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ABSTRACT This paper proposes and develops a simulator of multiagent mass games in which agents
achieve formations displaying given grayscale images via distributed control. One potential application of
mass games is entertainment for ordinary users. However, it is difficult for nonexpert users to understand
the existing control methods for mass games, and the implementation requires considerable time and effort.
The proposed mass game simulator developed to overcome these difficulties is provided as a MATLAB
application. With this simulator, we can import a reference image, simulate a mass game for the reference
image, confirm the simulation result, and save the result through simple mouse and keyboard inputs without
the need for expert knowledge or programming effort. In addition, the application of the proposed simulator
to entertainment and digital signage is discussed and evaluated. In particular, in the latter application, by
playing an animation of the simulation results obtained using the simulator on digital signage, we can
construct a novel type of signage whose contents are shown by themotion of individual dots corresponding to
agents. These results indicate that control of multiagent systems can be used for nonengineering applications,
which have not been considered in most existing studies.

INDEX TERMS Distributed control, entertainment, formation control, mass games, multiagent systems,
simulators.

I. INTRODUCTION
A. MOTIVATION AND CONTRIBUTIONS
In the systems and control field, there has been considerable
interest in the control of multiagent systems to allow multiple
agents interconnected through a network to achieve a global
objective using only local information.

The interest in multiagent systems is motivated by the
swarm behavior of living things. For example, a flock of
birds and a school of fish travel as groups by observing their
neighbors for defense against predators and the protection of
their territory [1]. Another motivation for studyingmultiagent
systems is the variety of potential engineering applications,
e.g., formation flying of aerial vehicles [2], [3], sensor net-
works [4], [5], and smart grids [6], [7]. Moreover, in recent
years, the Internet of things (IoT), i.e., the growing set of
devices connected to the Internet, has garnered considerable
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attention [8]. This scenario is also an application example of
multiagent systems, where the devices correspond to agents.

In addition to such engineering applications, multia-
gent systems have the following potential advantages. First,
the systems can perform tasks that cannot be achieved by
single-agent systems. Examples include environmental mon-
itoring [9] and cooperative transportation [10] using multiple
agents, state estimation via data fusion [11], [12], and dis-
tributed optimization over networks [13]. Second, multiagent
systems are robust against failures. Even if the performance
of some agents degrades due to failures, the entire system can
continue to operate [14].

In this work, we focus on formation control in multiagent
systems to enable agents to achieve a desired formation in a
distributed manner. Specifically, the problem considered here
is to find distributed controllers for conductingmass games in
which agents achieve formations displaying given grayscale
images, as illustrated in Fig. 1. One potential application of
mass games is entertainment, where we can observe agent
formations displaying objects shown in pictures. Such an
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FIGURE 1. A multiagent mass game.

application is not considered in most existing studies on mul-
tiagent systems because these studies have been motivated by
biological interest and engineering applications, as explained
above. In addition, the behavior of agents in constructing for-
mations with interesting appearances can attract the attention
of ordinary users to multiagent control and can enhance their
motivation in learning its theory.

The mass game problem was originally proposed by
Azuma et al. [15] (including the first author). They devel-
oped distributed controllers for conducting mass games by
combining coverage control1 [16] and halftone image pro-
cessing2 [17]. Subsequently, in [18], the authors considered
an additional mass game problem in which there is a vari-
able number of agents participating in the mass game, and
they extended the controllers developed in [15] to this prob-
lem. However, the extension of mass games to entertainment
applications for ordinary users faces two major problems.
First, it is difficult for nonexpert users to understand the
theory of mass games developed in [15], [18]. As mentioned
above, the central idea underlying mass game controllers
is the combination of coverage control and halftone image
processing, i.e., techniques used in the fields of control theory
and image processing, respectively. Few nonexpert users will
be familiar with both of these distinct fields. Second, the
implementation of the algorithm for simulating a mass game
requires considerable time and effort. For example, it requires
the computation of an integral of a function over a region,
with the function and region being specified by the given
grayscale image and the current configuration of agents,
respectively. However, typical programming languages are
not equipped with dedicated functions for such computation;
thus, the computation must be implemented by each user.

Given these problems, this work was conducted to develop
a mass game simulator (MGS), i.e., an application allowing
nonexpert users to easily simulate a mass game without the

1A distributed control technique used to place agents so that their density
distribution becomes the desired one.

2An image processing technique used to transform grayscale images into
binary images while retaining as much of the visual quality of the original
image as possible. In this process, the degree of gray coloring is expressed
by the density distribution of black pixels.

need for expert knowledge or programming effort. Our main
contributions are summarized as follows.

(i) Based on the control method given in [15], we develop
the MGS as a MATLAB application. The MGS can
be used to simply simulate a mass game by means
of mouse and keyboard operations. In addition to this
basic functionality, we introduce a zoom function to
confirm the detailed behavior of agents and a save
function to save the simulation results as image and
movie files. The former aids users in understanding
the idea underlying the mass game controllers, and
the latter broadens the application range of the MGS,
as demonstrated later in this paper.

(ii) We present two application examples of the MGS: an
entertainment application for ordinary users and a digi-
tal signage application. In the former application, users
can not only see the behavior of agents in constructing
formations with interesting appearances but also know
how to control the agents. In the latter application,
by applying an animation of the simulation results
obtained using the MGS to digital signage, we can
construct a novel type of signage whose contents are
shown by the motion of individual dots corresponding
to agents. This approach is illustrated through an exam-
ple of digital signage placed at the entrance of a room.
These results indicate that the control of multiagent
systems is applicable to nonengineering fields, which
have not been considered in most existing studies.

(iii) In the digital signage application, we evaluate the
quality of the contents displayed in the signage via
comparison with an existingmethod [28] for the forma-
tion control of multiagent systems. The results demon-
strate that the displayed contents generated by theMGS
are better than those generated by the existing method
in terms of both visual quality and time spent pro-
ducing the desired formation. One may think that this
paper simply implements the control method proposed
in [15], but the choice of the algorithm to implement
is important in the development of simulators. The
results indicate that our choice is suitable for the digital
signage application.

B. RELATED WORK
To stress the novelty of this paper, we discuss the differences
between this work and related work from the perspective
of theory (i.e., control methods of agents) and simulators.
A summary of the following discussion is given in Table 1.

Many researchers have studied the formation control of
multiagent systems. For example, Sugihara and Suzuki [19]
proposed heuristic distributed algorithms for forming geo-
metric patterns, and Suzuki and Yamashita [20] character-
ized the class of achievable patterns in a theoretical manner.
Fax and Murray [21] analyzed the stability of the for-
mation dynamics of agents using graph theory and pro-
posed a method for information exchange among agents.
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TABLE 1. Relation between this work and related works.

Ren and Sorensen [22] developed a distributed formation
control method based on a combination of a leader-follower
approach and a consensus algorithm. Montijano et al. [23]
proposed a vision-based formation control method for agents
in three-dimensional space under the assumption that there
is no external positioning system to globally localize the
agents. Yang et al. [24] proposed a control method to achieve
V-shaped formations inspired by the flocking behavior of
flying geese. Wang et al. [25] and Liu et al. [26] addressed
robust formation control problems for multiagent systems
subject to external disturbances. However, the control meth-
ods proposed in these works are not applicable to the mass
game problem because these works focused primarily on
simple formations specified by lines, e.g., circles, polygons,
and V-shapes, and did not consider formations displaying
grayscale images.

Concepts similar to mass games are discussed in [27], [28].
Alonso-Mora et al. [27] proposed a display in which mobile
robots with controllable colors can be regarded as individual
pixels and images and animations are shown via the posi-
tioning and motion of the robots. Wang and Rubenstein [28]
developed a distributed control method to achieve formations
that display letters and shapes given as images. However, it
is difficult to apply the control methods proposed in these
works to the mass game problem because the methods apply
to either binary images or images with only a few colors,
whereas it is necessary to represent the grayscale informa-
tion (i.e., various degrees of gray coloring) of images in the
mass game problem. This difference is manifest in the digital
signage application in Section IV-B.

Meanwhile, various simulators have been developed.
A typical example is vehicle driving simulators [29], [30].
Another example is robot simulators for a single robot [31]
and multiple robots [32]–[35]. There are also simulators of
satellite attitude dynamics [36], tourist urban routes [37],
stand-alone photovoltaic systems [38], and real-time pricing
in smart grids [39]. However, these simulators cannot replace
our MGS because the MGS handles not only the control
method for mass games but also images and animations,
whereas the existing simulators do not.

C. NOTATION
The following notation is used throughout this paper. Let R
and R+ be the real number field and the set of positive real
numbers, respectively. For the vectors x1, x2, . . . , xn ∈ R2

and the set I := {i1, i2, . . . , im} ⊆ {1, 2, . . . , n}, we define

[xi]i∈I := [x>i1 x>i2 · · · x
>
im ]
>
∈ R2m. The cardinality of

the set S is expressed as |S|. Next, consider the convex set
Q ⊂ R2 and the distinct vectors x1, x2, . . . , xn ∈ Q. For
x := [x>1 x>2 · · · x

>
n ]
> and each i ∈ {1, 2, . . . , n}, Vi(x)

denotes the Voronoi cell for xi, i.e.,

Vi(x) :=
{
q ∈ Q

∣∣ ‖q− xi‖≤‖q− xj‖ ∀j∈{1, 2, . . . , n}} ,
(1)

where ‖ · ‖ denotes the Euclidean norm of a vector. In
addition, we use G(x) to represent the Delaunay graph
for x1, x2, . . . , xn; that is, G(x) is the undirected graph
comprising the node and edge sets {1, 2, . . . , n} and{
(i, j) ∈ {1, 2, . . . , n}2

∣∣ Vi(x) ∩ Vj(x) 6= ∅, i 6= j
}
, respec-

tively.

II. MULTIAGENT MASS GAMES
Before presenting the proposed MGS, we briefly summarize
the existing results [15] on mass games.

A. MASS GAME PROBLEM
Consider the multiagent system 6 in two-dimensional space
depicted in Fig. 2. The system comprises n agents and the
local controllers implemented in them.

The model of agent i (i ∈ {1, 2, . . . , n}) is given by

ẋi(t) = ui(t), (2)

where xi(t) ∈ R2 and ui(t) ∈ R2 denote the position and
control input of agent i, respectively. This is a model of an
omnidirectional mobile robot.

We suppose that each agent operates in a distributed man-
ner based on local information. The information available to
each agent is specified as follows. Let x(t) ∈ R2n be the
positions of all agents, i.e., x(t) := [x>1 (t) x

>

2 (t) · · · x
>
n (t)]

>.
Assuming that for every t ∈ R+ ∪ {0}, all agents exist in a
given bounded convex set Q ⊂ R2, as shown in Fig. 2, we
can represent the Voronoi cell for xi(t) (i ∈ {1, 2, . . . , n}) and
the corresponding Delaunay graph by Vi(x(t)) and G(x(t)),
respectively. Using this notation, we assume that for every
t ∈ R+ ∪ {0}, each agent i can obtain information on (i) its
own position xi(t) and (ii) the positions of the neighboring
agents on the Delaunay graph G(x(t)).

The local controller for agent i is then described by

ui(t) = f (xi(t), [xj(t)]j∈Ni(t)), (3)

where xi(t) and [xj(t)]j∈Ni(t) ∈ R|Ni(t)| are the inputs, ui(t) is
the output, f : R2

×R2|Ni(t)|→ R2 is a function determining
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FIGURE 2. Multiagent system 6.

the controller structure, andNi(t) ⊂ {1, 2, . . . , n} is the index
set of the neighboring agents on the Delaunay graph G(x(t)).
This local controller is distributed in the sense that its inputs
are restricted to the information described in (i) and (ii) above.
Notably, the subscript i is not attached to the function f ;
this leads to the constraint that all local controllers must be
common, which ensures the scalability of the overall system.

For the multiagent system 6, we suppose that a reference
grayscale image, which is displayed as a formation of the
agents, as illustrated in Fig. 1, is given as the function ϕ :
Q → [0, 1]. The function ϕ assigns the respective pixel
values of the image to individual points q within the set Q
introduced above, where we note that Q is the area used to
produce the formation displaying the image. More precisely,
ϕ(q) = 1, ϕ(q) = 0, or ϕ(q) ∈ (0, 1) indicate that the pixel
at point q is white, black, or gray, respectively. By means of
this notation, the mass game problem addressed in [15] can
be defined as follows.
Problem 1: For the multiagent system 6, suppose that a

reference grayscale image ϕ is given. Then, find distributed
controllers (i.e., a common function f ) such that for every ini-
tial formation x(0) ∈ Qn, the final formation x(∞) displays
the image ϕ, as illustrated in Fig. 1.
We make two remarks regarding Problem 1. First, it might

be assumed that this problem can easily be solved by cal-
culating the desired positions of all agents based on the
reference image and then assigning each desired position to
a corresponding local controller, but this is not true. In fact,
it is impossible to satisfy the constraint that all local con-
trollers are common because different information is given
for each local controller. Second, the specification to be
satisfied in Problem 1 is based on the visual quality of the
agent formation. A typical approach for multiagent control
is to describe specifications using mathematical functions
and then design local controllers to optimize these func-
tions (see, e.g., [1]). However, since the visual quality of
the agent formation depends on human perception and gaps
exist between the true and perceived feelings of humans [40],
quantifying the specification with a mathematical function
is generally difficult. These two facts make the problem
challenging.

B. DISTRIBUTED CONTROLLERS FOR MASS GAMES
The idea proposed in [15] to solve Problem 1 involves rep-
resenting the reference (grayscale) image as a density distri-
bution of the agents. Specifically, we regard each agent as
a black pixel and place more agents at locations within the
space Q corresponding to the darker parts of the reference
image. This idea is inspired by halftone image processing (see
footnote 2 in Section I-A); thus, the grayscale information of
the reference image is represented.

Based on this idea, Azuma et al. [15] proposed the follow-
ing solution to Problem 1:

f (xi(t), [xj(t)]j∈Ni(t)) := −k(xi(t)− c(Vi(x(t)))), (4)

where k ∈ R+ is the controller gain and c(Vi(x(t))) ∈ Q is
the weighted centroid of the Voronoi cell Vi(x(t)), i.e.,

c(Vi(x(t))) :=

∫
Vi(x(t))

qφ(q)dq∫
Vi(x(t))

φ(q) dq
. (5)

In (5), φ : Q→ R+ ∪ {0} is the weighting function defined
as

φ(q) := e−κϕ(q), (6)

where κ ∈ R+ is a parameter determining the contrast of
the image of the resulting formation. The local controller
given by (3)–(5), which is called the coverage controller [16],
enables the placement of more agents at locations within
space Q with higher values of the weighting function φ.
Furthermore, according to the definition of ϕ, φ(q) in (6)
takes higher values at points q corresponding to the darker
parts of the reference image. Therefore, the local controllers
given by (3)–(6) steer the agents such that more agents are
placed at locations within Q corresponding to the darker
parts of the reference image. This process yields a density
distribution of agents that reflects the grayscale information
of the reference image.

The abovementioned mass game controllers are illustrated
through an example. Consider the multiagent system 6 with
n := 3000 andQ := [0, 100]2. The reference image ϕ shown
in Fig. 3(a) is given in [41] as one of the standard images
in the image processing field. This is an eight-bit grayscale
image, i.e., ϕ(q) ∈ {0, 1/255, 2/255, . . . , 1}. We apply the
local controllers constructed by (3)–(6), where k := 0.5
and κ := 10. Figs. 3(b)–(d) show the time series of the
resulting formation, where the black dots indicate agents and
the initial formation (i.e., Fig. 3(b)) is randomly chosen based
on a uniform probability distribution on Qn. The formation
converges to that displaying the reference image over time.
Moreover, in the final formation shown in Fig. 3(d), the
grayscale information of the reference image is represented
by the spatial variations in the agent density.
Remark 1: The local controller given by (3)–(6) can be

intuitively explained as follows. On the basis of (2)–(4),
the local controller steers agent i to the weighted centroid
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FIGURE 3. Example of a mass game.

c(Vi(x(t))) of the Voronoi cell Vi(x(t)). The weighted cen-
troid c(Vi(x(t))) is a location within Vi(x(t)) specified as a
darker point of the corresponding part of the reference image
according to the definition of ϕ, (5), and (6). Thus, the local
controller steers agent i to that location.
Remark 2: Although the positions [xj(t)]j∈Ni(t) of neigh-

boring agents do not appear directly on the right-hand side
of (4), the local controllers given by (3)–(6) are distributed.
This is because the weighted centroid c(Vi(x(t))) (i.e., the
Voronoi cell Vi(x(t))) can be calculated based on only the
positions of agent i and its neighbors on the Delaunay graph
G(x(t)) [16].

C. ISSUES TO BE ADDRESSED
As explained in Section I-A, one potential application of
mass games is entertainment, but the following issues must
be resolved to facilitate such an application. First, it is diffi-
cult for nonexpert users to understand the abovementioned
theory of mass games. Understanding mass game theory
requires knowledge of, for example, halftone image process-
ing, coverage control, Voronoi cells, and Delaunay graphs.
However, this knowledge comes from distinct fields—
specifically, image processing, control theory, and compu-
tational geometry—thus, relatively few nonexpert users will

be familiar with all of the required knowledge. Second, the
implementation of the abovementioned method takes consid-
erable time and effort. For instance, for (4)–(6), it is necessary
to compute the weighted centroid c(Vi(x(t))) of the Voronoi
cell Vi(x(t)) for the weighting function φ determined by the
reference image ϕ. However, as conventional programming
languages such as MATLAB are not equipped with dedicated
functions to compute the integral of a given function over a
Voronoi cell, this calculation must be implemented by each
user.

III. DEVELOPMENT OF MGS
To overcome these issues, we developed the MGS that allows
the simulation of mass games without the need for expert
knowledge or programming effort. This section introduces
the MGS.

A. MGS
An overview of the MGS is shown in Fig. 4. The MGS was
developed using the MATLAB App Designer, i.e., a develop-
ment environment in MATLAB used to create applications,
which can be downloaded as aMATLAB application installer
from the website [42]. Running the MGS requires MATLAB
version R2019a or later and no toolboxes.
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FIGURE 4. Overview of the MGS.

The components of the MGS, shown by (a)–(o) in Fig. 4,
are described in detail as follows:

(a) ‘‘Save’’ menu: By selecting ‘‘Save as Image’’ from this
menu, the image of the resulting formation shown in
the Formation window (k) can be saved as the image
file ‘‘formation.jpg.’’ Moreover, by selecting ‘‘Save as
Movie,’’ the time series data of the resulting formation
can be saved as the movie file ‘‘massgame.avi.’’ These
files are generated in the current directory.

(b) ‘‘Load Image’’ button: This button is used to import an
image file as the reference image, where the supported
file formats are jpg and bmp.

(c) ‘‘Simulation’’ button: Clicking this button starts the
simulation of the mass game for the reference image
shown in the Reference Image window (j).

(d) ‘‘Animation’’ button:Clicking this button following the
simulation runs an animation of the time evolution of
the resulting formation in the Formation window (k).

(e) ‘‘Number of Agents’’ spinner: This spinner is used to
set the number n of the agents, where n∈ [1000, 5000].

(f) ‘‘Controller Gain’’ spinner: This spinner is used to set
the gain k in (4), where k ∈ (0, 10].

(g) ‘‘Contrast Parameter’’ spinner: This spinner is used to
set the parameter κ in (6), where κ ∈ (0, 100].

(h) ‘‘Initial Formation’’ menu: This menu is used to set the
initial formation x(0) as either ‘‘Random’’ or ‘‘Same
as before.’’ Under the former setting, x(0) is ran-
domly determined according to a uniform probability
distribution on Qn. Under the latter setting, the final
formation obtained by the previous simulation is set
as x(0).

(i) ‘‘Zoom’’ switch: Turning this switch ‘‘On’’ shows a
magnification of the Formation window (k) in the
Zoom window (l).

(j) ‘‘Reference Image’’ window: This window shows the
reference image imported using the Load Image button
(b). If the imported image is rectangular, a trimmed
square image is shown.

(k) ‘‘Formation’’ window: This window shows the result-
ing formation. By moving the Time slider (n), the for-
mation at the corresponding time is displayed. In
addition, by clicking the Animation button (d), an ani-
mation of the time evolution of the formation is shown,
as explained in (d) above.

(l) ‘‘Zoom’’ window: If the Zoom switch is ‘‘On,’’ the win-
dow shows a magnification of the Formation window
(k) and the weighting function φ in (6). The weight-
ing function φ is shown as a grayscale background,
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in which the darker areas correspond to locations with
higher values of φ.

(m) ‘‘Displayed Area’’ spinners: If the image imported
using the Load Image button (b) is rectangular, we can
use these spinners to move the area displayed in the
Reference Image window (j). The settings 0 and 100
indicate the sides of the image.

(n) ‘‘Time’’ slider: This slider is used to specify the time
(in units of percentage) of the formation shown in the
Formation window (k); on the slider, the settings 0
and 100 indicate the start and end of the simulation,
respectively.

(o) ‘‘Simulation/Animation Progress’’ bar: This bar shows
the progress (in units of percentage) of the simulation
and animation initiated by clicking the Simulation and
Animation buttons (c) and (d), respectively.

Remark 3: We can generalize the initial formation setting
by allowing users to determine the initial position of each
agent. However, such a generalization substantially increases
the effort required by users because the number n of agents
is at least 1000. Hence, to reduce user effort, we simplified
the settings in the Initial Formation menu as ‘‘Random’’ and
‘‘Same as before.’’
Remark 4: Although the MGS assumes square reference

images, the method described in Section II can be applied to
rectangular reference images because they satisfy the condi-
tion that the space Q corresponding to the reference image
is a convex set. The assumption of square reference images
is imposed to simplify the development of the MGS and to
increase its reliability. In fact, there are various sizes of rect-
angular images depending on their aspect ratio, which makes
the implementation of the Reference Image, Formation, and
Zoom windows difficult and causes bugs.

B. USAGE
The usage of the MGS is explained as follows, in which
(a)–(o) correspond to the labels in Fig. 4.

Step 1 Import a file of the reference image using the Load
Image button (b). The imported image is shown in
the Reference Image window (j).

Step 2 If necessary, move the area displayed in the Refer-
ence Image window (j) using the Displayed Area
spinners (m) so that the desired reference image is
shown in the window.

Step 3 Set the number n of agents, the gain k , and param-
eter κ using spinners (e)–(g).

Step 4 Set the initial formation x(0) using the Initial For-
mation menu (h), in which ‘‘Same as before’’ is
available only after the mass game has been sim-
ulated at least once.

Step 5 Click the Simulation button (c) to begin the mass
game simulation. The progress of the simulation is
shown on the Simulation/Animation Progress bar
(o). Once the simulation is complete, go to Step 6.

Step 6 If necessary, turn the Zoom switch (i) ‘‘On’’ (see
item (i) in Section III-A for the details of the Zoom
switch).

Step 7 The Time slider (n) can be moved to display the
resulting formation at the specified time in the For-
mation window (k).

Step 8 By clicking the Animation button (d), an animation
of the simulation result is shown in the Formation
window (k). The progress of the animation is shown
on the Simulation/Animation Progress bar (o). No
operation should be performed until the animation
ends.

Step 9 If necessary, the simulation result can be saved as
an image and/or movie file using the Save menu (a)
(see item (a) in Section III-A for details on saving
files).

The following points regarding the use of the MGS should
be noted. First, we can select a color image in Step 1 even
though the method described in Section II assumes grayscale
reference images. When a color image is selected in Step 1, it
is automatically converted into its grayscale version. Second,
Step 1 can be skipped when performing a simulation for a
previously used reference image (or its variations obtained
using the Displayed Area spinners) and different values of n,
k , and κ .

C. ILLUSTRATIVE EXAMPLE
An illustrative example of the MGS in operation is provided
in Fig. 5, where n := 2500, k := 1.5, κ := 15, and the
steps correspond to those in Section III-B. Using MGS, we
can simulate the mass game for a selected reference image,
confirm the simulation result, and save it by means of simple
mouse and keyboard operations (see also a demonstration
video of the MGS provided as supplementary material). In
addition, examples for changing the simulation settings using
the Number of Agents and Contrast Parameter spinners are
provided in Fig. 6, in which (a) and (b) correspond to cases
of increasing n and κ , respectively. Compared to Fig. 5(d), the
image of the resulting formation in Fig. 6(a) is darker and that
in Fig. 6(b) has higher contrast. These results demonstrate
that the spinners allow us to change the simulation settings.
Remark 5: While the MGS is provided as a MATLAB

application, it is possible to develop a similar application
using another programming language if it can handle not
only numerical computations but also images and animations,
as seen in this subsection.

IV. APPLICATIONS
This section presents two application examples of the MGS.
These applications have not been discussed in most existing
studies on multiagent control.

A. ENTERTAINMENT
We start by introducing an example of a method in which
beginners can use the MGS for entertainment. As a first step,
based on the usage explained in Section III-B, we run the
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FIGURE 5. Use of the MGS.

MGS once with the Zoom switch set to ‘‘Off.’’ Then, by
turning the Zoom switch ‘‘On’’ and inspecting the Zoom
window, we can confirm that the agents move to darker areas

of the window, i.e., the locations with higher values of the
weighting function φ, as shown in Fig. 7. This exercise is
helpful in understanding the underlying idea of mass game

4136 VOLUME 9, 2021



S. Izumi et al.: Mass Game Simulator: An Entertainment Application of Multiagent Control

FIGURE 6. Changing the simulation settings.

controllers that is described in Section II-B. This process also
helps us to focus not only on the appearance of the formation
but also on how to control the agents. Introducing the Zoom
switch and window provides these advantages. Subsequently,
we can create our own formations by changing the reference
image and the simulation settings (i.e., the values of n, k , and
κ). For example, by tuning n and κ , we can create an optimal
formation in terms of subjective visual quality for a specific
reference image.

B. DIGITAL SIGNAGE
Digital signage, which provides information using display
devices, has been widely used in recent years. It can be
found in, for example, transportation systems, stadiums, and
corporate buildings. Here, we consider the application of the
MGS to digital signage. Specifically, we create an animation
of the mass game using the MGS and play it on digital sig-
nage. By choosing a reference image containing appropriate
information, we can construct a novel type of signage where

FIGURE 7. Confirmation of the behavior of agents using the Zoom
window.

the information is represented by the motion of individual
dots corresponding to agents.

As an example, we created an animation for the applica-
tion to digital signage placed at the entrance of the authors’
room (room number 2517). We performed simulations for
two reference images based on another standard image using
MGS, as shown in Fig. 8, where n := 2500, k := 1,
κ := 10, and ‘‘Same as before’’ was chosen from the Initial
Formation menu in Fig. 8(b) to combine the resulting two
animations. Fig. 9 shows a photo of playing the combination
of the resulting two animations on digital signage using a
DSM-32L7X display (MITSUBISHI ELECTRIC Corpora-
tion). Fig. 10 shows snapshots of the displayed contents,
in which the first animation was switched to the second
animation at approximately t = 10 s. As the dots move, the
displayed contents change smoothly as a random formation
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FIGURE 8. Creation of animations for the application to digital signage.

FIGURE 9. Playing the animation on digital signage.

→ a woman → both a woman and the room number. The
corresponding video is provided as supplementary material.
The introduction of the Save menu and the Initial Formation
menu allows such an application.

We then evaluated the quality of the displayed contents via
comparison with an existing method [28] for the formation

FIGURE 10. Snapshots of the displayed contents (the brightness of the
images has been adjusted to improve their visibility).

control of multiagent systems. We created an animation of
a simulation result by applying the existing method to the
reference image in Fig. 8(b). Here, to apply the existing
method, the reference (grayscale) image was binarized using
a threshold, and the desired positions of the respective agents
were set as the locations of the individual black pixels in the
resulting binary image. The threshold of the binarization was
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FIGURE 11. Snapshots of the displayed contents produced by an existing
method [28] (the brightness of the images has been adjusted to improve
their visibility).

set such that the number of black pixels in the resulting binary
image was approximately 2500, i.e., the number of agents in
the preceding example; as a result, n := 2891 was obtained.
We ran the resulting animation on digital signage in a manner
similar to that in the preceding example; snapshots of the
displayed contents are shown in Fig. 11. Compared to Fig. 10,
it is difficult to obtain the information on the reference image

(in particular, the left half) from the formation because the
grayscale information of the reference image is lost as a result
of the binarization. In contrast, the method we employ (i.e.,
the method described in Section II) represents the grayscale
information as a density distribution of agents without bina-
rization, thereby producing a formation whose appearance is
closer to the reference image. Furthermore, the time spent
producing the desired formation is longer than that for Fig. 10
because the method proposed in [28] randomly assigns each
desired position to a corresponding agent at the beginning of
the process without taking the distances between the agent
positions and the desired positions into account, whereas the
method we employ steers each agent to a favorable position
close to the current position in a distributed manner.

V. CONCLUSION
In this work, we proposed and developed a simulator of mul-
tiagent mass games for practical use. The proposed simulator
can be operated through simple mouse and keyboard inputs
without the need for expert knowledge or programming
effort. The simulator also includes zoom and save functions
to extend its application range. Using these functions, we
applied the proposed simulator to entertainment and digital
signage. In the digital signage application, we demonstrated
that the displayed contents generated by the proposed simu-
lator are better than those generated by an existing method
in terms of both visual quality and time spent producing the
desired formation. The results presented in this paper will
lead to new applications of the control of multiagent systems.

Several directions for future research exist. One example is
to make the proposed simulator available to non-MATLAB
users. Another example is to incorporate the framework of
another type of mass game, given in [18], into the proposed
simulator. We also plan to develop other applications for the
proposed simulator.
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