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ABSTRACT Composite such as Glass Fibre Reinforced Polymer (GFRP) is increasingly used as insulation
in many industrial applications such as the steel pipelines in the oil and gas industry. Due to ageing and
cyclic operation, many hidden defects exist under insulation, such as corrosion and delamination. If these
defects are not promptly detected and restored, the growth of defects causes a catastrophic loss. Therefore,
an effective inspection technique using non-destructive testing (NDT) to detect the underneath defect is
required. The ability of microwave signals to penetrate and interact with the inner structure within composites
makes them a promising candidate for composite inspection. In the case of GFRP, the random patterns cause
permittivity variations that influence the propagation of the microwave signals, which results in a blurred
spatial image making the assessment of the material’s state difficult. In this research, a novel microwave NDT
technique is presented based on k-means unsupervised machine learning for defect detection in composites.
At present, the defect evaluation using an unsupervised machine learning-based microwave NDT technique
is not reported elsewhere. The unsupervised machine learning is employed to enhance the imaging efficiency
and defect detection in GFRP. The technique is based on scanning the composite material with an open-ended
rectangular waveguide operating from 18 to 26.5 GHz with 101 frequency points. The influence of the
permittivity variations on the reflected coefficients due to the random patterns of GFRP is mitigated by
measuring the mean of a set of the adjacent points at each operating frequency point using a small rectangular
window. The measured data is converted to the time domain using a fast inverse Fourier transform (IFFT)
to provide significant features and increase the signal resolution to 201-time steps. K-means algorithm is
utilized to cluster the given features into the defect and defect-free regions in GFRP. The findings presented
in this paper demonstrate the benefits of an unsupervised machine learning to detect a defect down to 1 mm,
which is a considerable contribution over any existing defect inspection technique in composites.

INDEX TERMS Unsupervised machine learning, k-means, microwave NDT, defect detection.

I. INTRODUCTION

Early detection of defects under insulation is a critical prob-
lem in many industrial applications [1], including the pipeline
in the oil and gas industry [2]. One of the main difficulties
of tackling the problem relating to insulation is the inability
to quickly detect and measure the severity of those areas that
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are suffering from various obscured defects such as corrosion,
delamination, and cracks on the structure under insulation [3].
As these faults grow undetected, they can lead to critical
system failures with many detrimental effects, including the
risk to the safety of site workers [4], environmental disruption
and economic effect on maintenance costs and production
losses [5]. Therefore, a predictive inspection method evalu-
ating the integrity of the structure is required to prevent these
accidents using non-destructive testing (NDT) and to secure
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the safety and the health of the pipelines. Methods for evaluat-
ing pipeline damage are critical for saving maintenance costs,
enhancing the integrity and reliability of the system [6].

Defect detection under insulation with conventional
inspection methods such as eddy current and ultrasonic tech-
niques are challenging due to the presence of the insulation
layer that prevents direct access to the structure surface [7].
Ultrasonic methods applied to composites suffer from low
signal to- noise ratio due to the anisotropic nature of the
GFRP structure leads to reduce the probability of defect
detection [8]. At the same time, inspection with eddy cur-
rents can be susceptible to magnetic permeability. Moreover,
eddy currents technique is only applied to conductive mate-
rials [9], [10]. The current inspection routine to remove insu-
lation material to facilitate inspection using a conventional
technique such as ultrasonic, followed by re-application of
insulation, is a costly and time-consuming process [11].

The microwave NDT system has therefore emerged as a
promising solution to the identification and assessment of
defects under insulation [6]. The microwave NDT method
requires no physical contact with the surface or coupling and
is capable of penetrating inside composite-based insulations.
In comparison to ultrasonic and acoustic signals, microwave
signals are capable of penetrating within dielectric insulations
such as GFRP and interacting with their internal structure
and are susceptible to changes related to boundary inter-
faces [12]. Electromagnetic waves penetrate a wide variety
of non-conducting components at microwave frequencies,
such as different composites, ceramics, concrete, and inter-
fere with their internal structures. Microwave signals are
non-ionizing and are not considered to induce dangerous
radiation, resulting in a wide range of diverse imaging tech-
nologies becoming increasingly useful.

Several microwave NDT techniques have been reported
for under insulation inspection, and the open-ended rect-
angular waveguide (OERW) inspection method is popular
among them [13]-[17]. The working principle microwave
NDT using OERWs is based on recording and analyzing
the reflected, scattered electric field from an OERW probe
scanned over a surface of the insulated structure using a cali-
brated Vector Network Analyzer (VNA). OERWs are widely
used for microwave NDT applications such as dielectric
property measurement of materials [13], the thickness
measurement of dielectric slabs [14], [15], and porosity
level estimation in ceramics [16]. Detecting the defects
in under-insulated structures using open-ended rectangu-
lar waveguides also has been reported in [18]. However,
an OERW approach has shown numerous limitations in
detecting the delamination of non-homogeneous insulation,
such as GRFP [19]. The spatial resolution of an OERW
operating in the near field is a function of the probe dimen-
sions. Hence, obtaining high-resolution images consist of
accurate information of defect is very limited at microwave
frequencies, especially when the probe dimensions are rel-
atively larger than the dimension of defects. Besides, when
concerned with randomly weaved pattern insulation such
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as GFRP, detecting the delamination under insulation is
challenging at micrometer-range. Non-homogeneous prop-
erties of GFRP due to the random composition of fiber-
glass and epoxy resins render quantitative and selective fre-
quency domain analysis ineffective to detect the delamination
between a GFRP laminate and a steel pipe. The properties of
the reflected microwave signals in the frequency domain can
be substantially altered by these changes, which profoundly
reduce the sensitivity of detecting any existing delamination.

Besides, other microwave NDT methods also reported
in detecting the defects under GFRP insulation.
In [20]-[22], a millimeter-wave active radiometer based on
transmission measurement is used to detect and measure the
delamination in GFRP. In the active thermographic method
reported in [23], [24], the GFRP sample is illuminated
with a waveguide and the differential temperature change
is detected using a thermal camera. Furthermore, several
microwave thermography techniques are recently reviewed
for inspection of various composite structures in [25], [26].
Free space microwave NDT using horn lens antennas and a
VNA is shown in [27], [28], while the use of interdigitated
sensors to measure the S-parameters along a defected surface
has been demonstrated in [29], [30]. Polarization studies on
GFRP sample using the synthetic aperture radar technique are
illustrated in [31], [32].

For identifying the defect source, various techniques are
introduced. Time-domain reflectometry (TDR), as presented
in [19] used inverse fast Fourier transform (IFFT) to identify
two main peaks that refer to the sample surface and back
metal. The back metal peak is recorded for defect representa-
tion. The reduction in the magnitude of the back metal peak
is proportional to the defect presence. Similarly, terahertz
time-domain spectroscopy (THz-TDS) is introduced in [33]
for GFRP inspection. The technique aims to image the hidden
objects that buried inside the GFRP layer in both transmission
and reflection modes. The magnitude difference between the
defected and non-defect regions is analyzed by monitoring
the main peaks that refer to the sample layers such as front
surface, buried object and rear surface. The difference in
these peaks has been used for imaging the inspected sample
which greatly improves defect detection. Moreover, principal
component analysis (PCA) is employed for partitioning the
acquired signal into three main sources in [34], [35]. The
partitioned sources refer to the GFRP surface, the inner layer
of GFRP and back metal. However, the information on the
small defect may be covered by the components of the outer
surface and inner layers of GFRP. Therefore, the features
are not separated significantly which produce blurred edges
of the defects. In addition, nonnegative matrix factoriza-
tion (NMF) is introduced in [36], [37] to blindly separate
the spatial frequency features into a defect and defect-free
sources. However, NMF gives a different approximated result
at each run time due to different initial optimization values.
Moreover, NMF produces the worst result when there is a
low spectral resolution [38]. The abovementioned techniques
did not validate if the partitioned sources are already related
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to the proposed sources theoretically. The first peak in TDR
techniques, as well as the first component in PCA and NMF
provides some information about the inner defect while they
are proposed to handle the outer surface information, which
is defect-free.

On the other hand, a microwave NDT is proposed in [39]
based on machine learning techniques to provide a reliable
inspection with a high accuracy rate of 99.62 %. Since the
technique is limited to classifying the whole sample without
defect assessment into defect and defect-free, the use of
machine learning allows accurate identification of defects.
In case of defect evaluation where the goal is classifying each
inspected location into defect or defect-free, such as in [40],
the classification is achieved using supervised-PCA features
and support vector machine (SVM) classifier to locate the
defected regions. The inspection is performed on a coated
steel specimen to detect the corrosion undercoating. The
last outcome value of the SVM classifier at each inspected
location is used to construct a 2D binary image. Although
several pixels were wrongly classified, the constructed image
is displayed clearly in the corrosion places, which makes this
technique capable of evaluating the corrosion location and
size. However, the supervised machine learning techniques
need training samples which difficult to be acquired in the
practical application of NDT due to the variety of the sam-
ples’ properties or the limited resources to acquire the training
data.

Recent research has emerged to employ machine learning
to measure the material’s degradation [41]. The latest efforts
to hybridise microwave NDT and machine learning inspect-
ing complex systems (e.g. GFRP) have tremendous potential
to increase the efficiency and reliability of inspection [6]. For
example, the unsupervised k-means clustering algorithm as
described in the next section is the most suitable technique to
process the microwave signal in the time domain due to the
simplicity of utilizing less training samples required by SVM
and artificial neural network (ANN) techniques.

In this research, a novel microwave NDT technique is
presented based on k-means unsupervised machine learning
for defect detection in GFRP. At present, the defect evaluation
using unsupervised machine learning-based microwave NDT
technique is not reported elsewhere. The proposed technique
is employed for defects detection and evaluation in terms
of defect location and size. OERW is used to scan the
GFRP sample by sweeping 101 frequency points from 18 to
26.5 GHz. The influence of the permittivity variations due
to the random patterns of GFRP is mitigated by measuring
the mean of a set of the adjacent points at each operating
frequency point using a small rectangular window. IFFT is
utilized to convert the signal from the frequency domain
into the time domain as well as increase the resolution of
the converted signal to 201-time steps. Simultaneously, the
k-means algorithm is used to blindly classify the time domain
data of each inspected location into separate clusters, such as
defect and defect-free, to image the underneath defects. The
work demonstrated in this manuscript is significant since the
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FIGURE 1. Cross-section diagram of the proposed scanning arrangement
using an open-ended rectangular waveguide (not drawn to scale) in case
of defect-free (a) and defect (b).

proposed technique capable of delivering an in-situ
microwave NDT system for defect detection in complex
composite material and may form part of quality control in
manufacture as well as portable field service inspection.

The findings presented in this research demonstrate the
contribution of an unsupervised machine learning to detect
a defect down to 1 mm, which is a considerable advantage
over any existing defect inspection technique in composites.
In this paper, a brief introduction to defect detection in the
time domain and k-means clustering algorithm is introduced
in section II. Section III explains the proposed microwave
NDT technique. The result discussion is presented in sections
IV. Finally, the conclusion is summarized in section V.

Il. THEORETICAL BACKGROUND

A. MICROWAVE REFLECTION FOR DEFECT DETECTION
Figure 1 shows a cross-section of the microwave probe
scanning arrangement in case of defect and defect-free. The
reference plan of OERW is used to scan a metal-backed
sample that consists of a dielectric layer which placed near
the waveguide. Traditional TDR uses the time of receiving
the reflection from a certain discontinuity to estimate the
distance between it and the reference plane [17]. This implies
knowledge of the speed at which the waves travel through
the media under consideration, which is usually the speed of
light. Therefore, two reflections can be obtained at different
times in the case of defect-free, as shown in Figure 1(a).
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The first reflection comes from the dielectric layer (e.g.
GFRP), which arrives earlier at ¢;. The second reflection is
from the back metal surface, which comes late at #» due to
the travelling distance between the waveguide and the back
metal. In the case of defect presence, as shown in Figure 1(b),
there are three reflections can be acquired which are from
the dielectric surface, defect edge and the back metal at
three different times, denoted as 7|, #;, and 7} respectively
where #; # t. However, in the case of frequency sweeping,
different frequency components travel at different velocities.
Therefore, it is not possible to rely on the reflection time
of arrival to determine the exact distance to the source of
reflection. Moreover, the distance between the probe’s end
and the dielectric surface is assumed to be relatively small.
This near-field condition implies that the dispersion effects
such as pulse spreading and frequency chirping are reduced
to a minimum.

Therefore, IFFT is usually used to obtain the discrete
reflection coefficient in the time domain. Two main peaks
can be identified at #; and f, in case of defect-free. In the
other hand, two main peaks can be identified in case of defect
presence which the first peak denotes to 7{ and the second
peak denotes to a combination of #} and #; reflections. In the
case of defect presence, the magnitude of the second peak
t} is reduced compared to the second peak #, obtained from
the defect-free sample. Therefore, any reduction in the mag-
nitude of the second peak can provide information about
the defect present in the dielectric layer. This observation
can be employed to detect the defects under insulation in
case of clustering two different sources, such as defect and
defect-free signals.

B. K-MEANS CLUSTERING

The clustering process aims to group a given dataset of
observations into separate clusters. The k-means clustering
algorithm is one of the simplest unsupervised machine learn-
ing techniques to solve the clustering problem [42]. The
procedure of k-means is to separate unlabeled dataset col-
lection into a specific number of clusters (e.g. k groups).
Each data point in the unlabeled dataset is assigned to one
of the groups based on the similarity of the given features.
Initially, the algorithm estimates the centroid of each group.
The estimation can be done randomly by selecting a set of
data points from the given dataset to represent each group
centroid at the initial stage. Thereafter, the k-means algo-
rithm works iteratively to reduce the clustering error by min-
imizing the objective function through achieving two main
steps until reach the stopping criteria. Firstly, each data point
in the dataset is assigned to the nearest cluster centroid,
which the distance between them is the smallest compared
to the other centroids. Secondly, the new centroid of each
group is updated by calculating the mean of the data in
each cluster. Finally, the algorithm stops the iteration when
there is no change in the centroids’ location or reach the
maximum iterations number. Let, X = {x{, xpx3...Xx,} is the
unlabeled dataset to be clustered into £ known groups and
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FIGURE 2. GFRP sample illustrates the defects’ size and location.

C = {c1, cpc3...cn} is the set of centroids where m = k
and £k < n. The centroids are obtained by minimizing the
objective function J as defined in equation (1).

J=Y > -Gl e

i=1 j=1

where ||Xj — Cj |2 is the squared Euclidean distance between
the data point X; and the centroid C; while n and m denote
to the total number of the data points and number of cluster
centroids respectively. Utilizing the Euclidean distance in
this research provides a faster similarity metric with genuine
appraisals compared to the other distance metrics [43]. The
Euclidean distance is recommended as a distance measure-
ment for time series data clustering as the nature of the
utilized data in this research [44]. The update of the centroid
C; of each group is defined as in equation (2).

L
c=L Y x, @)
N j st

where N; ; refers to the number of the data points belong to i
cluster centroid and X; ; denotes to the data points assigned to
i cluster centroid. Thus, the k-means algorithm can be used
to distinguish the different sources. In case of the defect and
defect-free sources as explained in the next section, k-means
can be employed for defect detection with microwave NDT.

Ill. THE PROPOSED METHOD

A. GFRP SAMPLE

Figure 2 illustrates the GFRP sample which composes the
fibreglass and epoxy resins based matrix. This kind of com-
posite is widely used in the oil and gas industry to reinforce
the metal pipelines against the corrosion and high load of
the pressure. The sample of thickness 23+0.32 mm includes
various dimensions of defects such as air gaps are machinery
etched in the sample layer. The size of the defects is ranged
from 10 mm x 10 mm to 20 mm x 20 mm. On each horizontal
line, the size of the defects is equally etched with a different
degree of depth. The depth of the defects is back-drilled
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TABLE 1. The dimension of the GFRP sample.

Parameter Value

Sample size 152 mm x 110 mm

Sample thickness 2340.32 mm

10 mm x 10 mm, 15 mm x 15 mm,
and 20 mm x 20 mm

Defect dimension

Defect depth a) 3 mm to 15 mm with a step size
of 3 mm
b) 1 mm to 5 mm with a step size
of 1 mm

Waveguide holder —

L ) Processing unit
Stand-off distance

Defect

L
~~3——  Sample|
Metallic sheet

FIGURE 3. The setup diagram of the microwave NDT system.

XYZ Positioner — -

WR-42 OERW
microwave probe

A programmable
XYZ-positioner

Keysight Field-Fox

¥ GFRF sample backed
VNA N9918A 1

by metal I

FIGURE 4. lllustration of the utilized instruments for defect detection in
GFRP sample.

and ranging from Imm to 15 mm. The dimensions of
the GFRP sample are detailed in Table 1. Additionally,
Figure 2 illustrates the dimensions of every single defect
independently. The face of the defects is placed on the metal
during the inspection to simulate the underneath defects
between the GFRP layer and metal, whilst leaving its top
surface undisturbed.

B. INSPECTION TECHNIQUE

Figure 3 shows the experimental setup diagram of the inspec-
tion technique. The standard WR-42 OERW microwave
probe with an aperture size of 10.6 x 4.3 mm? raster-scanned
with a step size of 2 mm in the x- and y-directions is shown
in Figure 4. The scanning is achieved on 80 and 54 points
in x- and y-directions, respectively. The standoff distance
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FIGURE 6. The optimal centroids of the defect and defect-free sources
converged by the k-means algorithm (a), the peaks’ distribution of the
defect and defect-free for the first 35 time steps (b).

between the OERW probe and the sample is set to 1 mm. The
programmable positioner is used to control the waveguide
movement during the inspection process. One port calibration
is carried out to effectively shift the measurement reference
plane to the end of the microwave cable (input port of waveg-
uide). Upon successful calibration, the systematic errors of
Vector Network Analyzer (VNA), the connectors and cables
used to connect the VNA to the waveguide are eliminated
from measurements. A portable Keysight Field-Fox VNA
(N9918A) is used to measure the complex reflection coef-
ficients from 18 to 26.5 GHz, as a linear sweep with 101 fre-
quency points at each inspected location. As a result of the
inspection, a 3D matrix d(x, y,f) is constructed where x
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FIGURE 7. Scattering plots illustrate the data points at the location of the
main three peaks ¢, t; and t; with respect to the defect and defect-free
clusters for each inspected location.

and y denote to the inspected location and f denotes to the
operational frequency point from 1 to 101.

C. MICROWAVE SIGNAL PROCESSING

Although the acquired data d(x, y, f) at each frequency point
can image the inspected sample. However, the generated
images cannot provide information about all the defects of the
GFRP sample. In the case of GFRP inspection, the randomly
weaved patterns cause permittivity variations that influence
the properties of the reflected microwave signals. Therefore,
the uniformity of the defects shapes should be maintained
to simplify the assessment of the defect’s size and location.
In this section, a rectangular window with size a x b is
proposed which is near to the half of the probe aperture
dimensions as the inspection step achieved by 2mm in x and
y-directions where a = 3 and b = 4. Therefore, the values
of a and b have been chosen as a trade-off between fixing
the spatial abnormality in the woven medium and the ability
of the technique to provide an accurate location for small
defects. The window is moved on each frequency image to
crop the corresponding frequency coefficients. Thereafter,
the mean of the cropped coefficients is measured to mitigate
the effects of the random patterns of the GFRP sample. The
outcome of this process generates a 3D matrix named D with
dimensions X — a and Y — b for each frequency point f.
Equation (3) formulates the window sliding on the acquired
microwave data d.

1 N.,M
D@.y.f)=— 3 domf) 3)

n=x,m=y

where the boundary of N and M is described as the following
equations at each x and y step.

N=x+a-1 @)
M=y+b-1 5)
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FIGURE 9. The imaging results of GFRP using TDR in [19] (a), and
correlation technique in [18].

The IFFT is used to obtain the discrete reflection coef-
ficient in the time domain. Therefore, the 101 frequency
points at each D (x,y) are converted from the frequency
domain into the time domain using IFFT. The resolution of
the 101 frequency points is extended to 201-time steps using
IFFT function in Matlab (R2019a) to ensure the magnitude
each peak in the time domain reaches its maximum value. The
converted data is reshaped into 7" matrix with rows number
(X —a) x (Y — b) and 201 columns to be clustered blindly
into the defect and defect-free using the k-means algorithm.

D. DEFECT DETECTION

The magnitude of the time-domain data 7 which obtained
using IFFT is clustered into two groups using the k-means
algorithm to distinguish between the defect and defect-free
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FIGURE 10. A comparison between the result of the proposed technique with the actual defects’ size and location of the GFRP sample.

regions. Figure 5 shows the initial two centroids of the
k-means algorithm. The centroids’ boundaries are estab-
lished based on the magnitude of the defect-free source is
greater than the magnitude of the defective source due to the
peaks’ reduction in case of defect presence as explained in
section 2(A). Moreover, the constructed centroids in a guided
way aim to avoid establishing the centroids randomly which
may lead to different clustering results as well as reducing
the processing time. The initial centroids of the defect and
defect-free are constructed as in equations (6) and (7).

C);,n = max(T},) (6)
cg’n = min(7},) @)

where c’; , and cgn denote to the initial centroids of the
defect-free and defect respectively while n denotes to the
number of time steps.

IV. RESULTS AND DISCUSSION

Figure 6(a) shows the optimal centroids of the defect and
defect-free sources obtained by the k-means algorithm.
A number of 12 iterations were performed by the k-means
until converging the final outcome of the optimal centroids.
This number of iterations refers to the number of the cen-
troids’ modifications due to the mean measurement of each
cluster. At the final iteration, there is no centroids’ changes
have occurred. Therefore, the k-means reaches the stop cri-
teria and the clustering results are converged. Figure 6(b)
zooms in the peaks’ distribution of the first 35 time steps
of the converged centroids. It can be noted that the k-means
algorithm is capable of distinguishing between the sources
of the defect and defect-free based on the assumed approach
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in section 2(A). The peaks’ distribution in the defect-free
centroid shows the first peak #; and the second peak t»
which are obtained from the GFRP surface and the back
metal, respectively. On the other hand, the peaks’ distribution
in the defective centroid shows three peaks ¢, t; and 13
which are obtained from the surface of the GFRP sample,
defect edge and the back metal respectively. Therefore, the
k-means partitioned the microwave reflected coefficients of
the defect and defect-free regions based on the similarity to
those centroids. Thus, the capability of the k-means algorithm
to distinguish between the defect and defect-free sources
based on microwave signals is validated.

Figure 7 shows an example of the scattered data points
from different 3D projections. The data points are obtained
from the first, second and third peaks at 6, 9, 13-time steps
respectively. At these time steps, the data points are obtained
from each scanned location. The centroid of each cluster
is placed nearby its data points at the final stage of the
clustering process. The data point is classified to its closest
centroid based on the Euclidean distance. The data point has
a minimum Euclidean distance to the defect-free centroid is
classified as a defect-free location. Similarly, the data point
has a minimum Euclidean distance to the defect centroid is
classified as a defected location. Thus, the clustering of GFRP
sample has been done into defect and defect-free locations.

Figure 8 illustrates the clustering results in which all the
defects in the GFRP sample are detected using the proposed
technique. The proposed technique is capable to effectively
detect the small size defect with Imm depth on line 4 com-
pared to the imaging result of [19] and [18] as shown in
Figure 9 (a) and (b), respectively. Moreover, the pro-
posed technique is capable to sharply separate the edges
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of the large size defects on the first line compared to the
merged defects result by the compared techniques. The large
size defects in [19] and [18] are illustrated as one contentious
defect, which makes the defect assessment difficult. The
proposed technique sharps the edges of the large size defects,
which facilitates the defect evaluation.

Figure 10 illustrates a comparison between the clustering
results to the actual location and size of the GFRP sample.
All the defects are distributed corresponding to the actual
location. Although the significant results of the detection,
the size of the defects seems larger than the actual size,
especially the defects on lines 2 to 4. The large size of
the defects belongs to the large size of the waveguide aper-
ture which is 10.6 x 4.3 mm?. During the scanning pro-
cess, a part of the waveguide aperture enters the defected
area, which makes a reduction in the microwave signal
even the rest of the aperture remains in the sound region.
The occurred reduction is correlated to the defect’s source
during the clustering process which leads to large defects’
size. Furthermore, supervised machine learning such as ANN
and SVM may provide significant results in term of the
defect’s size due to the learning-based process while a suit-
able training sample is provided. Therefore, a small size aper-
ture will be evaluated using the proposed technique besides
various supervised machine learning algorithms in future
work.

V. CONCLUSION
The work demonstrated in this manuscript presents a novel
microwave NDT technique based on k-means unsupervised
machine learning for defect detection in GFRP. At present,
the defect evaluation in terms of defect location and size using
an unsupervised machine learning-based microwave NDT
technique is not reported elsewhere. The proposed technique
is employed to detect underneath defects in the GFRP layer
based on microwave reflection coefficients. The influence of
the permittivity variations on the reflected coefficients due
to the random patterns of GFRP is mitigated by measuring
the mean of a set of the adjacent points at each frequency
point using a small rectangular window. Thereafter, the fre-
quency coefficients are converted into the time domain using
IFFT. The resolution of the acquired 101 frequency points is
extended into 201-time steps for allowing each peak in the
time domain to reach its maximum value. Finally, the time
domain data of each location is blindly clustered using the
k-mean algorithm into defect or defect-free to detect and
image the underneath defects in the GFRP layer.
Nevertheless, the size of the defect seems larger than the
actual size; the proposed method significantly detected the
small size defect down to Imm depth of defect compared
to other methods presented in the literature. The proposed
method is capable to sharply separate the edges of the defects
and the defect-free regions among the defects are clearly
illustrated. The simplicity of the proposed technique due to
fewer customizations makes it operational friendly and can
be used as an in-situ microwave NDT system of detecting
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and imaging the defect and may form part of quality control
in manufacture as well as portable field service inspection.
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