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ABSTRACT Because mechanical failures are accompanied by contingency and randomness, fault data is
often difficult to obtain, and fault labels are also difficult to assign. The lack of data and fault labels have
become important issues that restrict the development of fault diagnosis. The paper proposed a generalized
Laplacian label prediction (GLLP) algorithm, which mainly uses the generalized Laplacian matrix and
calculated a new locally smooth term. Therefore, data points with ambiguous and unclear labels will be
assigned a small label value, while samples with more certain labels can get a more confident label value.
The effectiveness of the method is verified on the public dataset and the real test rig dataset, and it is expected
that this method can be extended to more complex mechanical system fault diagnosis.

INDEX TERMS Fault diagnosis, rotating machinery, laplacian matrix, label prediction.

I. INTRODUCTION
Mechanical systems are similar to medical systems. When
faults occur in the system, it is vital to quickly and accurately
find the points of faults and the causes of the faults. In actual
mechanical systems, the collected fault data often lacks a
large amount of label information, which is a fatal blow to
most existing fault diagnosis methods based on supervised
learning and deep learning [1], [2]. How to accurately classify
the fault type using the only incomplete label at hand? This
problem is a dilemma that current fault diagnosis research
has to face. Based on this problem, a series of fault diagnosis
methods based on few shot learning came into being [3], [4].

Fault diagnosis methods based on unsupervised learning
are adopted in [5]–[8]. The labels of the fault samples are
discarded directly, and the samples are clustered with the
same category, so as to realize the fault diagnosis research
in the unlabeled condition. This way does effectively solve
the problem of insufficient sample labels, but the problem of
the failure type cannot be determined. The intelligent fault
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diagnosis method based on unsupervised learning can only
keep the distance of the samples of the same category closer,
but cannot identify the fault category. In response to this
shortcoming, [9]–[12] proposed a series of fault diagnosis
methods based on transfer learning. These fault diagnosis
methods can effectively solve the dilemma of the lack of data
and labels by transferring the knowledge learned in other
fields to the field of fault diagnosis, which is a research
focus of intelligent fault diagnosis. However, how to judge
whether the knowledge learned from other fields is relavant
to the features of the existing data is a practical problem that
transfer learning has to face. In order to solve this problem,
the researchers returned their focus to the existing data and
tried to find an effective solution from the data with missing
labels, as shown in Fig.1. [13], [13]–[18] Proposed intelligent
fault diagnosis methods based on semi-supervised learning,
which assign the same labels with similar features by buid-
ing similarity matrix. However, it is always very vague and
ambiguous for the existing fault diagnosis methods based on
semi-supervised learning to consider paired smooth items as
the basis for constructing similarity matrices. The fault diag-
nosis method based on semi-supervised learning is always not

14330 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-8170-4998
https://orcid.org/0000-0001-8739-4740
https://orcid.org/0000-0002-0537-7814
https://orcid.org/0000-0001-9465-2672
https://orcid.org/0000-0001-7293-8522


J. Gu et al.: Novel Method for Predicting Fault Labels of Roller Bearing by Generalized Laplacian Matrix

FIGURE 1. Principles of label propagation algorithm.

FIGURE 2. Display of smooth constraint items on artificial data sets.

satisfactory when propagating label information, as shown
in Fig.2. In Fig.2(a), the blue, red, and black circles represent
positive samples, negative samples and unlabeled samples,
respectively. The circle with coordinates (6, 2) has the same
distance to the positive and negative samples, so it can be
divided into any category, this point is called the’ambiguity
point’. Fig.2(b) describes that the ambiguity points are mis-
classified when only pairwise smooth terms are adopted.
In response to this ambiguity, a generalized Laplacian matrix
[19] is proposed to define a new smooth term. It can be seen
from Fig.2(c) that the proposed new smooth term effectively
prevents the label information from passing ambiguity points
and achieves greater classification effect.

The main contributions of this research can be summarized
as follows:

1) Solving the dilemma of insufficient data labels for fault
diagnosis;

2) A new smooth term is constructed by adopting gener-
alized Laplace matrix;

3) The proposed GLLP can be regarded as a unified
framework for graph-based label propagation methods.

The rest of the paper is summarized as follows: The infer-
ence model and inductive model are detailed described in
Section II. In section III, the qualities of label propagation
and fault diagnosis will be verified on Double Moon dataset
and MFS-MG test rig dataset. Some conclusions are drawn
in Section IV.

II. THE PROPOSED METHOD
The proposed GLLP algorithm is divided into two parts:
an inference model and an induction model. The inference
model is drawn in Euclidean space, and the induction problem
is described in Hilbert Regenerative Kernel space.

A. INFERENCE MODEL
The graph W = 〈Q,R〉 is given. Existing graph infer-
ence algorithms [20], [21] usually use the original Laplacian
matrixH = Z−P to describe the smoothness between labels.
When the vector u = (u1, u2, · · · , uk)> is used to record
the soft labels of all samples {ca}ka=1 in φ, then the existing
smooth terms can be described as:

1
2

k∑
a=1

k∑
b=1

θab (ua − ub)2 = u>Hu. (1)

However, Fig.2 has shown that the paired smooth terms
defined by Eq.1 cannot effectively handle ambiguous bridge
points, so we redefine a new smooth term

0(u) = $u>Hu+ νu>(E− Z/r)u, (2)

among them, $ and ν are non-negative parameters used
to impose different weights, r =

∑k
a=1 laa represents the

volume of graph W . The second term on the right side of
the formula is the locally smooth term, which can be further
elaborated as

u>(E− Z/r)u =
k∑

a=1

(1− lab/r)u2a. (3)

In the K-Nearest Neighbor graphW , laa records the close-
ness of Ca and surrounding elements, so when Eq.3 is min-
imized, laa with a larger value can obtain a confidence label
ua, and a smaller sample of laa will obtain a relatively weak
label.

The generalized Laplacian matrix expressed as Ĥ = E −
βP − β2(E − Z) firstly appeared in [19], [22], where β is a
variable parameter. When β is set to 1, the generalized Lapla-
cian matrix Ĥ will be transformes into traditional Laplacian
matrix, so the traditional Laplacian matrix can be regarded as
a special case of our proposed method.

Let Ĥ = $H + ν(E − Z/r), then Eq.2 can be expressed
as 0(u) = u>Hu, where Ĥ and H have similar meanings in
Eq.1. At the same time, further considering

H̃ = νE−$P+ ($ − ν/r)Z

= (ν +$ − ν/r)
[
E−

$ r
νr +$ r − ν

P
]

− (ν +$ − ν/r)
[

$ r − ν
νr +$ r − ν

(E− Z)
]
, (4)
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it can be found that when ν/$ = r(r − 2)/r − 1, and then
divided by the coefficient ν +$ − ν/r , Ĥ is the Eq.4.
Based on our proposed smoothing term, the inference

model of GLLP in Euclidean space will be derived. Firstly,
the initial state of the sample can be defined as d =
(d1, d2, · · · dk)>, when da = 1, ca is a positive sample, when
da = 0, ca is an unlabeled sample. Then we extend the vector
to the form of a matrix, and define a diagonal matrix Ak×k .
if Ca is a labeled sample, the value of the i-th element on the
diagonal element is 1, if it is an unlabeled sample, then set its
value to 0. So the inference model of GLLP can be drawn as
follows:

min
u
G(u) =

1
2

[
$uTHu+νuT (E−Z/r)u+‖A(u−d)‖22

]
(5)

The first term in brackets in Eq.5 is the pairwise smooth
term, which only considers the smoothness of the label
between the two samples. Therefore, we implanted a local
smoothing term, which can considers the sample and its
nearby neighbor samples to achieve smoothness in the local
area. In order to obtain the optimal solution of Eq.5, take the
derivative of G(u) to u and make the partial derivative equal
to 0, then we can obtain

$Hu+ ν(E− Z/r)u+ Au− Ad = 0. (6)

Therefore, the form of the optimal solution of u can be
described as:

u = [A+$H+ ν(E− Z/r)]−1d. (7)

In Eq.7, if ua > 0, then the label is defined as a positive
label.
Theorem 1: Eq.5 is a convex optimization problem,

and the optimal solution obtained is the global optimal
solution.

Proof: The Hessian matrix of Eq.5 is drawn as follows:
O = A+$H+ ν(E− Z/r) (8)

Through observation, it can be found that matrix O is
diagonally dominant, so it is a positive definite matrix.
In summary, theorem 1 is proved.

Next, two important parameters $ and ν of the proposed
GLLP will be fully analyzed. The classification results of
GLLP will prove to be insensitive to changes in parameters,
and the result will be further proved in subsequent experi-
ment. Based on Eq.8, the influence of $ and ν on U can
be converted to study the stability of the solution of equation
Ou = d. For this, a lemma is provided:
Lemma 2: A linear equation system Ou = d is provided,

assuming that d is certain, when the coefficientO has a slight
disturbance ιO, then the relationship between the deviation
of the result and the actual value d is as follows:

‖ιu‖
‖u‖
≤

Cond(O)(‖ιO‖/‖O‖)
1− Cond(O)(‖ιO‖/‖O‖)

, (9)

where Cond(O) = ‖O‖
∥∥O−1∥∥ is the condition number.

1) STABILITY OF ν
When a slight disturbance appears on ν, ιO in Eq.9 is ιO =
ιν(E − Z/r), and the resulting error can be described as
Eq.10, as shown at the bottom of the page, where ζ =
2
∑i

a=1 [$ laa + ν (1− laa/r)]+i > 0. It can be found that in
Eq.10, except for the different coefficients, the last term of the
numerator and denominator is the same form, which shows
that the disturbance has little effect on the result, so Eq.10 is
infinitely close to 0.

2) STABILITY OF $
When a slight disturbance appears on $ , ιO in Eq.9 is ιO =
ι$H, and the resulting error can be described as Eq.11, as
shown at the bottom of the page.

‖ιO‖
‖O‖

=
ιν‖E− Z/r‖

‖ A+$H+ ν(E− Z/r)‖

=

ιν

√∑k
a=1 (1− laa/r)

2√
$ 2

∑k
a=1

∑k
b=1,b6=a θ

2
ab +

∑k
a=1 [$ laa + ν (1− laa/r)]2 + ζ

=

ιν

√∑k
a=1 (1− laa/r)

2√
$ 2

∑
a
∑

b θ
2
ab +$

∑
a laa [($ − 2ν/r)laa + 2ν]+ ζ + ν2

∑
a (1− laa/r)

2
, (10)

‖ιO‖
‖O‖

=
ι$‖H‖

‖A+$H+ ν(E− Z/r)‖

=

ι$

√∑k
a=1 l

2
aa +

∑k
a=1

∑k
b=1,j6=a θ

2
ab√

$ 2
∑k

a=1
∑k

b=1,b6=a θ
2
ab +

∑k
a=1 [$ laa + ν (1− laa/r)]2 + ζ

=

ι$

√∑k
a=1 l

2
aa +

∑k
a=1

∑k
b=1,j6=a θ

2
ab√

ν2
∑

a

(
1− laa

r

)2
+ ν

∑
a

{(
1− laa

r

) [(
2$ − ν

r

)
laa + ν

]}
+ ζ +$ 2

(∑
a l

2
aa +

∑
a
∑

b θ
2
ab

) , (11)
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Similar to the above proof, the final result of Eq.11 is
very close to 0, Similar to the above proof, the final result
of Eq.11 is very close to 0, which also shows that GLLP is
not sensitive to changes in$ .

B. INDUCTIVE MODEL
The inductive model is established in the Hilbert space.
Assuming thatF(·, ·) is aMotzker kernel related to theHilbert
space and the corresponding norm is ‖ · ‖H, then the reg-
ularization expression of GLLP in the Hilbert space can be
described as:

min
u∈HF

G(f ) =
1
2

[
ς‖f ‖2H +$u>Hu

]
+

1
2

[
νu>(E− Z/r)u+

k∑
a=1

(f (ca)− da)2
]
.

(12)

Comparing Eq.12 with Eq.5, an inductive term ‖f ‖2H is
added, which is used to control the complexity of the model
and enhance the generalization ability of the model.

The literature [21] shows that the Eq.12 can be
decomposed into a kernel function representing marked or
unmarked:

u(c) =
k∑

a=1

maF (c, ca) . (13)

When Eq.13 is substituted into Eq.12, a objective function
can be described as:

min
M∈Rk

G̃(M) =
1
2

[
ςM>FM+$M>FHFM

]
+

1
2

[
νM>F(E−Z/r)FM+‖d−AFM‖2

]
,

(14)

where F is the Gram matrix defined on the training dataset,
Fab = F (ca, cb) (1 ≤ a, b ≤ k). It is not difficult to
find that Eq.14 is a convex function, so the model can obtain
the global optimal solution, and the solution of Eq.14 can be
obtained as

M = [ςE+$HF+ ν(E− Z/r) F+ AF]−1d. (15)

1) ROBUSTNESS ANALYSIS
Definition 3: Suppose there is a metric space Mγ whose

metric is γ , where W and Ŵ ⊂ Mγ are two sets in Mγ .
If ∀w ∈ W , ∃ŵ ∈ Ŵ , making γ (w, ŵ) ≤ υ, then Ŵ is the
υ -cover ofW , and the υ of W is

N (υ,W , γ ) = min{|Ŵ | : Ŵ is an υ − cover ofW }. (16)

Definition 4 (Robustness): G represents the algorithm, φ
and H (·) represent the training dataset and loss function of
the algorithm respectively. If Z can be divided into η disjoint
sets({Na}

η
a=1), so that ∀c1, c2 ∈ φ,

n1, n2 ∈ Na ⇒
∣∣H (Gφ, n1)− H (Gφ, n2)∣∣ ≤ υ(φ), (17)

then G is called (η, υ(φ)) -robustness.

Based on Definition 3 and Definition 4, Definition 5 can
be described as follows:
Definition 5: Input space is C, and ∀ca, cb ∈

C, ‖ca − cb‖ ≤ υ. Based on the Gaussian kernel
function, build a K-Nearest Neighbor graph θab =

exp
(
−‖ca − cb‖2 /

(
2ω2

))
. When N (υ/2, C, ‖ · ‖2) < ∞,

the proposed GLLP is
√

8 i
ς

(
1+

√
i
ς

)√
1− exp

(
−

υ2

2ω2

)
-

robustness.
Proof: when M in Eq.14 is set to M0 = (0, · · · , 0)>,

then G̃ (M0) = ‖d‖2/2 = i/2 can be obtained. It can also
be found that all the items in the brackets in Eq.14 are non-
negative, 1

2ςM
>FM ≤ G(M) ≤ G (M0) = i/2 can be

further obtained, which means

M>FM ≤ i/ς (18)

When faced with a binary classification problem, Z can
be divided into η = 2 N (υ/2, C, ‖ · ‖2) disjoint sets with
an interval of υ [23]. According to Definition 3, if n1 and
n2 are both a subset of set Na(1 ≤ a ≤ η), ‖c1 − c2‖ ≤ υ

and ‖d1 − d2‖ = 0 can be obtained. The loss function of our
proposed GLLP is

H (u) = (u(c)− d)2. (19)

According to Definition 4, the difference of the loss
function of the GLLP mapping function on sets n1 and n2
is

|H (u, n1)−H (u, n2)| =
∣∣∣(d1−u (c1))2−(d2− u (c2))2∣∣∣ .

(20)

Taking Eq.13 into Eq.20, a specific loss function difference
can be obtained as follows:

|H (u, n1)− H (u, n2)|

= |

[
d1−

∑k

a=1
maF (c1, ca)

]2
−

[
d2−

∑k

a=1
maF (c2, ca)

]2]

≤

∣∣∣∣d1 + d2 −∑k

a=1
ma (F (c1, ca)+ F (c2, ca))

∣∣∣∣
d1 − d2 −

∑k

a=1
ma (F (c1, ca)− F (c2, ca)) |

= |O1| |O2| , (21)

where O1 = d1 + d2 −
∑k

a=1ma (F (c1, ca)+ F (c2, ca)),
O2 = d1−d2−

∑kk
a=1ma (F (c1, ca)− F (c2, ca)). The upper

limit of |O1| and |O2| can be derived as follows:

|O1| ≤ |d1| + |d2| + |u (c1)+ u (c2)|

≤ 2+ 2 max
c∈{c1,c2}

〈u,F(c, ·)〉H

≤ 2+ 2 max
c∈{c1,c2}

‖u‖H
√
F(c, ·)

≤ 2+ 2 max
c∈{c1,c2}

∥∥∥∥∥
k∑

a=1

maF (ca, ·)

∥∥∥∥∥
H

√
F(c, ·)

≤ 2+ 2

√√√√〈 k∑
a=1

maF (ca, ·) ,
k∑

a=1

mbF (cb, ·)

〉
H
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= 2+ 2

√√√√ k∑
a,b=1

mambF (ca, ·)F (cb, ·)

= 2+ 2

√√√√ k∑
a,b=1

maF (ca, cb)mb

= 2+ 2
√
M>FM

≤ 2+ 2

√
i
ς
, (22)

where 〈·, ·〉H represents the inner product in spaceH.
In addition, since ‖u‖2H = M>FM ≤ i

ς
, ‖u‖H ≤

√
i
ς
.

At the same time, considering ‖d1 − d2‖ = 0, ‖c1 − c2‖ ≤
υ, the upper limit of O2 can be obtained as follows

|O2| = |u (c1)− u (c2)|

= |〈u,F (c1, ·)− F (c2, ·)〉H|

≤ ‖u‖H ‖F (c1, ·)− F (c2, ·)‖H
= ‖u‖H

√
F (c1, c1)+ F (c2, c2)− 2 F (c1, c2)

≤
√
i/ς
√
F (c1, c1)+ F (c2, c2)− 2 F (c1, c2)

≤
√
i/ς
√
2− 2 exp

[
−‖c1 − c2‖2 /

(
2ω2

)]
=
√
i/ς
√
2− 2 exp

[
−υ2/

(
2ω2

)]
. (23)

Finally, taking Eq.22 and Eq.23 into Eq.21, the specific
loss function difference can be obtained as follows:

|H (u, n1)−H (u, n2)| ≤

√
8i
ς

(
1+

√
i
ς

)√
1−exp

(
−
υ2

2ω2

)
,

(24)

the proposed GLLP is
√

8 i
ς

(
1+

√
i
ς

)√
1− exp

(
−

υ2

2ω2

)
-

robustness has been proved.

2) GENERALIZATION ABILITY ANALYSIS
Assuming that all samples are independent and identically
distributed, then the empirical error and generalization error
can be defined as H̃

(
Gφ
)
= Ec∼P

[
H
(
Gφ, c

)]
, Hemp

(
Gφ
)
=

1
k

∑
ca∈φ H

(
Gφ, ca

)
.

Definition 6: Assuming that there are n independent and
identically distributed samples in the training dataset φ, and
the algorithm G is robust, then for any ι > 0 [24], there will
be the following constraints when the probability is greater
than or equal to 1− ι:∣∣∣H̃ (Gφ)− Hemp (Gφ)∣∣∣ ≤ υ(φ)+ U√2η ln 2+ 2 ln(1/ι)

k
,

(25)

where the upper bound of the loss function H (·, ·) is denoted
as U .
Definition 7: Assuming that the loss function of the GLLP

algorithm is H (u, φ) = (u(c)− d)2, then for any ι > 0, when
the probability is greater than or equal to 1 − ι, the general-

ization error limit of GLLP is:∣∣∣H̃ (Gξ )− Hemp (Gξ )∣∣∣ ≤
√
8i
ς

(
1+

√
i
ς

)√
1−exp

(
−υ2

2ω2

)
+ 2

(
1+

i
ς

)√
2η ln 2+ 2 ln(1/ι)

k
(26)

Proof : The generalization error limit of GLLP is related
to υ(φ), η, andU . υ(φ) and η have been obtained in the above
part, and then only the upper bound U is required, so

H (u, φ) = (d − u(c))2 = d2 − 2 du(c)+ u2(c)

≤ 2 d2 + 2 u2(c) ≤ 2+ 2i/ς. (27)

so the upper bound of the loss function is

U = 2+ 2i/ς. (28)

Definition 7 can be proved by substituting Eq.24 and
Eq.28 into Eq.25.

3) LINEARIZATION OF GLLP
The above inductive GLLP is nonlinear, but its corresponding
linear model can also be sorted out.

According to Eq.13, the label of test sample c0 is

u1(c0)=kM = k
[
ςE+$HF+ν

(
E−

1
r
Z
)
F+AF

]−1
d,

(29)

where F is a kernel matrix.
Linear decision function u (c0) = θ>c0 and data matrix

C = (c1, c2, · · · ck) are used to build the GLLP model:

min
θ
G(θ )

=
1
2

[
ς‖θ‖2 +$θ>CHC>θ

]
+

1
2

[
νθ>C

(
E−

1
r
Z
)
C>θ +

∥∥∥d− AC>θ
∥∥∥2
2

]
,

(30)

and its optimal solution can be obtained as:

θ=

[
ςE+$CHC>+νC

(
E−

1
r
Z
)
C>+CAC>

]−1
Cd.

(31)

The label of test sample c0 is

u2 (c0)

= c>0 θ

= c>0

[
ςE+$CHC>+νC

(
E−

1
r
Z
)
C>+CAC>

]−1
Cd.

(32)

Substituting F = C>C into Eq.29 can get

u1 (c0) = c>0 C
(
ςE+ UC>C

)−1
d, (33)

where U = $H+ ν
(
E− 1

rZ
)
+ A.
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FIGURE 3. MFS-MG test rig.

According to the matrix inverse lemma, u1 (c0) and u2 (c0)
can be derived as

u1 (c0) = c>0 C
(
ςE+ UC>C

)−1
d

= c>0 C

[
1
ς
E−

1
ς2

U
(
E+

1
ς
C>CU

)−1
C>C

]
d

= c>0 C

[
1
ς
E−

1
ς2

(
U−1 +

1
ς
C>C

)−1
C>C

]
d,

(34)

u2 (c0) = c>0
(
ςE+ CUC>

)−1
Cd

= c>0

[
1
ς
E−

1
ς2

C
(
M−1 +

1
ς
C>C

)−1
C>
]
Cd

= c>0 C

[
1
ς
E−

1
ς2

(
U−1 +

1
ς
C>C

)−1
C>C

]
d,

(35)

Eq.34 and Eq.35 are obviously equivalent.

III. EXPERIMENTAL ANALYSIS
The experimental analysis is divided into two parts: 1) Verify
the label propagation ability of the GLLP algorithm on the
artificial dataset; 2) Verify the fault classification ability of
the proposed GLLP method on the dataset of MFS-MG
test rig.

A. DESCRIPTION OF DATASETS
In this section, two types of datasets are adopted: Double
Moon dataset and dataset on MFS-MG test rig. These two
datasets will be introduced in detail as follows.

1) Double moon dataset: The dataset first appeared in
[25]. 1000 samples are divided into two moon shapes
in the section, the center coordinates of the two moons
are (0,0), (10,0) respectively.

2) MFS-MG dataset: MFS-MG test rig is powered by
a 1HP motor. The specific experimental equipment
related parameters are presented in Table 1. The faults
collected by the test rig include: inner fault (IF), outer
fault (OF), roller fault (RF) and normal condition (NC).
The specific structure of the MFS-MG test bench is
shown in Fig.3.

B. VERIFICATION OF LABEL PROPAGATION
PERFORMANCE
In the theoretical analysis part, the various performances
of GLLP have been fully proved. Next, we will verify
the label propagation ability of the GLLP method through
experiments, and make the results more intuitively observed
by everyone through the visualization method. In order
to fully prove the superior performance of the proposed
GLLP method, five latest graph-based label propagation

FIGURE 4. Comparison of label propagation on Doube-Moon Dataset.
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FIGURE 5. Comparison of the accuracy of label propagation when the sampling rate ρ = 0.6.

algorithms are selected as baselines for comparison: ALP
[26] (auto-weighted label propagation):, BPFLP [27](belief-
peaks clustering based on fuzzy label propagation), GLP
[28](graph layout based label propagation), LNLP [29](lin-
ear neighborhood label propagation) and NLPPC [30](new
label propagation algorithm with pairwise constraints). The
parameters set by the six methods on Double Moon dataset
are shown as:

1) ALP: α = 10−6, β = 10−6, and γ = 10−3;
2) BPFLP: K = 2 and q = 0.7;
3) GLP: α = 0.4 and β = 2;
4) LNLP: α = 0.3, β = 0.7, and ρ = 1.0;
5) NLPPC: µ = 0.6 and k = 2;
6) GLLP: ω = 2, k = 5,$ = 1 and ν = 10−3.

The results of the comparative experiment are presented
in Fig.4. Since the GLLP algorithm we proposed is a
non-iterative algorithm, we only give the final label propaga-
tion visualization results of all comparison methods. It can be
easily seen from the results that the label propagation ability
of our proposed GLLP method is the highest. In the process
of label propagation, ALP and BPFLP propagates negative
labels to positive labels, which is over propagation. After the
propagation of LNLP, NLPPC and GLP, they still failed to
completely spread all the labels, which is under propagation.
The proposed GLLP method successfully propagated all
kinds of labels to the correct position. The proposed GLLP
can be considered as a state of the art label propagation
method.

C. FAULT CLASSIFICATION OF MFS-MG TEST RIG
After the theoretical and experimental verification, the
performance of the proposed GLLP method has been

fully demonstrated. The GLLP method will be adopted for
predicting the fault labels of rolling bearing and exploring the
fault diagnosis performance.

In this work, 100 samples are selected to extract
time-domain features, and each sample is a vibration
sequence with a length of 1024.

In the experimental verification of the above subsection,
five advanced algorithms are adopted for comparison. In this
subsection, we adopt three state-of-the-art fault diagnosis
methods based on semi-supervised learning for comparison.
At the same time, to ensure the diversity of comparisons, two
above latest label propagation algorithms are also adopted
to compared with GLLP method. The parameters of these
methods are set as follows: varsigma

1) CRSSL: Following the setting in [16];
2) SS-CDGM: Following the setting in [14];
3) DASS: Following the setting in [17];
4) LPNP: α = 0.2, β = 0.7, and ρ = 1.0 [29];
5) NLPPC: µ = 0.5 and k = 4 [30];
6) GLLP: ω = 2.5, k = 4,$ = 1 and ν = 10−3.

Since the first five methods are all deep learning methods,
the network level is complex, we only provide corresponding
references, and the specific parameter settings will not be
repeated. It is worth noting that in order to verify the quality of
GLLP in the case of missing labels, the random sampling rate
is set to ρ = 0.2, 0.4, 0.6. Under different random sampling
rates, the prediction accuracy of the label propagation method
is shown in Fig.5, Fig.6 and Fig.7. The ability of predicting
labels are measured by confusion matrixs [31], [32]. In Fig.5,
since the sampling rate adopted is 0.6, that is, the num-
ber of labeled samples is 60, all methods can learn enough
knowledge and the accuracy rate is also the highest. In Fig.6,
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FIGURE 6. Comparison of the accuracy of label propagation when the sampling rate ρ = 0.4.

FIGURE 7. Comparison of the accuracy of label propagation when the sampling rate ρ = 0.2.

the accuracy of variousmethods for predicting labels is shown
when the sampling rate is 0.4. It is shown in Fig.6 that when
the sampling rate is 0.4, since the characteristics learned by
various learning methods are sufficient, the accuracy of the

predicted labels is generally high. and the GLLP method is
the only method that completely predicts correctly. In Fig.7,
the accuracy of variousmethods for predicting labels is shown
when the sampling rate is 0.2. As shown in Fig.7, when the
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sampling rate is 0.2, due to the lack of training samples,
the accuracy of the comparison method predicting labels is
all lower than 80%, but the accuracy of our proposed GLLP
can still reach 98.33%, with only one label being predicted
wrong.

IV. CONCLUSION
In this study, a novel label prediction method based on the
generalized Laplacian matrix has been proposed. A new
locally smooth term is constructed through the generalized
Laplacian matrix to accurately determine the category of
ambiguity points. The GLLP is a new attempt of the fault
label prediction algorithm. The performance of the proposed
GLLP method has been verified on theory, manifold artificial
dataset and actual test rig dataset. In the process of label
propagation ability verification, GLLP is the only method
where label propagation is completely correct. In the verifi-
cation process on the MFS-MG dataset, even in the extreme
case where the sampling rate is only 0.4, the proposed GLLP
method still has a correct rate of 98.33%. Therefore, it can be
seen that the GLLP method has broad development prospect
in actual industrial fault diagnosis.

In the future work, we will further study the application
of the GLLP method in the problem of unbalanced data
distribution, and will also explore the potential of GLLP in
fault diagnosis of gears and non-rotating machinery.
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