sep. 2019.

[32] R. Jiang and Y. Guan, ‘‘Data-driven chance constrained stochastic pro-
gram,’’Math. Program., vol. 158, nos. 1–2, pp. 291–327, Jul. 2016.

[33] S. Zhao and K. Zhang, ‘‘A distributionally robust optimization approach to
reconstructing missing locations and paths using high-frequency trajectory
data,’’ Transp. Res. C, Emerg. Technol., vol. 102, pp. 316–335, May 2019.

[34] G. Pflug and D. Wozabal, ‘‘Ambiguous in portfolio selection,’’ Quant.
Finance, vol. 7, no. 4, pp. 435–442, 2007.

[35] G. A. Hanasusanto and D. Kuhn, ‘‘Conic programming reformulations of
two-stage distributionally robust linear programs over Wasserstein balls,’’
Oper. Res., vol. 66, no. 3, pp. 849–869, Jun. 2018.

[36] J. G. Carlsson, M. Behroozi, and K. Mihic, ‘‘Wasserstein distance and the
distributionally robust TSP,’’ Oper. Res., vol. 66, no. 6, pp. 1603–1624,
Nov. 2018.

[37] C. Duan, W. Fang, L. Jiang, L. Yao, and J. Liu, ‘‘Distributionally robust
chance-constrained approximate AC-OPF withWasserstein metric,’’ IEEE
Trans. Power Syst., vol. 33, no. 5, pp. 4924–4936, Sep. 2018.

[38] R. Hettich and K. O. Kortanek, ‘‘Semi-infinite programming: Theory,
methods, and applications,’’ SIAM Rev., vol. 35, no. 3, pp. 380–429,
Sep. 1993.

[39] P.M. Esfahani andD. Kuhn, ‘‘Data-driven distributionally robust optimiza-
tion using the Wasserstein metric: Performance guarantees and tractable
reformulations,’’ Math. Program., vol. 171, nos. 1–2, pp. 115–166,
Sep. 2018.

[40] L. V. Kantorovich and G. S. Rubinshtein, ‘‘On a space of completely
additive functions,’’ Vestnik Leningrad Univ, vol. 13, no. 7, pp. 52–59,
1958.

NINGNING DU received the B.S. and M.S.
degrees in mathematics from the College of Math-
ematics and Information Science, Hebei Univer-
sity, Baoding, China, in 2017 and 2020, respec-
tively. She is currently pursuing the Ph.D. degree
with the School of Economics and Management,
Beihang University. Her research interests include
robust optimization method and its application in
financial optimization problem, and supply chain
financing.

YANKUI LIU received the B.S. and M.S. degrees
from the Department of Mathematics, Hebei Uni-
versity, Baoding, China, in 1989 and 1992, respec-
tively, and the Ph.D. degree in computational
mathematics from the Department of Mathemat-
ical Science, Tsinghua University, Beijing, China,
in 2003. He is currently a Professor with the
College of Mathematics and Information Science,
Hebei University. He is the author of 70 research
articles and five monographs. His work ranges

from theoretical/foundational work, including credibility measure theory and
robust credibilistic optimization methods, to algorithmic analysis and design
for optimization problems, such as credibilistic approximation approaches
and their convergence, and to applications in various engineering and man-
agement problems. Based on the citations in Scopus database, he is featured
among the Most Cited Chinese Researchers in the field of computer science
since 2014.

YING LIU received the B.S. and M.S. degrees
from the Department of Mathematics and
Computer, Hebei University, Baoding, China,
in 2003 and 2008, respectively, and the Ph.D.
degree in management science and engineering
from the Department of Management Science,
Hebei University, in 2017. She is currently an
Associate Professor with the College of Mathe-
matics and Information Science, Hebei University.
She is the author of 30 research articles. Her

research interest includes fuzzy optimization methods and its applications
in various engineering and management problems.

3194 VOLUME 9, 2021


