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ABSTRACT In this paper, the discrete-time opinion dynamics model with competitive relationship and
switching topologies is investigated. Different from the usual DeGroot model, competition between individ-
uals and the switching topologies are considered in a social network. Furthermore, the structurally balanced
and unbalanced network topologies are investigated simultaneously. It is shown that if all network topologies
are structurally balanced and include a spanning tree, then there may appear polarization, neutralization or
fluctuation. And we also find conditions under which the group is split into two clusters at most, specifically,
opinions will reach polarization (bipartite consensus) or all individuals will remain neutrality (consensus).
If there exist the structurally unbalanced network topologies in social networks, we obtain the condition in
which all individuals will finally hold the neutral attitude on the discussed topic. Two examples are provided
to illustrate the effectiveness of the obtained results.

INDEX TERMS Opinion dynamics, consensus, polarization, DeGroot model, signed graph.

I. INTRODUCTION
Recently, opinion dynamics, which has been studying the
exchange and discussion of opinions between individuals
which may occur in mediums and situations as varied as
company boardrooms, elementary school classrooms and
online social media, has drawn considerable attention from
control theory, sociology, physics, economics, biology and
so on [1]–[6]. The so-called opinion dynamics focuses on the
basic problem of social networks: how individuals (agents)
are influenced by the presence of others in a social group.
Exploring the evolutionary laws of group opinions and behav-
iors in social networks is an important issue in the process of
human self-understanding, and can reveal the basic laws of
human society and animal population development in order
to promote the development of society in a more harmonious
direction [7]–[11].

For the sake of investigating the evolution of opinions
and individual interpersonal influence, many models have
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been proposed in the past few decades [12]–[19]. The early
representative model was proposed by DeGroot and later
called the DeGroot model [12]. DeGroot model is the most
basic and classic static-neighborhood model where neigh-
bors are defined according to an unchanging directed graph.
In this case, individuals update their opinions by averag-
ing their own and other’s displayed opinions according to
the weighted adjacency matrix. If the network topology is
strongly connected and aperiodic, DeGroot model always
reaches an opinion consensus for the arbitrary initial opin-
ions [12], i.e., all agents make an agreement about a topic.
Subsequently, the consensus conditions of DeGroot model
were examined intensively [20]–[23]. Authors of the liter-
ature [20] pointed out that the condition of aperiodic and
connectivity can be reduced to include a spanning tree if
each node has self-loop. Furthermore, this result was gener-
alized to the case of switching topologies based on results on
convergence of infinite products of stochastic matrices [20].
For changing bidirectional and cut-balanced network topolo-
gies, necessary and sufficient conditions for consensus boiled
down to repeated joint connectivity of the graphs [21], [22].
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For general directed network topologies with self-loop, the
sufficient conditions for consensus were closely related to the
uniform quasi-strong connectivity of the graphs [23].

In the past few decades, various deformations of
the DeGroot model have also been extensively studied
[9], [14]–[16], [24], [25]. Combining the updated rules of
the DeGroot model with the idea of ‘‘homophily’’ [26] which
means that agents readily adopt opinions of like-minded indi-
viduals but accept the more deviant opinions with discretion,
bounded confidence (BC) models [26], [27] were proposed
to investigate the opinion evolution. In BC models, agents
do not completely consider opinions outside their confidence
intervals. In other words, in BC models, People can influence
each other when their opinions are close enough to each
other, i.e., the distance of the opinion states |xi − xj| is
less than a certain confidence threshold. Compared with the
DegGoot model, to a certain extent, BC models are more
able to capture the characteristic of opinion evolution and can
model many phenomena, for example, animal flocking [28].
Actually many opinion phenomena found in social networks
such as consensus, disagreement and polarization and so
on were presented in BC models [16]. In [16], [29], [30],
homogeneous BC models were investigated where all agents
were assumed to have the same confidence threshold. In fact,
in real social networks, the different agents often have the
different confidence threshold [31]. heterogeneous BCmodel
was proposed to model this phenomenon where dynamic
behavior is more complicated [31], [32]. In BC models,
the network topologies are dependent on the system states,
whichmakes it more difficult to perform a strict mathematical
analysis on it. So far, their rigorous mathematical analysis
is still an open problem. For instance, it is very difficult to
predict the structure of opinion clusters for a given initial
condition [16], [29].

The DeGroot model has many extensions in different
views of dynamics and psychology. The Friedkin-Johnsen
(FJ) model, as a typical example, is induced by the stubborn
agents [33], [34]. The so-called stubborn agents refer to the
agents with prejudices that have the willing to maintain their
initial opinions. Some relevant works [35]–[37] have shown
that the prejudice in social networks is often hidden but can
continuously influence agent behavior. Different from the
DeGroot model [12], in which each actor is completely open
to interpersonal influence, the stubborn agents in the FJmodel
always consider their initial opinions for every iteration of
opinions. Therefore, it is difficult to reach opinion consensus
for F-J models. In fact, agents often form multiple clusters in
F-J models [33], [34], [36], [38]. But if peer pressure between
individuals was considered in FJ model, the modified FJ
model can obtain consensus if peer pressure is increasing and
unbounded [14].

It should be pointed out that the possible competitive
or confrontational relationship between individuals were
not consider in most of the references mentioned above.
However, antagonism, competition, indifference or distrust
between individuals are ubiquitous in the real world [17],

[39]–[42]. These phenomena are usually modeled by repul-
sive couplings or negative ties [41] among the agents, i.e.,
the signed graph, where the positive edges represent friendly
and cooperative interactions and negative edges correspond
to antagonistic counterpart. Recently, opinion dynamics with
antagonism or competition has attracted significant attention
[14], [17], [41]–[47]. As shown in [44], the evolution of
opinions on signed graphs may be more complicated due to
the antagonistic interaction. In fact, under different opinion
protocols, opinion dynamics on signed graphs may result in
clusters, polarity, consensus, neutrality or fluctuation [44].
In [7], the continuous-time DeGroot model on signed graphs
was studied and a necessary and sufficient condition of polar-
ization was obtained based on structurally balanced graphs.
It has been shown that the bipartite consensus of opinions is
usually closely related to the structurally balanced graphs [7].
In [47], the bipartite consensus problem for high-order opin-
ion dynamics systems was investigated. In [17], [40], opin-
ion dynamics with switching topologies and confrontational
relationship was researched. It should be pointed out that it
was implicitly assumed in most of the literature mentioned
above that the network topologies are structurally balanced.
In [48], [49], the structurally unbalanced graphs were con-
sidered. However, in [48], [49], authors only focused on
the signs of opinions and ignored their size, i.e., the sign-
consensus. In the structurally unbalanced social networks, the
relationship between individuals is more complicated, which
makes it more difficult to analyze the model mathematically.
Therefore, when the structurally balanced and unbalanced
networks exist at the same time, how opinions will evolve is
still an open topic. In this article, we will make efforts to it.

On the other hand, in the literature on the signed networks
mentioned above, it is always assumed that the diagonal
entries of the adjacency matrix are non-negative. However,
in this paper, the diagonal entries of the adjacency matrix are
allowed to take negative values. If the diagonal entry aii < 0,
we call the i-th agent as the non-confidence agent which lacks
confidence in the signs of their own opinions. Some relevant
works [50]–[52] showed that the non-confidence agents do
not tend to freely expresses their opinions, but often exist in
social networks. The non-confidence agent finally tends to
hold a neutral attitude [51]–[53], which is consistent with the
conclusions we will obtain.

The main contributions of this paper are as follow. Firstly,
a novel opinion dynamics model, where ‘‘competition’’,
‘‘switching’’ and ‘‘confidence’’ are considered simultane-
ously, is proposed. Secondly, when all network topologies are
structurally balanced, a few conditions are obtained to guar-
antee that opinions converge to two clusters at most; When
the structurally balanced and unbalanced network topolo-
gies coexist, by using the spectrum analysis and the matrix
theory, a consensus condition is gotten. This implies that
the networks may still achieve consensus in the presence
of competition. At last, we find that if there exist the non-
confidence agents in a social network all agents will have a
neutral attitude towards events under certain conditions.
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The rest of the paper is organized as follows: basic def-
initions and properties of graphs and models are recalled in
Section II; The dynamic behavior in our models are discussed
in III; In Section IV, we give two examples to illustrate the
effectiveness of the obtained results. Finally, in Section V,
we give our conclusion.

II. PRELIMINARIES
In this section, model and mathematical preliminaries are
provided to derive the main results of this paper.

A. NOTATIONS
Throughout this paper, Rm×n and Rn denote, respectively,
the m × n real matrix and the n-dimensional real space.
Suppose A ∈ Rm×n or A ∈ Rn, A ≥ 0 means all elements
of A are not less than 0, and AT denotes its transpose. Let
A = [aij] and B = [aij] be two real n × n matrices,
A ≥ B means aij ≥ bij for all 1 ≤ i, j ≤ n. If B is an
arbitrary complex matrix, then |B| denotes the nonnegative
matrix with entries |bij|. ρ(A) denotes the spectral radius of A.
1n denotes the n-dimensional vector [1, 1, · · · , 1]T . We use
diag[m1,m2, · · · ,mn] to denote the diagonal matrix whose
diagonal entries are m1,m2, · · · ,mn. The notation [−1, 1]n

denotes the set {x|xi ∈ [−1, 1], x ∈ Rn
}.

B. GRAPH THEORY
Consider a set of n nodes (agents or individuals) denoted by
V = {1, 2, · · · , n} and the subset E ⊂ V × V , G = (V ,E)
is called a digraph with the set of nodes (or vertices) V and
the set of edges E . A path from a vertex i to another vertex j
is a sequence of distinct vertices starting with i and ending
with j, in which each vertex is adjacent to its next vertex.
We say that the digraph G = (V ,E) contains a spanning
tree if there is a vertex i such that there exists a path from i
to every other vertex in G = (V ,E) where node i is called
root node. Furthermore, if each node is a root node, then
a digraph G = (V ,E) is said to be strongly connected.
The neighbor set of the vertex i is defined by Ni = {j ∈
V |(j, i) ∈ E}. We say that G = (V ,E) is an undirected
graph if ∀j ∈ Ni having i ∈ Nj. For an undirected graph,
the strong connectivity means connectivity. Suppose a matrix
A ∈ Rn×n satisfies: aij 6= 0 ⇐⇒ (j, i) ∈ E , then matrix A
is called the weighted adjacency matrix of the graph G(A). If
the adjacency matrix A is assumed to take both positive and
negative values, then it is called the signed adjacency matrix
and its associated graph is called the signed graph G(A). As
pointed out in [1], [12], when individuals make a decision,
almost all individuals will always consider the opinions of
themselves and their neighbors comprehensively. So, in this
paper, we assume aii 6= 0 for all i ∈ V , i.e., each vertex has a
self-loop. The state of agent i ∈ V at k is a continuous value
xi(k) ∈ [−1, 1] that represents opinion or position on a topic.
The sign of xi determines whether the individual is in favor
or against about the topic, and the size of xi determines the
degree of opposition or support. If xi = 0, We say that agent i
is currently neutral on the topic. Furthermore, if aii > 0, agent

i is called the confidence agent which has a positive attitude
towards his current opinion, i.e., he has confidence about the
signs of his current opinions and desires to maintain the signs
of his opinions; If aii < 0, agent i is called the non-confidence
agent which is skeptical of his current opinion, i.e., he lacks
confidence on the signs of the current opinions and hopes
to change the signs of his opinions. Such as individuals
are suspicious by nature, finally they often remain neutral
opinions on the topic. Competition, antagonism or distrust
between agents are modeled by negative edges among the
agents. The positive edges among the agents mean that the
cooperative and friendly relationship between agents. So in
this paper, we assume that G(A) is the signed graph.

C. MODEL DESCRIPTION
Inspired by the literature [7], [12], in this paper, the following
opinion dynamics model with n individuals is examined:

xi(k + 1) =
n∑
j=1

aij(σ (k))xj(k), i = 1, 2, . . . , n, (1)

where σ (k) : N → M = {1, 2, . . . ,m} is the switching
signal. If aij(σ (k)) 6= 0, it means that at k instant the agent i
can receive information from the agent j. In other words, the
agent j is a neighbor of the agent i. When making a decision
the agent iwill consider opinions of the agent j, i.e., the agent
i will be affected by the agent j. |aij| indicates the degree
of impact and

∑n
j=1 |aij(σ (k))| = 1 is assumed for all i =

1, 2, . . . , n [17]. Similar to [7], [14], [17], aij > 0 represents
the cooperative relationship and aij < 0 corresponds to
confrontation and competition.

Let A(σ (k)) = [aij(σ (k))], x(k) = [x1(k), x2(k), . . . ..,
xn(k)]T , then the model (1) can be rewritten by the following
compact form:

x(k + 1) = A(σ (k))x(k), (2)

where |A(σ (k))| is the row random matrix.
Remark 1: The usual DeGroot model only considers the

cooperative relationship between individuals, and ignores the
possible competitive relationship between individuals. In our
model, cooperation and competition are considered at the
same time. On the other hand, for the usual DeGroot model,
the network topology is fixed, and our model considers the
impact of switching topology on the evolution of opinions.
Therefore, to a certain extent, our model is more general than
the usual DeGroot model.
Remark 2: Different from the most works about opinion

dynamics on the signed graph [14], [17], [39]–[43], [47],
in our model the signed graph is allowed to be structurally
unbalanced. Furthermore, as far as the authors know, in the
investigation about the signed graph, it was implied that the
diagonal entries of the adjacency matrix are nonnegative.
Here the negative diagonal entries are allowed which cor-
respond to the non-confidence agents. This means that the
methods of the above articles cannot be directly applied to
our model.
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D. MATHEMATICAL PRELIMINARIES
The following definitions and lemmas are needed for the
derivation of our main results in this paper.
Definition 1 [7], [17]: If limk→∞ |xi(k)| = α > 0 for

the arbitrary initial opinions and all i ∈ V , and there exist
i and j satisfying that limk→∞ xi(k) = − limk→∞ xj(k), then
we say that the system (1) can achieve bipartite consensus
or polarization. In particular, if α = 0, we claim that the
system (1) reaches consensus. At this time, all agents remain
neutralization.
Definition 2 [7]: Suppose A ∈ Rn×n. If there exist two

sets V1
⋂
V2 = ∅, where ∅ denotes the empty set and

V1
⋃
V2 = V such that aij ≥ 0 for ∀i, j ∈ Vl(l ∈ {1, 2})

and aij ≤ 0 for ∀i ∈ Vp, j ∈ Vq, p 6= q, (p, q ∈ {1, 2}),
we claim that the signed graph G(A) (or the matrix A) is
structurally balanced. In other words, the signed graph G(A)
is structurally balanced if and only if there exists a diagonal
matrix 0 =diag[τ1, τ2, . . . , τn] such that 0A0 ≥ 0 where
τi ∈ {1,−1}.
Lemma 1 [20]: Assume that A(p) ≥ 0 is a row random

matric and its diagonal elements are greater than zero for all
p ∈ M. If G(A(p)) contains a spanning tree for all p ∈ M,
then the system (1) can reach consensus for the arbitrary
switching signal.
Lemma 2 [54]: Let A ≥ 0 be an irreducible matrix, and let

B be a complex matrix with |B| ≤ A. If β is any eigenvalue
of B, then |β| ≤ ρ(A). Furthermore, equality is valid,i.e, β =
ρ(A)eiφ for some real φ, if and only if |B| = A, and where B
has the form

B = eiφDAD−1 (3)

and whereD is a diagonal matrix whose diagonal entries have
modulus unity.
Lemma 3: Let A ∈ Rn×n be an irreducible matrix, and there

exists at leat a diagonal entry aii > 0, then ρ(A) = ρ(|A|) if
and only if G(A) is structurally balanced.

Proof: Obviously, |A| ≥ 0 is an irreducible matrix.
According to Lemma 2, ρ(A) = ρ(|A|) if and only if
there exist a real number φ and a diagonal matrix D
whose diagonal entries have modulus unity such that |A| =
eiφDAD−1. Let’s assume D =diag[eiθ1 , eiθ2 , . . . , eiθn ], then
D−1 =diag[e−iθ1 , e−iθ2 , . . . , e−iθn ]. According to |A| =
eiφDAD−1, one can obtain |apq| = eiφei(θp−θq)apq for all
p, q = 1, 2, . . . , n. In particular, |app| = eiφapp. Because
there exist diagonal entries more than 0, it is obvious that
eiφ = 1. At this time, |apq| = ei(θp−θq)apq. According to the
connectivityG(A), there exists q1 6= 1 satisfying a1q1 6= 0. So
|a1q1 | = ei(θ1−θq1 )a1q1 . It is obtained that e

i(θ1−θq1 ) ∈ {1,−1}.
Therefore, eiθq1 = αq1e

iθ1 where αq1 ∈ {1,−1}. For all
a1qj 6= 0, eiθqj = αqje

iθ1 . For aqjql 6= 0, eiθql = αql e
iθ1

with αql ∈ {1,−1}. According to the connectivity G(A),
this process can go on continuously, i.e., qj can take all
points in the set {2, 3, .., n}. So the matrix D has the form
D = eiθ1diag[α1, α2, . . . , αn] with αj ∈ {1,−1}. Noticing

D−1 = e−iθ1diag[α1, α2, . . . , αn], so

|A| = eiφDAD−1

= diag[α1, α2, . . . , αn]Adiag[α1, α2, . . . , αn] ≥ 0. (4)

According to Definition 2, this implies that G(A) is struc-
turally balanced. The proof of Lemma 3 has been completed.
Remark 3: In Lemma 3, It is important that matrix A has

diagonal elements greater than 0, otherwise, the conclusion
of Lemma 3 will not necessarily hold. For example, for A >
0, −A is an irreducible matrix. It is obvious that ρ(−A) =
ρ(| − A|). But the graph G(−A) is not structurally balanced.
Lemma 3 plays a major role in obtaining the main results of
this paper.

According to Lemma 3, if |A| is the row random matrix,
we have the following corollary.
Corollary 1: Assume that A ∈ Rn×n is an irreducible

matrix with aii > 0 for some i, 1 ≤ i ≤ n, and |A| is the
row random matrix. If G(A) is structurally unbalanced, then
ρ(A) < 1.

III. MAIN RESULTS
In this section, the convergence of model (1) is investigated.
Firstly, we examine the opinion evolution of model (1) when
σ (k1) = σ (k2) for all k1, k2 ∈ N, i.e., the network topology is
fixed. In other words, we firstly consider the followingmodel:

x(k + 1) = Ax(k). (5)

Then we will consider the impact of switching on the evolu-
tion of individual opinions. For the system (5), we have the
following results.
Theorem 1: For the system (5), it is assumed that G(A) is

structurally balanced. IfG(A) has a spanning tree with aii > 0
for all i ∈ {1, 2, . . . , n}, then the system will achieve bipartite
consensus or consensus; Assume that G(A) is structurally
unbalanced. If G(A) is connected and there exists a diagonal
entry aii > 0, then limk→∞ xi(k) = 0 for all i ∈ {1, 2, . . . , n},
i.e., the system (5) reaches consensus.
Remark 4: For the usual DeGroot model in which there

exists only the cooperative relationship between individuals,
ifG(A) has a spanning tree with the positive self-loop, then all
individuals form a cluster, i.e., consensus. Theorem 1 shows
that if cooperation and competition between individuals exist
at the same time, then the result is relatively more compli-
cated. In fact, if G(A) is structurally balanced, this means
that the group can be divided into two parts. The individuals
of each part are cooperative relationship, and the individu-
als between the different parts are competitive relationship.
Therefore, agreement between individuals in each part can
be reached. It is difficult for individuals between the different
parts to reach agreement due to competition unless that all
individuals maintain a neutral attitude. When G(A) is struc-
turally unbalanced, the relationship between individuals is
more complicated. For example, the following situation may
arise: individual i believes that he is a cooperative relationship
with individual j, while individual j believes that he is a com-
petitive relationship with individual i. In this case, it seems
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that the agreement can be accepted by the group that only if
all individuals are neutral. This is consistent with the results
of Theorem 1.

Proof: I) the first case: the structurally balanced graph.
When G(A) is structurally balanced, according to Defini-

tion 2, there exists a diagonal matrix 0 such that 0A0 ≥ 0.
Let y(k) = 0x(k), one can easily obtain that

y(k + 1) = 0x(k + 1)

= 0Ax(k)

= 0A0y(k). (6)

It is obvious thatG(0A0) has a spanning tree and its all diag-
onal elements are positive when G(A) contains a spanning
tree with aii > 0 for all i ∈ {1, 2, . . . , n}. According to
Lemma 1, for the arbitrary initial value, limk→∞ y(k) = Inα
for α ∈ R. So limk→∞ x(k) = 0Inα. If α = 0, the system
(5) reaches consensus. The final opinions of all individuals
remain neutrality. If α 6= 0, the system (5) achieves bipartite
consensus.

II) the second case: the structurally unbalanced graph.
Assume that G(A) is connected and structurally unbal-

anced. If A has the positive diagonal entries, noticing that |A|
is the row randommatrix, according to Corollary 1, ρ(A) < 1.
Therefore limk→∞ Ak = 0where 0 represents amatrix whose
all elements are zero. It implies that limk→∞ xi(k) = 0
for the arbitrary initial value, i.e., the system (5) achieves
consensus. �

Corollary 2: For the system (5), suppose G(A) is a con-
nect graph. If there exist the confidence agents and the non-
confidence agents, then the final opinions of all individuals
converge to 0.

Proof: Since the confidence agents and the non-
confidence agents simultaneously exist, G(A) is structurally
unbalanced. According to Theorem 1, the conclusion is
clearly established.
Remark 5: Some relevant works show that individuals, who

lack of the confidence, tend to maintain a neutral attitude
towards topics [51], [52]. Corollary 2 shows that if the net-
work is connected, the non-confident individuals can influ-
ence the confident agents, thus affect the group’s decision to
a certain extent.

Now, let’s consider the impact of switching on the evo-
lution of opinions. For this purpose, the matrices are firstly
classified. If there exists a matrix 0 such that 0A10 ≥ 0 and
0A20 ≥ 0, we claim that A1 and A2 are the same structure.
We also say that the networksG(A1) andG(A2) have the same
topology structure. We use V0 = {A|0A0 ≥ 0} to represent
a set of matrices like this. Obviously, if A ∈ V0 , then G(A)
is structurally balanced. Furthermore, if A(p) ∈ V0 for all
p ∈ M, then, when the network topologies are switched,
the cooperation or competition between individuals will not
change.
Theorem 2: Assume G(A(p)) contains a spanning tree with

the positive diagonal entries for all p ∈ M. If A(p) ∈ V0
for all p ∈ M, i.e., all Ap have the same structure, then for

the arbitrary switching signal, the system (1) will achieve
bipartite consensus or consensus, i.e., the group forms at most
two clusters.

Proof: Since all A(p) ∈ V0 , similar to the proof of
Theorem 1, we firstly let y(k) = 0x(k), then we have

y(k + 1) = 0x(k + 1)

= 0A(σ (k))x(k)

= 0A(σ (k))0y(k). (7)

Obviously, G(0A(σ (k))0) has a spanning tree and its all
diagonal elements are positive. According to Lemma 1 and
the proof of Theorem 1, it is obtained that the system (1) will
achieve bipartite consensus or consensus.

Remark 6: In Theorem 2, A(p) is assumed to belong to
V0 for all p ∈ M. In fact, a few A(p) 6∈ V0 are allowed.
Under this case, Theorem 2 still holds as long as there exists
a positive integer ks such that A(σ (k)) ∈ V0 for all k ≥ ks.
In Theorem 2, every G(A(p)) is assumed to contain a

spanning tree. In fact, this condition can be weaker. So we
have the following results.

Theorem 3: Assume that matrix A(p) has positive diag-
onal entries and A(p) ∈ V0 for all p ∈ M. If there exists
an infinite sequence of uniformly bounded, nonoverlapping
time intervals [kj, kj + qj), j = 1.2 . . . . starting k1 = 0
such that each interval [kj + qj, kj+1) is uniformly bounded
and the union of a group of directed graphs {G(A(σ (kj +
qj))),G(A(σ (kj + qj + 1))), . . . ,G(A(σ (kj+1 − 1)))} in each
interval [kj + qj, kj+1) contains a spanning tree where the
union of graphs is a directed graph with edge set given by
the union of the edge sets of G(A(σ (kj + qj))),G(A(σ (kj +
qj+1))), . . . ,G(A(σ (kj+1−1))), then the system (1) achieves
bipartite consensus or consensus.

In Theorem 3, all G(A(p)) ∈ V0 is requested. According to
definition of the structurally balanced graph and the proof of
Theorem 3.10 in [20], Theorem 3 can be proofed easily. Here
the specific proof is omitted.
Remark 7: Noticing that the condition of all A(p) ∈ V0

implies that the relationship between individuals has not
changed with the change of topology. It means that the sign
of aij(σ (k)) does not change over time. Otherwise, the con-
clusion of the Theorem 2 will not necessarily hold. We will
illustrate this point through numerical simulation later.

In Theorem 2 and Theorem 3, we assume that all graphs
G(A(p)) are structurally balanced. Next we will discuss how
opinion will evolve under the condition of the existence of
structurally unbalanced graphs.We have the following results
when the structurally unbalanced graphs are considered.
Theorem 4: Denote the matrix set � = {A(p)|∃aii(p) > 0

and G(A(p)) is connected and structurally unbalanced, p ∈
M}. Assume AT (p) = A(p) for all p ∈ M and � is not an
empty set. If there exist the time series 0 ≤ k1 < k2 <, . . . , <
kj <, . . . such that G(A(σ (kj))) ∈ � and limj→∞ kj = ∞,
then limk→∞ xi(k) = 0 for all i ∈ V . In particular, if A(p) =
AT (p) ∈ � for all p ∈ M, then limk→∞ xi(k) = 0 for the
arbitrary switching signal.
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Proof: In the proof of this theorem, we use the Euclidean
norm of the vector x ∈ Rn, i.e.,

‖x‖ = (xT x)
1
2 (8)

For A ∈ Rn×n, we define the matrix norm

‖A‖ = sup‖x‖=1‖Ax‖ (9)

For (10) and (9), we have ‖Ax‖ ≤ ‖A‖‖x‖. Furthermore,
if AT = A, then ‖A‖ = ρ(A) [54]. Denote % =max{ρ(A)|A ∈
�}. According to lemma 3, % < 1. For any positive integer
k ≥ k1, there exist integer kj and kj+1 satisfying kj ≤ k <
kj+1. Noticing ρ(A(p)) ≤ 1 for all p ∈M, when k ≥ k1 then
we have that

‖x(k)‖ = ‖A(σ (k − 1))x(k − 1)‖

≤ ‖A(σ (k − 1))‖‖x(k − 1)‖

≤ ‖A(σ (k − 1))‖‖A(σ (k − 2))‖‖x(k − 2)‖

.

.

.

≤ ‖A(σ (k − 1))‖ . . . ‖A(σ (0))‖‖x(0)‖

≤ ρ(A(σ (k − 1))) . . . ρ(A(σ (0)))‖x(0)‖

≤ %j‖x(0)‖ (10)

Noticing % < 1 and j → ∞ when k → ∞, we have
limk→∞ ‖x(k)‖ = 0. If A(p) = AT (p) ∈ � for all p ∈ M,
for the the arbitrary switching signal, there exist integer kj
and kj+1 satisfying kj ≤ k < kj+1. So the conclusion of the
theorem is still valid under this case. The proof of the theorem
has been completed. �

Remark 8: In Theorem 4, both structurally balanced and
unbalanced network topologies are allowed to coexist, andwe
do not make any requirements for the connectivity of struc-
turally balanced network topologies. In this case, as long as
the structurally unbalanced network topologies satisfying the
conditions can appear frequently, all agents will eventually
remain neutrality to topics. It means that the final opinions of
the group are determined to a certain extent by the structurally
unbalanced network topologies.
Remark 9: In the Theorem 4, if we discard the condition

A(p) = AT (p) and keep other conditions unchanged, then the
results of theoremmay not necessarily true even if all network
topologies are connected.We will illustrate this point through
the numerical simulation later.
Remark 10: In this article, the impact of switching topology

on the evolution of opinions is discussed, but Theorem 4 is not
limited to the switching topology. From the proof of Theorem
4, it can be seen that if M is an infinite set, the conclusion
of Theorem 4 is still valid as long as � is a finite set.
This means that Theorem 4 also can be applied to dynamic
changing topologies. In [20], Degroot model with dynamic
changing topologies was investigated. It is worth pointing
out that in [20], only the cooperative relationship between
individuals was considered and the possible competition

FIGURE 1. The system (1) reaches bipartite consensus in Example 1.

between individuals was ignored. In Theorem 4, we assume
that cooperation and competition exist at the same time. On
the other hand, in [17], [55], DeGroot model with dynamic
changing topologies and competition was examined where
the structurally balanced and unbalanced network topologies
were considered. It should be pointed out the diagonal entries
of the adjacency matrix are not allowed to take negative
values in [17], [55]. However, there is no such restriction in
our Theorem 4. Therefore, this paper promotes the results of
literature [17], [20], [55] to some extent.

IV. NUMERICAL EXAMPLE
In this section, we will give two examples to observe the state
evolution of systems in order to verify our obtained results.
Example 1: Consider a network with 7 individuals. The

network topologies are shown as follow:

A(1) =



1 0 0 0 0 0 0
0.8 0.2 0 0 0 0 0
0.7 0 0.3 0 0 0 0
0 0 − 0.9 0.1 0 0 0
0 0 − 0.8 0 0.2 0 0
−0.2 0 0 0 0 0.8 0
0 − 0.6 0 0 0 0 0.4


,

A(2) =



0.3 0 0.7 0 0 0 0
0.8 0.2 0 0 0 0 0
0 0.1 0.4 0 − 0.5 0 0
0 − 0.6 0 0.4 0 0 0
0 − 0.6 0 0.2 0.2 0 0
0 0 0 0.2 0 0.8 0
0 0 0 0 0.6 0 0.4


,

A(3) =



0.5 0 0.4 0 − 0.1 0 0
0.1 0.2 0 0 − 0.7 0 0
0 0.8 0.2 0 0 0 0
0 − 0.3 0 0.7 0 0 0
0 0 0 0.9 0.1 0 0
0 0 − 0.2 0 0 0.8 0
0 0 0 0.6 0 0 0.4


.
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FIGURE 2. The switching signal I in Example 1.

It is obvious that matrices A(1), A(2) and A(3) have
a spanning tree and are structurally balanced. Let
0 =diag[1, 1, 1,−1,−1,−1,−1], then 0A(p)0 ≥ 0 for
p = 1, 2, 3. So A(1), A(2) and A(3) have the same structure.
According to Theorem 2, for the arbitrary switching signal,
the groupwill finally form two cluster at most. By FIGURE 1,
one can find that all individuals are split into two clusters.
In the following, we focus on how opinions will evolve if
there exist the matrices which are not the same structure with
A(1). For this purpose, two structurally balanced matrices are
added as follows:

A(4) =



1 0 0 0 0 0 0
0.8 0.2 0 0 0 0 0
−0.8 0 0.2 0 0 0 0
−0.6 0 0 0.4 0 0 0
0.7 0 0 0 0.3 0 0
0.3 0 0 0 0 0.7 0
−0.2 0 0 0 0 0 0.8


,

A(5) =



1 0 0 0 0 0 0
0.1 0.9 0 0 0 0 0
0.7 0 0.3 0 0 0 0
−0.6 0 0 0.4 0 0 0
−0.5 0 0 0 0.5 0 0
−0.7 0 0 0 0 0.3 0
−0.9 0 0 0 0 0 0.1


.

It can be easily verified that 0A(4)0 ≥ 0 does not hold. The
matrices A(4) and A(1) are not the same structure. Obviously,
A(5) and A(1) are the same structure. For the random switch-
ing signal shown in FIGURE 2, the evolution of opinions is
shown in FIGURE 3. According to FIGURE 3, the system
achieves consensus. Furthermore, for the switching signal
shown in FIGURE 4, the evolution of opinions is illustrated
in FIGURE 5. By FIGURE 5, the system does not converge
for the switching signal II. So if A(p) ∈ V0 for all p ∈ M
can not be satisfied, the conclusion of the theorem 2 will not
necessarily hold. In summary, by Example 1, if all network
topologies are structurally balanced, opinions may present
polarization, neutralization or fluctuation due to competitive
relationship and switching topologies.

FIGURE 3. The system (1) reaches consensus for the switching signal I in
Example 1.

FIGURE 4. The switching signal II in Example 1.

Example 2: In this example, we assume that the structurally
balanced and unbalanced network topologies exist simulta-
neously. We still consider a network with 7 individuals. The
network topologies are shown as follow:

A(1) =



0.1 0.2 − 0.7 0 0 0 0
0.2 0.7 − 0.1 0 0 0 0
−0.7 − 0.1 0.2 0 0 0 0
0 0 0 0.4 0.6 0 0
0 0 0 0.6 0.3 0.1 0
0 0 0 0 0.1 0.5 0.4
0 0 0 0 0 0.4 0.6


,

A(2) =



−0.5 − 0.2 0 − 0.3 0 0 0
−0.2 − 0.4 − 0.3 0 0.1 0 0
0 − 0.3 − 0.6 − 0.1 0 0 0
−0.3 0 − 0.1 − 0.6 0 0 0
0 0.1 0 0 0.8 0.1 0
0 0 0 0 0.1 0.5 0.4
0 0 0 0 0 0.4 0.6


,

A(3)=



0.3 0.3 0.4 0 0 0 0
0.3 − 0.5 − 0.2 0 0 0 0
0.4 − 0.2 − 0.2 0.1 0.1 0 0
0 0 0.1 − 0.2 0.7 0 0
0 0 0.1 0.7 0.1 0.1 0
0 0 0 0 0.1 0.5 0.4
0 0 0 0 0 0.4 − 0.6


,
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FIGURE 5. The system (1) does not converge for the switching signal II in
Example 1.

FIGURE 6. The switching signal I in Example 2.

FIGURE 7. The system (1) reaches consensus for the switching signal I in
Example 2.

It is obvious that AT (p) = A(p) for p = 1, 2, 3. A(1) is struc-
turally balanced. A(2) and A(3) are connected and structurally
unbalanced. One can easily find thatA(2),A(3) ∈ �. It should
be pointed out that ρ(A(1)) = 1. According to Theorem 4,
if the network topologies A(2) and A(3) appear frequently,
then opinions of all individuals will converge to 0. We adopt
the switching signal illustrated in FIGURE 6. The evolution
of opinion is shown in FIGURE 7. By FIGURE 7, all opin-
ions converge to 0. Note that if the condition of symmetry

FIGURE 8. The system (1) does not converge in Example 2.

cannot be satisfied, the conclusion of the theorem may not
true. To illustrate this point, we use the following matrices
A(4) and A(5):

A(4)=



0.2 0.2 0.1 0.2 0.3 0 0
0 − 0.7 − 0.2 − 0.1 0 0 0
0.2 0.3 0.2 0 0.2 0 0.1
0.6 0 0 0.1 0.3 0 0
0 0.1 0.2 0 0.7 0 0
0 0 0 0 0.9 − 0.1 0
0 0 0 0 0 0.8 0.2


,

A(5) =



0.2 −0.5 0 0 0.2 0 0.1
0.3 −0.5 0 0.2 0 0 0
0.1 −0.2 0.3 0.3 0.1 0 0
0.2 −0.1 0.2 0.1 0.4 0 0
0.3 −0.1 0.1 0.1 0.4 0 0
0 −0.6 0 0 0.3 0.1 0
0 0 0 0 0 0.7 0.3


.

Obviously, it can be verified that A(4) and A(5) belong to
�. But because the condition of symmetry is not satisfied,
we find that even if A(4) and A(5) appear frequently, the
convergence of the system can not be guaranteed. For exam-
ple, for switching signal σ (2k) = 4, σ (2k + 1) = 5, k =
0, 1, 2, . . ., the evolution of opinion is shown in FIGURE 8.
By FIGURE 8, it can be easily found that the system does not
converge. It implies that the condition AT (p) = A(p) for all
p ∈M is essential in Theorem 4.

V. CONCLUSION
In this paper, the convergence of modified DeGroot model,
in which ‘‘competition’’, ‘‘switching’’ and ‘‘confidence’’ are
considered simultaneously, has been investigated. If all net-
work topologies containing a spanning tree with the posi-
tive diagonal entries are structurally balanced, opinions may
present polarization, neutralization or fluctuation due to the
switching and competition. Meanwhile, for the situation
where the structurally balanced and unbalanced networks
simultaneously exist, a consensus condition is obtainedwhere
all agents ultimately remain neutral to topics. Finally, two
numerical examples have been given to illustrate the effec-
tiveness of our results.
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