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ABSTRACT This paper proposes new accurate approximations for average error probability (AEP) of a
communication system employing either M -phase-shift keying (PSK) or differential quaternary PSK with
Gray coding (GC-DQPSK) modulation schemes over generalized fading channel. Firstly, new accurate
approximations of error probability (EP) of both modulation schemes are derived over additive white Gaus-
sian noise (AWGN) channel. Leveraging the trapezoidal integral method, a tight approximate expression of
symbol error probability forM -PSKmodulation is presented, while new upper and lower bounds forMarcum
Q-function (MQF) of the first order, and subsequently those for bit error probability (BEP) under DQPSK
scheme, are proposed. Next, these bounds are linearly combined to propose a highly refined and accurate
BE P’s approximation. The key idea manifested in the decrease property of modified Bessel function Iv,
strongly related to MQF, with its argument v. As an application, these approximations are used to tackle
AEP’s approximation under κ − µ shadowed fading. Numerical results show the accuracy of the presented
approximations compared to the exact ones.

INDEX TERMS Bit error probability, bounds refinement, DQPSK modulation, M -PSK modulation,
Marcum Q-function, symbol error rate, upper bound.

I. INTRODUCTION
Wireless technologies are becoming part of our daily lives and
their utilization s increase rapidly due to many advantages
such as cost-effectiveness, global coverage and flexibility.
Nevertheless, these technologies are infected by many phe-
nomena including shadowing which is relatively slow and
gives rise to long-term signal variations and multipath fading
which is due to constructive and destructive interferences as
a result of delayed, diffracted, reflected, and scattered signal
components [1]. A great number of communication channels’
models have been proposed in the literature to describe either
the fading or the joint shadowing/fading phenomena [2]–[5].
Recently, the κ − µ shadowed fading proposed in [6], has
attracted a lot of interest due to its versatility and wide appli-
cability in practical scenarios. For instance, it was used for
characterizing signal reception in device-to-device communi-
cations, body-to-body communications, underwater acoustic,
fifth-generation (5G) communications, and satellite commu-
nication systems [7]–[11]. In addition, it was shown that
numerous statistical models can be derived from the κ − µ
shadowed one by setting the parameters to some specific real
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positive values [12]. Particularly, when the parameters µ and
m are integer, such a model is equivalent to what’s referred
to as composite fading, namely, mixture Gamma distribu-
tion [13]. The AEP is a fundamental performance evaluation
tool in digital communications, quantifying the reliability of
an instantaneous received signal. Furthermore, dealing with
the AEP is quite practical in most applications as it states
the average performance irrespective of time. Nonetheless,
evaluating AEP in closed form remains a big challenge for
numerous communication systems because of the complexity
of either the end-to-end fading model or the employed mod-
ulation technique. Essentially, depending on the employed
modulation scheme, EP is provided in either complicated
integral form [1] or first-order Marcum Q-function (MQF)
and the zeroth-order modified Bessel function (MBF) of the
first kind [14] for various M -ary and differential quadra-
ture phase-shift keying (DQPSK) modulation schemes. That
integral form can be reexpressed also in terms Gaussian
Q-function (GQF), which is not known in closed form. By its
turn, theMQF integral-form involves theMBFwith exponen-
tial term [1], that can be rewritten appropriately as an upper
incomplete upper Fox’s H-function (UIFH), or equivalently,
an infinite summation of the product of upper incomplete
Gamma functions [15]. Thus, obtaining AEP requires the
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averaging of a UIFH over a generalized fading distribu-
tion, which is not evident particularly for fading model with
probability density function (PDF) involving the product of
exponential and Fox’s H- functions (e.g. κ − µ shadowed
model). Obviously, deriving accurate bounds or approxima-
tions for the AEP is strongly depending on the EP’s ones.
To this end, several EP’s bounds and approximations for the
EP are proposed in the literature, for instance, in [16]–[19],
numerous bounds for the symbol error probability (SEP) in
the case of M -ary PSK modulation are derived in terms of
GQF and its powers. Such a function is itself mathematically
intractable when involved in complicated integrals resulting
from generalized fading distributions. To remedy this prob-
lem, several various works deal with simple, and accurate
bounds obtained by approximating the SEP for various mod-
ulation schemes by the GQF are used when applied to inspect
the performance of a communication system experiencing
to a particular bivariate-Fox’s H-fading model [20], [21].
In contrast, evaluating the performance of GC-DQPSK mod-
ulation requires simple bounds or approximate expressions
forMQF due to its complicated closed-form and intractability
when involved in the computation of AEP [22]–[25]. In [26]
and [27], bounds for EP are investigated, while in [28],
new lower and upper bounds for EP were proposed, based
on which a novel approximation was derived. Despite the
good accuracy of the latter’s bounds and/or approximation for
both MPSK and GC-DQPSK, they remain useless for AEP
computation because of their forms’ complications.

A. MOTIVATION
The performance of wireless communication systems, with
perfect channel state information (CSI) knowledge at the
receiver, is widely examined by the scientific community.
However, imperfect estimation of channel coefficients is
dealt with various practical scenarios, leading to a significant
degradation of the system performance. To overcome this
limitation, differential modulation (DM) can be considered
as an alternative solution particularly for low-power wireless
systems, such as wireless sensor networks and relay net-
works [29]. The main advantage of this scheme is its simplic-
ity of detection due to the unnecessary channel coefficients
estimation and tracking, leading to significant reduction in
the receiver computational complexity [30], [31]. However,
this comes at a cost of higher error rate or lower spectral
efficiency. As a result, selecting the most suitable modula-
tion scheme depends on the considered application and both
coherent and non-coherent detections. Motivated by this, this
paper is devoted to analyzing the performance of twomodula-
tion schemes, namely M -PSK and DQPSK over generalized
fading model (e.g., κ − µ shadowed fading channel).

B. CONTRIBUTION
Capitalizing on the above, we aim at this work to propose
accurate approximations for EP of aforementioned modula-
tion schemes. Specifically, utilizing the trapezoidal integral
method, the EP integral form for various M -ary modulation

schemes is tightly approximated particularly for M -PSK
scheme, while for DQPSK technique, we start by deriving
simple lower and upper bounds for EP by bounding MQF,
to be used jointly in finding an accurate approximation of the
EP. Pointedly, our main key contributions can be summarized
as follows
• We propose a new exponential type approximation for
the EP applied to M -PSK modulation for an arbitrary
fadingmodel by using the trapezoidal technique integral.
To the best of the authors’ knowledge, such accurate
EP’s approximation outperforms those presented in the
literature,

• We derive new upper and lower bounds of EP in the case
of DQPSK modulation and generalized fading model,
based on which, an accurate approximation of BEP is
proposed,

• As an application, we provide, relying on the two pro-
posed EP’s approximations, a tight approximate expres-
sion for AEP over κ − µ shadowed fading channel,

• We provide the asymptotic analysis for both forms of
AEP and we demonstrate that the diversity order over
κ − µ shadowed fading channel remains constant.

Motivated by this introduction, the rest of this paper can be
structured as follows. In section II, a new approximation for
the first EP form (i.e., M -ary modulation) for an arbitrary
fading model is presented for M -PSK while, new lower and
upper bound of EP in the case of DQPSK are derived, based
on which an accurate approximation for the EP is deduced.
In Section III, as an application, the expression of AEP under
κ −µ shadowed fading for both modulation schemes is eval-
uated. In section IV, the respective results are illustrated and
verified by comparison with the exact ones using simulation
computing. Section V summarizes the main conclusions.

II. BOUNDS ON THE EP
In this section, we propose new approximate expressions for
the two potential different forms of EP, namely (i) compli-
cated integral form, and (ii) MQF form, applied to M -PSK
and DQPSK modulations with Gray coding, respectively.

A. EP WITH INTEGRAL FORM
Proposition 1: The SEP for M-PSK modulation can be

tightly approximated by

H̃1 (γ ) '

7∑
l=1

Al exp (−Blγ ) , (1)

while Al and Bl are given in Table 1.
Proof: The SEP for M -PSK modulation is given as [1,

Eq. (8.22)]

H1 (γ ) =
1
π

∫ M−1
M π

0
exp

(
−

%γ

sin2(θ )

)
dθ, (2)

with

% = log2(M ) sin2
( π
M

)
, (3)

and γ denotes the signal-to-noise ratio (SNR) per bit.
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TABLE 1. The coefficients Al and Bl .

Subsequently, (2) can be written as

H1 (γ )=Q
(√

2%γ
)
+

1
π

∫ M−2
2M π

0
exp

(
−

%γ

cos2(t)

)
dt︸ ︷︷ ︸

I

(4)

where Q (.) denotes the Gaussian Q−Function [1, Eq. (4.1)].
The integral I can be approximated using numerical inte-

gration rules. The trapezoidal rule for definite integration of
an arbitrary function between [x0, x0 + nφ] is given by∫ x0+nφ

x0
f (t) dt =

φ

2

[
g0 + gn + 2

n−1∑
i=1

gi

]
, (5)

where gi = f (x0 + iφ) for i = 0..n, n refers to the number
of sub-intervals equally spaced trapeziums, and φ defines
the spacing. It is worthy to mention that both, the com-
plexity and bounds of such an approximation depend on the
number of sub-intervals, namely the greater n is, the tighter
the approximation and the higher the evaluation time one.
Thus, it is recommended to look for an optimum value of n
ensuring a trade-off between the tightness and computational
complexity. By substituting x0 = 0, φ = M−2

2Mn π and f (t) =

exp
[
−%γ/ cos2(t)

]
,
(
i.e., gi = exp

[
−%γ/ cos2(iM−22Mn π )

])
in (5), I can be approximated for n = 3 and n = 4,
respectively, by

I3 =
M − 2
12M

 exp (−%γ )

+ exp

(
−

%γ

cos2(M−22M π )

)

+
M − 2
6M


exp

(
−

%γ

cos2(M−26M π )

)

+ exp

(
−

%γ

cos2(M−23M π )

)
 , (6)

and

I4 =
M − 2
16M

 exp (−%γ )

+ exp

(
−

%γ

cos2(M−22M π )

)

+
M − 2
8M



exp

(
−

%γ

cos2(M−28M π )

)

+ exp

(
−

%γ

cos2(M−24M π )

)

+ exp

(
−

%γ

cos2(3M−28M π )

)


. (7)

Now, using (6), (7), and plugging [32, Eq.(8b)] into (4), H1
can be approximated by

H̃1 ∼
1
16

exp (−%γ )+
1
8
exp (−2%γ )

+
1
8
exp

(
−
20
3
%γ

)
+

1
8
exp

(
−
20
17
%γ

)
+ In. (8)

Table 2 summarizes the approximated SEP using (8) for
n = 3 and n = 4 and various M -PSK modulation schemes.
Further, Eq. (2) has been evaluated using the sub-routine
Trapz of Matlab software. Obviously, the absolute error of
such an approximation remains negligible for high instanta-
neous SNR values, while it is below 10−3 above SNR= 0 dB
for both values of n. To this end, and for complexity reducing
purposes, we opt, in what follows, for n = 3. Accordingly,
(1) is attained by combining (6) and (8).

B. EP WITH MQF FORM
The bit error probability (BEP) for DQPSK modulation with
Gray coding is given by [14]

H2 (γ )=Q1
(
a
√
γ , b
√
γ
)
−
1
2
I0
(√

2γ
)
exp (−2γ ) , (9)

with a =

√
2
(
1−
√
0.5
)
, b =

√
2
(
1+
√
0.5
)
, Iv (.) is

the v-th order modified Bessel function of the first kind [15,
Eq. (8.431)], and Q1 (., .) represents the first-order MQF
defined as [1, Eq. (4.34)]

Q1 (α, β) =

∫
∞

β

t exp
(
−
t2 + α2

2

)
I0 (αt) dt. (10)

1) NEW LOWER BOUND FOR BEP
Proposition 2: The BEP for DQPSK modulation with

Gray coding can be lower bounded as

H2 (γ ) ≥ L (γ ) , (11)

with

L (γ ), δK(a, b, γ )−
1
2
I0
(√

2γ
)
exp (−2γ ) , (12)

K(a, b, γ )=Q
(
(b− a)

√
γ
)
− Q

(
(b+ a)

√
γ
)
, (13)

and δ =
√

b
a .

Proof: As Iv is a decreasing function with respect to the
index v [33], yields

Q1
(
a
√
γ , b
√
γ
)
> J , (14)

with

J ,
∫
∞

b
√
γ

t exp
(
−
t2 + a2γ

2

)
I 1
2

(
a
√
γ t
)
dt. (15)
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TABLE 2. Comparison between the approximate and the exact ASEP for M-PSK.

Now applying [15, Eq. (8.431.4)] for v = 1
2 , one can

ascertain

I 1
2

(
a
√
γ t
)
=

2 sinh(a
√
γ t)√

2πa
√
γ t

, (16)

where sinh(.) accounts for the hyperbolic sine function.
By plugging (16) into (15) along with the following

identity

sinh
(
a
√
γ t
)
=

exp
(
a
√
γ t
)
− exp

(
−a
√
γ t
)

2
, (17)

one can obtain

J,
1
√
2πa

∫
∞

b
√
γ

√
t
√
γ


exp

(
−

(
t − a
√
γ
)2

2

)

− exp

(
−

(
t + a
√
γ
)2

2

)
 dt.

(18)

Finally, as t ≥ b
√
γ , yields

J ≥ δ


1
√
2π

∫
∞

b
√
γ

exp

(
−

(
t − a
√
γ
)2

2

)
dt

−
1
√
2π

∫
∞

b
√
γ

exp

(
−

(
t + a
√
γ
)2

2

)
dt


= δK(a, b, γ ), (19)

which concludes the proof.

2) NEW UPPER BOUND FOR BEP
Proposition 3: For γ ≥ 0, holds

H2 (γ ) ≤ U (γ ) ,

with

U (γ ) ,
1
δ
K(a, b, γ )+

1
2
I0
(√

2γ
)
exp (−2γ ) . (20)

Proof: Relying on (10) and using integration by part by
considering u′(t) = t exp

(
−
t2
2

)
andw = I0

(√
aγ t

)
, one can

see

Q1
(
a
√
γ , b
√
γ
)
= T + I0

(√
2γ
)
exp (−2γ ) ,

with

T =
∫
∞

b
√
γ

a
√
γ exp

(
−
t2 + a2γ

2

)
I1
(
a
√
γ t
)
dt· (21)

Again, by incorporating the inequality I1 (t) ≤ I 1
2
(t) [33],

alongside with (16) and (17) into (21), we get

T ≤
√
a
√
γ

2π

∫
∞

b
√
γ

1
√
t

 exp
(
−
(t−a
√
γ )

2

2

)
− exp

(
−
(t+a
√
γ )

2

2

)
 dt. (22)

Moreover, as t ≥ b
√
γ in the aforementioned integrand,

one can check

T ≤
1
δ
K(a, b, γ ). (23)

Therefore (20) can be inferred from (23) jointly with (13);
this completes the proof.

3) APPROXIMATE BEP FOR DQPSK
In this part, a tight approximate expression for the BEP under
DQPSK scheme is derived based on the two bounds presented
above. In a similar manner to the approach followed in [28],
the new proposed approximation is a linear combination of
the two aforementioned bounds for H2 (γ ), namely

H̃2 (γ ) = χ̃ (γ )U (γ )+ (1− χ̃ (γ ))L (γ ) . (24)

Proposition 4: The function χ (γ ) can be chosen as

χ̃ (γ ) = C0 exp (−D0γ )+ C1 exp (−D1γ ) , (25)

where Ci andDi are the best-fit parameters, depending on the
SNR interval, summarized in Table 3.
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TABLE 3. Optimum values of fitting parameters for different SNR ranges.

Proof: First, let’s define the following function

χ (γ ) =
H2 (γ )− L (γ )
U (γ )− L (γ )

. (26)

One can check that

H2 (γ ) = χ (γ )U (γ )+ (1− χ (γ ))L (γ ) . (27)

That is, it is sufficient to look for a tight approximation
for (26) so as to approximateH2 (γ ) .

FIGURE 1. Comparison between χ (γ ) and χ̃ (γ ).

By plotting χ (γ ) as shown in Fig. 1, one can clearly
notice its exponential behavior. It follows that its approximate
expression can be written in the form (25). Furthermore,
the optimized coefficients Ci and Di outlined in Table 3, for

various SNR intervals can be straight forward obtained using
a curve fitting tool (e.g., Matlab Curve Fitting app); this ends
the proof.
Remark 1: It is worthwhile that the first-order MQF can

be approximated, relying on (9), (12), (20), and (24), by

Q̃1
(
a
√
γ , b
√
γ
)
= H̃2 (γ )+

1
2
I0
(√

2γ
)
exp (−2γ )

= K(a, b, γ ) (ηχ̃ (γ )+ δ)

+ I0
(√

2γ
)
exp (−2γ ) χ̃ (γ ) , (28)

with

η =
1− δ2

δ
. (29)

Both exact and approximate functions χ (γ ) and χ̃ (γ ) are
plotted in Fig. 1. One can observe that there exists a strong
matching between the two curves over the entire range of γ.

Table 4 summarizes the accuracy of the proposed approx-
imation compared with the best ones proposed in the liter-
ature, namely

{
H̃i (γ )

}
i=3..5 labeled {BERi+2}i=3..5 in [28],

respectively. Besides, the relative error corresponding to the
aforementioned approximations, namely

εi =

∣∣H̃i (γ )−H2 (γ )
∣∣

H2 (γ )
, i = 2..5,

is depicted in Fig. 2. Obviously, the relative error correspond-
ing to the proposed approximation outperforms those in [28],
except for a short interval, i.e., [11.7, 12.45] where H2 (γ )

is negligible, as outlined in Table 2, compared to its values
getting for small SNR.
Remark 2: It can be seen clearly that the proposed approx-

imation outperforms the concurrent ones. Moreover, one can
check that the three expressions

{
H̃i (γ )

}
i=3..5 are tough,

which rend them useless in numerous applications such as
the average bit error probability (ABEP) computation under
a complicated fading model. Contrarily, the expression of
H̃2 (γ ) is quite simple, making it more appropriate for vari-
ous fields.

TABLE 4. Comparison between the exact and approximate BEP.
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FIGURE 2. Comparison of the relative errors.

III. AEP ANALYSIS
As mentioned above, the proposed approximate EP is used to
derive an approximate AEP when communicating over κ−µ
shadowed fading.

The PDF of instantaneous SNR γ under the κ − µ shad-
owed fading model can be written as [12, Eq. 4]

fγ (γ ) =
λ

0 (µ)
γ µ−1e−νγ 1F1 (m;µ;ωγ ) , (30)

with

λ =
µµmm (1+ κ)µ

γ µ (µκ + m)m
, ν =

µ (1+ κ)
γ

, ω =
µ2κ (1+ κ)
γ (µκ + m)

,

(31)

where γ is the average SNR, and when µ is a natural number,
it refers to the number of waves’ clusters, κ is the ratio
between the dominant components’ power and the scattered
waves’ power, while m accounts for the shape parameter.
Further, 1F1 (.; .; .) and 0 (.) denote the Kummer confluent
hypergeometric and Euler Gamma functions, respectively.

The AEP approximation for both M -PSK and DQPSK
schemes can be straightforwardly evaluated as

Pe =
∫
∞

0
fγ (γ )Hi (γ ) dγ, (32)

by setting i = 1 and i = 2, respectively.
Remark 3: Pe accounts for the average symbol error prob-

ability (ASEP) for M-PSK modulation, while it refers to the
ABEP for DQPSK modulation with Gray coding.
Proposition 5: In the case of M-PSK modulation,

the ASEP over κ −µ shadowed fading model can be approx-
imated as

Pe ' λ
7∑
l=1

Al (ν + Bl)−µ
(
1−

ω

ν + Bl

)−m
. (33)

Proof: By plugging (1) and (30) in (32) ,and with
the help of [15, 7.522 Eq. (9) and 9.121 Eq. (1)] one can
obtain (33) .

Proposition 6: The ABEP for DQPSK scheme with Gray
coding over the κ−µ shadowed fading channel can be tightly
approximated as

Pe '
λη

0 (µ)

2∑
i=0

[
CiM(1)

i (a)− CiM(1)
i (−a)+

Fi

η
M(2)

i

]
,

(34)

with

M(1)
i (a)=

∞∑
k=0

φi,k 2F1
(
1
2 , µ+ k;µ+ k + 1; 2ξi

(b−a)2+2ξi

)
2
√
π

,

(35)

M(2)
i =

∞∑
k=0

ψi,k 2F1

(
µ+ k
2

,
µ+ k + 1

2
; 1;

2

(2+ ξi)2

)
,

(36)

φi,k =
(m)k ω

k

(µ)k k!

(
2

(b− a)2 + 2ξi

)µ+k 0 (µ+ k + 1
2

)
µ+ k

,

(37)

ψi,k =
0 (µ) (m)k ω

k

k! (2+ ξi)µ+k
, (38)

ξi= ν +Di, (39)

where (.). represents the pochhammer symbol, 2F1 (., .; .; .)
denotes the hypergeometric functions [15, Eq. (8.310)],F0 =

C0,F1 = C1,F2 = −
1
2 , C2 =

δ2

1−δ2
, and D2 = 0.

Remark 4: For Nakagami-m distribution, which is a par-
ticular case of κ − µ shadowed RV by setting κ = 0
(i.e., ω = 0) andµ = m, φi,k andψi,k given in ( 37) and (38),
respectively, become

φi,k =


(

2

(b− a)2 + 2ξi

)µ 0 (µ+ 1
2

)
µ

, k = 0

0, k 6= 0,

(40)

and

ψi,k =


0 (µ)

(2+ ξi)µ
, k = 0

0, k 6= 0,
(41)

which means that (35) and (36) will be updated as

M(1)
i (a)=

(
2

(b− a)2 + 2ξi

)µ 0 (µ+ 1
2

)
µ

×

2F1
(
1
2 , µ;µ+ 1; 2ξi

(b−a)2+2ξi

)
2
√
π

, (42)

M(2)
i =

0 (µ)

(2+ξi)µ
2F1

(
µ

2
,
µ+1
2
; 1;

2

(2+ξi)2

)
. (43)

Proof: First, one can check using (12) and (20) jointly
with (13) , (24) , and (25)

H̃2 (γ )=η

2∑
i=0

[
Cie−DiγK(a, b, γ )+Fie−(2+Di)γ I0

(√
2γ
)]
.

(44)

VOLUME 9, 2021 4393



Y. Mouchtak, F. El Bouanani: New Accurate Approximation for AEP

On the other hand, the ABEP for DQPSK can be evaluated as

Pe =
∫
∞

0
fγ (γ )H2 (γ ) dγ. (45)

Now, using (30) and (44) in (45), the ABEP can be approx-
imated by

Pe '
λη

0 (µ)

2∑
i=0

[
CiM(1)

i (a)− CiM(1)
i (−a)+

Fi

η
M(2)

i,k

]
,

(46)

where

M(1)
i (a) =

∫
∞

0
γ µ−1 1F1 (m;µ;ωγ ) e−(Di+ν)γ

×Q
(
(b− a)

√
γ
)
dγ, (47)

and

M(2)
i =

∫
∞

0
γ µ−1 1F1 (m;µ;ωγ ) e−(2+ξi)γ I0

(√
2γ
)
dγ.

(48)

Utilizing Craig’s formula of the GaussianQ-function [34, Eq.
(5)] and [15, 9.14.1], (47) can be written as

M(1)
i (a) =

∞∑
k=0

(m)k
(µ)k k!

ωk

π

∫ π
2

0

∫
∞

0
γ µ+k−1

× exp

(
−

(
(b− a)2

2 sin2 (θ)
+ ξi

)
γ

)
dγ dθ (49)

By evaluating the inner integral in (49) with the aid of [15,
Eq. (3.381.4)], we get

M(1)
i (a)

=

∞∑
k=0

(m)k ω
k0 (µ+ k)

∫ π
2
0

(
(b−a)2

2 sin2(θ)
+ 2ξi

)−µ−k
dθ

π (µ)k k!

=

∞∑
k=0

(m)k ω
k0 (µ+ k) 2µ+k

π (µ)k k!

×

∫ π
2

0

(
sin2 (θ)

(b− a)2 + 2ξi − 2ξi cos2 (θ)

)µ+k
dθ (50)

Now, by substituting [15, Eq. (3.682)] into (50) , (35) is
obtained. Finally, (48) can be evaluated relying on [15, Eqs.
(9.14.1) and (6.621.1)] to obtain (36), which concludes the
proof.

A. ASYMPTOTIC ANALYSIS
In order to gain further insights into system parameters at high
SNR regime, an asymptotic analysis for the SNR is carried
out. Firstly, note that for large values of γ , one can see that
ω goes to 0 and thus the term k = 0 dominates the others, ν
also goes to 0 (i.e., ξi ' Di). It follows that the AEP can be
asymptotically approximated as

Pe ∼ λ
7∑
l=1

AlB−µl . (51)

and

Pe ∼
λη

0 (µ)

2∑
i=0

CiM(1,asy)
i (a)−CiM(1,asy)

i (−a)

+
Fi

η
M(2,asy)

i

 , (52)

for M -PSK and DQPSK schemes, respectively, with

M(1,asy)
i (a) ∼ 1 2F1

(
1
2
, µ;µ+ 1;

2Di

(b− a)2 + 2Di

)
,(53)

1 =
1

2
√
π

(
2

(b− a)2 + 2Di

)µ 0 (µ+ 1
2

)
µ

,

(54)

M(2,asy)
i ∼

0 (µ)

(2+Di)
µ 2F1

(
µ

2
,
µ+ 1
2
; 1;

2

(2+Di)
2

)
.

(55)

It is worth mentioning from (51) and (52) alongside with
(31) that the diversity order equals µ.

B. BOUND ON THE TRUNCATION ERROR
The above approximate ABEP for DQPSK is expressed in
terms of infinite series. Truncating such summation and esti-
mating the truncated error is though of paramount impor-
tance for numerical evaluation purposes. In what follows,
a closed-form bound for such truncation error is provided.

Using (35) , the truncation up to L − 1 terms of the first
summation results to the following error

ε
(1)
i (a)=

∞∑
k=L

φk

2
√
π

2F1

(
1
2
, µ+k;µ+k+1;

2ξi
(b−a)2+2ξi

)
(56)

By changing the summation index to j = k−L in (56), then
using [35, Eq. (06.10.02.0001.01)], and performing some
manipulations, the bound can be expressed as

ε
(1)
i (a) ≤

2i,L(a)
2
√
π

1F0

(
1
2
;−;

2ξi
(b− a)2 + 2ξi

)
× 2F1

(
1,m+ L;L + 1;

2ω

(b− a)2 + 2ξi

)
, (57)

with

2i,L(a) =
(

2

(b− a)2 + 2ξi

)µ
0 (µ)0 (m+ L)

L!0 (m)

×

(
2ω

(b− a)2 + 2ξi

)L
. (58)

In a similar manner, the truncated error of the summation
(36) can be upper bounded by

ε
(2)
i ≤ 3i,L 2F1

(
µ+ L

2
,
µ+ L + 1

2
; 1;

2

(2+ ξi)2

)
× 2F1

(
1,m+ L;L + 1;

ω

2+ ξi

)
, (59)

with

3i,L =
0 (µ)ωL

L!0 (m+ L) 0 (m) (2+ ξi)µ+L
. (60)
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FIGURE 3. ASEP for M-PSK under weak LOS scenario (κ = 1) with
different values of µ and m = 1.3.

FIGURE 4. ASEP for M-PSK under strong LOS scenario (κ = 10) with
different values of m and µ = 2.

Consequently, and having in mind that ε(j)i are positives, as
can be seen from 57 and 59, the absolute value of the total
truncated error can be upper bounded by

∣∣εPb ∣∣≤ λη

0 (µ)

2∑
i=0

[
Ciε(1)i (a)+Ciε(1)i (−a)+

Fi

η
ε
(2)
i

]
. (61)

IV. RESULTS AND DISCUSSION
In this section, the proposed approximation for the AEP
versus SNR (in dB) of bothM -PSK and DQPSKmodulations
over κ−µ shadowed fadingmodel is evaluated and compared
with the exact one for various fading parameters.

Figs. 3 and 7 illustrate, for a fixed value of m, the effect
of parameter µ on the AEP forM -PSK and DQPSK modula-
tions, respectively under aweak line of sight (LOS) condition.
One can notice that the greater the µ, the better the system’s
performance.

Figs. 4 and 8 depict the AEP for both modulation schemes
under strong LOS (κ = 10) for a fixed value of µ. It is

FIGURE 5. ASEP for M-PSK under non-LOS scenario (κ = 0) with µ = m.

FIGURE 6. ASEP for M-PSK over various practical fading models
with κ = 5.

FIGURE 7. ABEP for DQPSK under weak LOS scenario (κ = 1) with
different values of µ and m = 1.3.

observed that countering the effect of shadowing requires the
increasing of the parameter m.
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FIGURE 8. ABEP for DQPSK under strong LOS scenario (κ = 10) with
different values of m and µ = 2.3.

FIGURE 9. ABEP for DQPSK over numerous practical fading distributions
with κ = 5.

FIGURE 10. Upper bound for the truncated error for µ = 2.3 and m = 4.7
and various values of κ and L.

To show the versatility of the κ − µ shadowed fad-
ing, Figs. 5, 6, and 9 depict the AEP for some classical

FIGURE 11. Diversity order for κ = 5, m = 4.7 and various values of µ
under M-PSK and DQPSK modulation schemes.

fading models. Noteworthy, the results in all figures are pro-
vided for either integer or non-integer values ofµ andm. Fur-
ther, the simulation curves match perfectly with the proposed
approximation.

Fig. 10 depicts the absolute value of the truncated error
versus the number of limited terms L for DQPSKmodulation.
It can be shown the greater the L, the smaller such error.
Interestingly, the truncated error decreases with the increase
of SNR.

Lastly, Fig. 11 presents the diversity order for both mod-
ulation schemes versus the average SNR is computed by
evaluating − logPe

log γ̄ . It is clearly noticed that such metric goes
to µ as γ̄ tends to infinity.

V. CONCLUSION
New approximate expressions for the EP of a communication
system employing eitherM -PSK or DQPSKmodulation have
been derived. The proposed approximations ensures optimal
accuracy-analytical tractability trade-off that enables its ver-
satility to contribute to the AEP computation over generalized
fading channel. The resulting accuracy is better than that
reached by other existing works relying on more complex
mathematical expressions. Furthermore, a new closed-form
approximation for the AEP under κ − µ shadowed fading
model has been investigated and it is accurate for all the
practical values of the SNRs, and are valid for the entire range
of the shaping parameters κ, µ, and m. As far as we know,
no previous works dealt with such fading and modulation
scheme with such a simple approximation.
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