
Received November 29, 2020, accepted December 23, 2020, date of publication December 30, 2020,
date of current version January 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3048164

Enhanced Natural Language Interface for
Web-Based Information Retrieval
TIAN BAI 1,3, (Member, IEEE), YAN GE2,3, SHUYU GUO1,3, ZHENTING ZHANG1,3,
AND LEIGUANG GONG4
1College of Computer Science and Technology, Jilin University, Changchun 130012, China
2College of Software, Jilin University, Changchun 130012, China
3Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun 130012, China
4Yantai Huashen Intelligent Technology Limited, Yantai 264000, China

Corresponding author: Tian Bai (baitian@jlu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61702214, in part by the Development
Project of Jilin Province of China under Grant 20200801033GH and Grant 2020122328JC, in part by the Jilin Provincial Key Laboratory
of Big Data Intelligent Computing under Grant 20180622002JC, and in part by the Fundamental Research Funds for the Central
University, Jilin University.

ABSTRACT Database application is at the core of most web application systems such as web-based
email, source codes repository management, public scientific data repository management, news portals,
and publication repository of various fields. However, the usage of these database systems for data and
information retrieval is severely limited because of lacking support for processing search queries expressed
in a natural language (NL). Most web interfaces for databases today only take search queries entered in some
form of logical combination of keywords or text strings, which restrict the scope and depth of what a web
user really wants to search for, even though natural language based data or information retrieval has made
significant advances in recent years. To overcome or at least to alleviate such limitation in web information
services, we propose in this article an improved neural model based on an existing framework IRNet for
NL query of databases, in which a representation of Gated Graph Neural Network (GGNN) is introduced to
encode the database entities and relations. We also represent and use the database values in the prediction
model to identify and match table and column names for automatic synthesize a correct SQL statement from
a query expressed in a NL sentence. Experiments with a public dataset demonstrates the promising potential
of our approach.

INDEX TERMS Neural network, natural language processing, text-to-SQL, gated graph neural network.

I. INTRODUCTION
Nowadays database (DB) application is the backbone of
most web-based information services such as web-based
email, source codes repository management, public scientific
data repository management, news portals, and publication
repositories of various fields [1]–[3]. Fig. 1 is a snapshot
of a website Web of Science [4] that provides an interface
for searching scientific publications from its database of
scientific citations. Like most similar web database inter-
faces [5]–[7], it supports search method of using keywords as
well as complex formulas with identifier, Boolean operators,
and brackets. Such search method is more advanced and
powerful than simple keywords-based search [8]–[10]. But
its actual search power may be limited by its complexity

The associate editor coordinating the review of this manuscript and

approving it for publication was Long Wang .

which requires some level of knowledge about the database
content and the expertise of using the search tool. To most
users without such knowledge and expertise, most likely they
will not be able to take full advantage of the search tool for
their data or information needs. Such limitation can only be
overcome or at least alleviated by a natural language interface
with the support of NL query to SQL query (NL-SQL) or
text to SQL (TTS) capabilities. Please note ‘‘NL-SQL’’ and
‘‘TTS’’ will be used interchangeably in this article.

In research of TTS, deep learning (DL) has been the pri-
mary choice for the last few years. Many variations of DL
algorithms have been developed and tested using WikiSQL
dataset [11] a first large-scale Text-to-SQL (TTS) dataset.
Zhong et al. [11] proposed Seq2SQL, a model based on
Seq2Seq structure and utilizing reinforcement learning to
generate SQL queries; Xu et al. [12] proposed SQLNet based
on Seq2SQL, which uses a sequence-to-set model and a col-

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 4233

https://orcid.org/0000-0001-8060-4725
https://orcid.org/0000-0001-6695-6054

T. Bai et al.: Enhanced Natural Language Interface for Web-Based Information Retrieval

umn attention mechanism to substantially improve accuracy
without the use of reinforcement learning; Yu et al. [13]
proposed TypeSQL, which views the TTS problem as a slot
filling task and uses type information to better understand
rare entities and numbers in the natural language questions;
Dong et al. [14] proposed a structure-aware neural network
that decomposes the semantic parsing process into two stages:
first, generating its sketch based on the input sentences, and
then, filling in missing details by considering natural lan-
guage and the sketch itself, later, with the advent of more
and better pre-trained language models, increasing number
of researchers applied them to improve their TTS algorithms
on WikiSQL, such as SQLova [15] which incorporates the
BERT model [16].

WikiSQL dataset is limited for it only contains databases
of single table. Yu et al. [17] proposed a large-scale, complex,
and cross-domain Text-to-SQL dataset Spider containing
databases of multiple tables. Spider dataset supports inves-
tigations of sophisticated NLP and DL models for predicting
a large number of complex SQL queries. Some recent studies
using Spider have developed more advanced methods and
algorithms achieving impressive results. SyntaxSQLNet [18]
is the first model developed for the Spider task using a
syntax tree representing the features of the SQL queries. It
also proposed a method for generating cross-domain training
data to enhance model performance with data augmenta-
tion. Lee [19] proposed a SQL clause-wise decoding neu-
ral architecture with a self-attention based database schema
encoder for the Spider task. Wang et al. [20] presented a
unified framework, called RAT-SQL, based on the relation-
aware self-attentionmechanism, to address schema encoding,
schema linking, and feature representation within a text-to-
SQL encoder. Bogin et al. [21] presented an encoder-decoder
semantic parser, where the structure of the DB schema is
encoded with a graph neural network (GNN) [22].

Guo et al. [23] propose a very interesting deep neu-
ral network based approach IRNet to tackle complex and
cross-domain Text-to-SQL problems using Spider dataset.
By decomposing an TTS tasks into three phases and using
an intermediate representation [24]–[28], IRNet not only pro-
vides an effective alternative approach to addressing the mis-
match problems and difficulties of predicting columns caused
by the large number of out-of-domainwords, but also presents
‘‘break-point’’ for intermediate performance analysis which
is what really interests us most. For instance, in IRNet an
intermediate representation called SemQL is designed to
bridge NL and SQL. An SQL query is inferred from the
synthesized SemQL of the query with domain knowledge.
Such capability allows us to perform certain analyses of inter-
mediate results to gain better understanding of parts of its DL
algorithm, so that targeted revision or algorithm improvement
can be made. Because the rich expressiveness of this repre-
sentation, we will adopt it in our extended implementation of
IRNet [23].

In analyzing IRNet performance on Spider dataset,
we found database values, as an important part of the

database, can provide valuable information for database field
prediction. In this article we will introduce, in the framework
of IRNet, database value into the prediction model to iden-
tify and match table and column names in natural language
queries.

To investigate and understand what we can do to further
improve the performance of IRNet, we have conducted a
series of experiments, and performed some in-depth analy-
ses of causes of mismatches. We identify two causes: (1)
mismatches due to lack of the representations of relations
between tables and (2) mismatches due to lack of the rep-
resentations of database values. To address these two issues,
we propose two extensions to the IRNet: (1) add Gated Graph
Neural Network (GGNN) [21], [22] to IRNet to encode the
database structure; (2) represent database values in the pre-
diction model.

II. METHODS
Database values can often provide valuable information or
clues about the correspondences between words in a NL
query and database fields, which can be used to improve
the accuracy of identification of targeted table and column.
Schema of database structures i.e. tables, columns and their
relations are informatively invaluable for predicting SQL
queries. How to represent and use such information in a
deep neural network-based model has profound impact to its
performance.

A. BASE MODEL
We adopt basic IRNet [23] framework (Fig. 2(a)) in our
implementation, an overview of which is shown in (Fig. 2(b)).
An TTS task is carried out within the framework in three
phases or subtasks. In the first phase, words or tokens in an
NL query are paired with database fields by Schema Linking.
Subsequently, target columns and tables are determined by
leveraging database values together with database schema
in the prediction model. We introduced a representation of
Gated Graph Neural Network (GGNN) [21], [22] to encode
the DB schema replacing the original IRNet representation
of DB schema. Relations between DB tables and relations
between tables and columns missing in IRNet are now fully
represented and used in the model. An attention mecha-
nism [29] is implemented to compute the Value Attention
Embedding to be added in the column Embedding, which
helps the model to identify potential table and column names
in the NL query. An intermediate representation (IR) for
the query is obtained and represented in a domain-specific
language, called SemQL [23]. A syntax-based neural network
model is used to synthesize SemQL query. Finally, A SQL
query is generated based on SemQL and domain knowl-
edge [23]. Transforming SemQL to SQL is done by traversing
the SemQL tree from its root to leaf nodes.

B. EXTRACTING TABLE DATA FROM WEB PAGES
To obtain data on a web page and organize it in a formalized
way using database, we analyze the tags corresponding to the

4234 VOLUME 9, 2021

T. Bai et al.: Enhanced Natural Language Interface for Web-Based Information Retrieval

FIGURE 1. Web of science’s query page, when using advanced search, users are required to create queries according to its grammar.

FIGURE 2. The IRNet model and our improvements based on it. (a) is an overview of the IRNet model. The three subtasks of IRNet
are marked with a black dashed line. In the preprocessing stage, Schema Linking identifies the table and column in the NL, and the
NLwill be converted to SemQL according to the IR grammar. The SemQL output by the neural network is then inferred into SQL
statements according to the grammar in the post-processing stage. (b) is an illustration of how our methods work (Marked by a red
dashed line). We calculate two Embeddings through DB Schema and DB Values, they will be used in IRNet’s Schema encoder.

table in the HTML code of the webpage. In general, web
pages contain a lot of information. Each web page may be
composed of text, tables, pictures, links, etc. Besides these,
there are also a large number of HTML tags and CSS [30]
styles that are used to control the layout and display of the
web. The target data that we really need to extract is scattered
among the above-mentioned different forms of HTML com-
ponents. Therefore, it is necessary to locate the tables from
the web page [31], [32].

After locating the table on the webpage, we must further
identify the validity of the table [33], [34]. In addition to

displaying data and information in tabular form, tables in web
pages can also be used to generate layouts and show effects.
Because of the multiple uses of HTML table tags, the table
area usually contains some invalid information such as web
page layout and advertisement. Thus, before extracting table
data, invalid tables must be removed to keep the data that is
really needed.

We use a web crawler [35], [36] to get the table data.
The general crawler routine is nothing more than the steps
of sending a request, obtaining a response, parsing a web
page, extracting data, and saving data. For a complete crawler,

VOLUME 9, 2021 4235

T. Bai et al.: Enhanced Natural Language Interface for Web-Based Information Retrieval

FIGURE 3. The process of obtaining tables on the web. We use python
tools to extract tables from HTML source code.

the amount of code can range from dozens of lines to hun-
dreds of lines, and the cost is relatively high, so we take the
read_html function of the Pandas tool [37] in Python as our
approach. As shown in Fig. 3, first, we send a request to
the specified website URL and get the source code of the
page, then, for the purpose of locating the table in the HTML
page and filter out the redundant information, we apply XPath
combined with manual features to preprocess. After that,
we use read_html function in Pandas to parse the potential
data, this function can directly capture the table in the web
page. Finally, we store the parsed tabular data in a csv file
and import the csv file into the SQL database.

C. COLUMN REPRESENTATION COMBINED
WITH DB VALUE
To compute possible correspondences between words in an
NL query and database values, we enumerate all n-grams [37]

FIGURE 4. Calculation of Value attention embedding, In this process we
employ the attention mechanism.

of length 1-6 in a NL query sentence, and then compute the
similarity of these n-grams to the database values:

sim (words, content) = DLdistance(word, content) (1)

where words in (1) denotes the n-grams, and content denotes
the database value. If the similarity exceeds a certain thresh-
old, the corresponding database value is taken as selected.

An attention mechanism [38] (Fig. 4) is then applied to
the value and the corresponding natural language question,
so that the NL query sentence can carry potentially valuable
information of the database value for column prediction.

Econt =

{
Embedding(content) sim (words, content) > λ

0 else

(2)

wv= softmax
(
ETv WvEq

)
(3)

Eq|v=wvEq (4)

whereEmbedding in (2) is a function that converts a string to a
corresponding embeddedmatrix, λ is the similarity threshold.
Ev in (3) is the Embedding of the selected database value,
Eq is the Embedding of the natural language question, Wv is
the parameter matrix, wv represents the attentional weight of
the database value on the natural language question, and Eq|v
in (4) is the Embedding of the natural language question that
combines the database value.

Finally, the Eq|v is added to the IRNet column Rep-
resentation (column Embedding) as a Value Attention
Embedding.

4236 VOLUME 9, 2021

T. Bai et al.: Enhanced Natural Language Interface for Web-Based Information Retrieval

FIGURE 5. Encode DB Schema with a GGNN. First, the DB Schema is represented as a
graph, and then input into GGNN, finally, the output embedding of the DB Schema
containing global information is obtained.

D. ENCODING DB SCHEMA WITH GRAPH NEURAL
NETWORK
As shown in Fig. 5, Gated Graph Neural Network
(GGNN) [21], [22] is used in IRNet to encode database
structure, where tables and columns are represented as nodes.
Affiliation relationships between columns and tables as well
as the primary foreign key relationship are represented as
edges. In order to include more information about the rela-
tionships between tables and columns, column Embedding
and table Embedding are computed from the GGNN instead
of the initial embedding in IRNet’s Schema Encoder.

h(0)v = x||0 (5)

a(l)v =
∑

type∈{→,↔}

∑
(u,v)∈εtype

Wtypehl−1u + btype (6)

h(l)v = GRU (h(l−1)v , a(l)v) (7)

The x in (5) denotes node features, which is filled with
0 if there are not enough dimensions, and h(0)v is used as the
initial state of the node. The→,↔} in (6) denotes the two
types of edges, and εtype is the set of edges, in which each
node recalculates its representation in each step according
to the representation of its neighbors in the previous step.
(7) denotes the final representation of each node computed
by GRU [39]. In the GGNN approach, each node represents

a table or a column, and the final representation contains a
global schema structure.

The calculation process is as follows:

1. generate the edge vector of the graph network accord-
ing to the relationship between table and column, there
are two kinds of edge vectors:

1) The affiliation between table and column (which
table the column belongs to)

2) Primary Foreign Key Relationships between
columns

2. Merge the table and column vectors into a single node
vector

3. Apply the GNN recursively and get the DB Structure
Embedding. At each step, each node re-computes its
representation based on the representation of its neigh-
bors in the previous step.

III. EXPERIMENTS
Since the SQL used when querying the web-based informa-
tion is relatively simple, it may not contain complex SQL
components, such as Join, Group by, Union etc., so we
extracted some simple samples from the Spider data set that
match the difficulty of the web query to test our model per-
formance. The purpose of our experiments is to demonstrate

VOLUME 9, 2021 4237

T. Bai et al.: Enhanced Natural Language Interface for Web-Based Information Retrieval

TABLE 1. Parameter Settings of the Model.

how much performance improvement can be gained by our
proposed extensions to the IRNet and its ability to query
the web-based information. As such the experiments were
designed to only test the original IRNet implementation and
our proposed extended implementation, based on which a
preliminary comparative evaluation will be made.

A. DATASET
In our experiments, Spider [17] dataset is used, which con-
tains over 10,000 natural language questions and their corre-
sponding SQL statements from 200 databases of 138 domains
with multiple tables, each database contains 5.1 tables on
average. In the Spider data set, each query sample has a
label, and the difficulty level is determined according to
the number of SQL components, selections, and conditions.
There are 4 levels of difficulty, for example, a SQL query
containing only SELECT, FROM, and WHERE components
will be marked as simple. And if a query contains more than
two SELECT columns, two or more WHERE conditions and
GROUP BY two columns, or contains EXCEPT or nested
queries, it is considered difficult.

B. IMPLEMENTATION
We implement our TTS system with PyTorch [40]. Follow-
ing IRNet, parameters for the neural network are chosen
empirically as shown in Table 1. The dimension of hidden
vector is set to 300. The dimensions of action embedding
and node type are 128 and 64. Word embedding is initialized
using Glove [41] and shared between the NL encoder and
the Schema encoder. Adam [42] is selected as the optimizer,
and the hyper parameters are all default settings. Dropout
rate [43] and Batch size are set to 0.3 and 64 respectively.
The iterations of GGNN is 3.

C. RESULTS
When the user expresses a natural language query for web-
based information, it is often not too complicated, they tend
to ask a simple question like ‘‘How many acting statuses
are there?’’ rather than a more sophisticated one ‘‘Show the
name and number of employees for the departments man-
aged by heads whose temporary acting value is ’Yes’?’’. In
general, SQL statements corresponding to complex natural
language queries are also more difficult to parse. To adapt
to the features of retrieving web-based information, we sim-
plified the Spider data set to make the samples more similar
to those when retrieving network information to verify the
performance of the model during this work. Table 2 shows
the model’s performance on samples similar to those often
appear in web-based information retrieval.

FIGURE 6. F1 scores of component matching of IRNet and Our methods.

TABLE 2. Exact Match Accuracy on the Samples Similar to Web-Based
Information.

TABLE 3. Overall Results and the Performance of Each Difficulty Level.

Table 3 shows the exact matching accuracy of IRNet and
IRNet with our improvements. By adding database value to
the model and using GGNN to encode the database structure,
our methods improve the IRNet model by 2.2% overall.
The table also shows the breakdown of prediction accuracy
in groups of different difficulty level. Our approach clearly
improves the accuracy of column and table prediction for
easy, medium, hard and extra hard groups.

TABLE 4. An Ablation Study on Our Methods.

To examine how each technique contributes to the per-
formance, we conduct an ablation analysis (Table 4) of two
aspects: 1) without GGNN, 2) without DB Value. Without
GGNN, the model’s exact matching accuracy decreases by

4238 VOLUME 9, 2021

T. Bai et al.: Enhanced Natural Language Interface for Web-Based Information Retrieval

FIGURE 7. An example of how our methods correct a column prediction error. The blue dashed line represents how the value in the database is
mentioned in natural language query.

1.3%, and Without DB Value, the model’s exact matching
accuracy decreases by 1.1%. This means that using GGNN
to encode DB Schema can effectively incorporate relation-
ships between database structures into the model, and adding
database value on top of the model improves the exact match-
ing accuracy.

To study the performance of ourmethods in detail, wemea-
sure the average F1 score on different SQL components.
We compare between IRNet and Ours. As shown in Fig. 6,
Our methods outperform IRNet on SELECT, WHERE,
GROUP BY and ORDER BY, but has a slightly decreased
for AND/OR.

Fig. 7 presents an example to illustrate intuitively how our
method rectify the error of column prediction with database
value. As is shown, the column ‘Language’ is never referred
in the natural language question, thus the original model
generated the SQL with no column named ‘Language’ but
a wrong column ‘Hight_definition_TV’. With our approach
of combining database value, the word ‘‘English’’ in the NL
query is identified to be a potential database value. Then
model then uses it to seek for the column it belongs to,
and finally produces a correct SQL query statement. In con-
trast, an incorrect SQL query is generated without using our
method.

D. DISCUSSION
To show the value of maximizing the use of information
embedded in relational databases in order to improve the
prediction performance of a TTS system, we have described
following two new algorithmic components as extensions to
the IRNet neural model:
1) Introducing database values into the model, comput-

ing the similarity between natural language or tex-
tual questions or queries and the database values, and

establishing correlations between database values and
column names through an Attention mechanism.

2) Using Gated Graph Neural Network (GGNN) to
encode complete database schema, not only including
tables and columns but also their relations;

The preliminary experimental results have demonstrated
the improvement over the original IRNet implementation, and
the potential value of our approach to enhance web-based
information retrieval capabilities.

Some of the limitations of our approach are also clearly
observed in our analysis and evaluation of the experimental
results.

1) TABLE AND COLUMN PREDICTION
Our method cannot predict the correct column in approxi-
mately 50% of all analyzed errors. In about 20% of errors,
it selects a column from another table, so the table’s pre-
diction is also wrong. The main reason for these errors is
that the columns in different tables have similar names, so it
is difficult to distinguish. Examples of such column names
often appear in multiple tables. Incorporating more appropri-
ate schema linking methods (for example, embedding-based
methods rather than string-basedmethods used in IRNet)may
help reduce such errors.

2) SQL SKETCH PREDICTION
In about 33% of the cases, we found errors in the SQL
sketch. However, it is worth noting that the majority (69%)
of these errors occurred in queries classified as Hard or Extra
Hard in the Spider dataset. Some difficulties and special
situations require advanced common sense, which is difficult
to incorporate into the model. However, some examples of
errors with lower difficulty may be easily solved with domain
knowledge.

VOLUME 9, 2021 4239

T. Bai et al.: Enhanced Natural Language Interface for Web-Based Information Retrieval

IV. CONCLUSION
In this article, we have discussed two improvements to the
NL-SQL model in IRNet for web-based data and infor-
mation retrieval. First, we introduced a representation of
Gated Graph Neural Network to encode the database struc-
ture. Second, we include database values in our prediction
model to compute the correlation between database values
and column names, in order to alleviate the difficulties in
matching column names due to lack of sufficient details in
natural language queries. We train the revised model with
the Spider dataset. The experimental results with the testing
dataset empirically validate the merits of our model, and
demonstrate its potential to gain performance improvement
for web-based data and information retrieval. The method
and algorithms discussed in this paper can be also applied
to other types of DB based application systems. For future
work, we will conduct further investigation of using natural
languagemodel(s) combinedwith application domain knowl-
edge or semantic in developing TTS models and algorithms
of higher performance.

REFERENCES
[1] J. Gemmell, G. Bell, and R. Lueder, ‘‘MyLifeBits: A personal database for

everything,’’ Commun. ACM, vol. 49, no. 1, pp. 88–95, Jan. 2006.
[2] S.Marcos-Pablos and F. J. García-Peñalvo, ‘‘Information retrieval method-

ology for aiding scientific database search,’’ Soft Comput., vol. 24, no. 8,
pp. 5551–5560, Apr. 2020.

[3] M. L. Kersten, S. Idreos, S. Manegold, and E. Liarou, ‘‘The researcher’s
guide to the data deluge: Querying a scientific database in just a few sec-
onds,’’ Proc. VLDB Endowment, vol. 4, no. 12, pp. 1474–1477, Aug. 2011.

[4] Web of Science. Accessed: Dec. 25, 2020. [Online]. Available:
http://apps.webofknowledge.com

[5] C. Tenopir and E. Read, ‘‘Patterns of database use in academic libraries,’’
College Res. Libraries, vol. 61, no. 3, pp. 234–246, May 2000.

[6] V. S. Smith, ‘‘Data publication: Towards a database of everything,’’ BMC
Res. Notes, vol. 2, no. 1, pp. 1–3, Dec. 2009.

[7] T. Bai, Y. Ge, C. Yang, X. Liu, L. Gong, Y. Wang, and L. Huang, ‘‘BERST:
An engine and tool for exploring biomedical entities and relationships,’’
Chin. J. Electron., vol. 28, no. 4, pp. 797–804, Jul. 2019.

[8] Z. Liu, J. Walker, and Y. Chen, ‘‘XSeek: A semantic XML search
engine using keywords,’’ in Proc. 33rd VLDB, Vienna, Austria, 2007,
pp. 1330–1333.

[9] S. Oyama, T. Kokubo, and T. Ishida, ‘‘Domain-specific Web search with
keyword spices,’’ IEEE Trans. Knowl. Data Eng., vol. 16, no. 1, pp. 17–27,
Jan. 2004.

[10] J. X. Yu, L. Qin, and L. Chang, ‘‘Keyword search in databases,’’
in Synthesis Lectures on Data Management, vol. 1, H. V. Jagadish,
Ed. San Rafael, CA, USA: Morgan & Claypool Publishers, 2009,
pp. 1–155. [Online]. Available: https://www.morganclaypool.com/doi/abs/
10.2200/S00231ED1V01Y200912DTM001?journalCode=dtm

[11] V. Zhong, C. Xiong, and R. Socher, ‘‘Seq2SQL: Generating struc-
tured queries from natural language using reinforcement learning,’’ 2017,
arXiv:1709.00103. [Online]. Available: http://arxiv.org/abs/1709.00103

[12] X. Xu, C. Liu, and D. Song, ‘‘SQLNet: Generating structured
queries from natural language without reinforcement learning,’’ 2017,
arXiv:1711.04436. [Online]. Available: http://arxiv.org/abs/1711.04436

[13] T. Yu, Z. Li, Z. Zhang, R. Zhang, and D. Radev, ‘‘TypeSQL: Knowledge-
based type-aware neural text-to-SQL generation,’’ in Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol., vol. 2,
2018, pp. 588–594.

[14] L. Dong and M. Lapata, ‘‘Coarse-to-fine decoding for neural semantic
parsing,’’ in Proc. 56th Annu. Meeting Assoc. Comput. Linguistics, vol. 1,
2018, pp. 731–742.

[15] W. Hwang, J. Yim, S. Park, and M. Seo, ‘‘A comprehensive explo-
ration on WikiSQL with table-aware word contextualization,’’ 2019,
arXiv:1902.01069. [Online]. Available: http://arxiv.org/abs/1902.01069

[16] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, ‘‘Bert: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
NAACL-HLT, Minneapolis, MN, USA, 2019, pp. 4171–4186.

[17] T. Yu, R. Zhang, K.Yang,M.Yasunaga, D.Wang, Z. Li, J.Ma, I. Li, Q. Yao,
S. Roman, Z. Zhang, and D. Radev, ‘‘Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic parsing and text-to-SQL
task,’’ in Proc. Conf. Empirical Methods Natural Lang. Process., Brussels,
Belgium, 2018, pp. 3911–3921.

[18] T. Yu, M. Yasunaga, K. Yang, R. Zhang, D. Wang, Z. Li, and D. Radev,
‘‘SyntaxSQLNet: Syntax tree networks for complex and cross-domain
text-to-SQL task,’’ in Proc. Conf. Empirical Methods Natural Lang. Pro-
cess., Brussels, Belgium, 2018, pp. 1653–1663.

[19] D. Lee, ‘‘Clause-wise and recursive decoding for complex and cross-
domain text-to-SQL generation,’’ in Proc. Conf. Empirical Methods Nat-
ural Lang. Process. 9th Int. Joint Conf. Natural Lang. Process. (EMNLP-
IJCNLP), Hong Kong, 2019, pp. 6047–6053.

[20] B. Wang, R. Shin, X. Liu, O. Polozov, and M. Richardson, ‘‘RAT-
SQL: Relation-aware schema encoding and linking for text-to-SQL
parsers,’’ in Proc. 58th Annu. Meeting Assoc. Comput. Linguistics, 2020,
pp. 7567–7578.

[21] B. Bogin, J. Berant, and M. Gardner, ‘‘Representing schema structure
with graph neural networks for text-to-SQL parsing,’’ in Proc. 57th Annu.
Meeting Assoc. Comput. Linguistics, Florence, Italy, 2019, pp. 4560–4565.

[22] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, ‘‘Gated graph
sequence neural networks,’’ 2015, arXiv:1511.05493. [Online]. Available:
http://arxiv.org/abs/1511.05493

[23] J. Guo, Z. Zhan, Y. Gao, Y. Xiao, J.-G. Lou, T. Liu, and D. Zhang,
‘‘Towards complex text-to-SQL in cross-domain database with interme-
diate representation,’’ in Proc. 57th Annu. Meeting Assoc. Comput. Lin-
guistics, Florence, Italy, 2019, pp. 4524–4535.

[24] B. Carpenter, Type-Logical Semantics. Cambridge, MA, USA: MIT Press,
1998.

[25] R. Kate, Y. Wong, and R. J. Mooney, ‘‘Learning to transform natu-
ral to formal languages,’’ in Proc. AAAI, Pittsburgh, PA, USA, 2005,
pp. 1062–1068.

[26] P. Liang, M. I. Jordan, and D. Klein, ‘‘Learning dependency-based com-
positional semantics,’’ Comput. Linguistics, vol. 39, no. 2, pp. 389–446,
Jun. 2013.

[27] J. Berant, A. Chou, R. Frostig, and P. Liang, ‘‘Semantic parsing on freebase
from question-answer pairs,’’ in Proc. EMNLP, Seattle, WA, USA, 2013,
pp. 1533–1544.

[28] P. Pasupat and P. Liang, ‘‘Compositional semantic parsing on semi-
structured tables,’’ inProc. 53rd Annu.Meeting Assoc. Comput. Linguistics
7th Int. Joint Conf. Natural Lang. Process., Beijing, China, vol. 1, 2015,
pp. 1470–1480.

[29] T. Luong, H. Pham, andC.D.Manning, ‘‘Effective approaches to attention-
based neural machine translation,’’ in Proc. Conf. Empirical Methods
Natural Lang. Process., Lisbon, Portugal, 2015, pp. 1412–1421.

[30] A. Arasu and H. Garcia-Molina, ‘‘Extracting structured data from Web
pages,’’ inProc. ACMSIGMOD, San Diego, CA, USA, 2003, pp. 337–348.

[31] D.W. Embley, C. Tao, and S.W. Liddle, ‘‘Automating the extraction of data
from HTML tables with unknown structure,’’ Data Knowl. Eng., vol. 54,
no. 1, pp. 3–28, Jul. 2005.

[32] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and B. Pollak,
‘‘Towards domain-independent information extraction from Web tables,’’
inProc. 16th Int. Conf. WorldWideWeb (WWW), Banff, AB, Canada, 2007,
pp. 71–80.

[33] L. R. Lautert, M.M. Scheidt, and C. F. Dorneles, ‘‘Web table taxonomy and
formalization,’’ ACM SIGMOD Rec., vol. 42, no. 3, pp. 28–33, Oct. 2013.

[34] S. Zhang and K. Balog, ‘‘Web table extraction, retrieval and augmenta-
tion,’’ in Proc. 42nd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., Paris,
France, Jul. 2019, pp. 1409–1410.

[35] M. Najork, ‘‘Web crawler architecture,’’ in Encyclopedia of Database
Systems, L. Liu and M. T. Özsu, Eds. Berlin, Germany: Springer,
2009, pp. 1–3. [Online]. Available: https://www.morganclaypool.com/doi/
abs/10.2200/S00231ED1V01Y200912DTM001?journalCode=dtm

[36] M. Thelwall, ‘‘A Web crawler design for data mining,’’ J. Inf. Sci., vol. 27,
no. 5, pp. 319–325, Oct. 2001.

[37] W. McKinney, ‘‘Pandas: A foundational Python library for data analysis
and statistics,’’ Python High Perform. Sci. Comput., vol. 14, no. 9, pp. 1–9,
Nov. 2011.

[38] W. Cavnar and J. Trenkle, ‘‘N-gram-based text categorization,’’ in Proc.
SDAIR 3rd Annu. Symp. Document Anal. Inf. Retri., 1994, pp. 161–169.

[39] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder–decoder for statistical machine translation,’’ in Proc. Conf.
Empirical Methods Natural Lang. Process. (EMNLP), Doha, Qatar, 2014,
pp. 1724–1734.

4240 VOLUME 9, 2021

T. Bai et al.: Enhanced Natural Language Interface for Web-Based Information Retrieval

[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, ‘‘Pytorch:
An imperative style, high-performance deep learning library,’’ inProc. Adv.
Neural Inf. Process. Syst., 2019, pp. 8026–8037.

[41] J. Pennington, R. Socher, and C. Manning, ‘‘Glove: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), Doha, Qatar, 2014, pp. 1532–1543.

[42] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/
abs/1412.6980

[43] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

TIAN BAI (Member, IEEE) received the Ph.D.
degree from Jilin University, Changchun, China,
in 2012. He is currently an Associate Profes-
sor with the College of Computer Science and
Technology, Jilin University. His research interests
include bioinformatics and machine learning.

YAN GE is currently pursuing the master’s degree
with the School of College of Software, Jilin Uni-
versity, Changchun, China. His research interests
include machine learning and NLP.

SHUYU GUO is currently pursuing the Ph.D.
degree with the College of Computer Science and
Technology, Jilin University, Changchun, China.
His research interests include machine learning
and NLP.

ZHENTING ZHANG is currently pursuing the
master’s degree with the College of Computer Sci-
ence and Technology, Jilin University, Changchun,
China. Her research interests include machine
learning and NLP.

LEIGUANG GONG received the Ph.D. degree
from Rutgers University, NJ, USA, in 1992.
He was a Senior Researcher with the IBMWatson
Research Center before retirement. He is currently
an Advisor of Yantai Huashen Intelligent Technol-
ogy Limited, Yantai, China.

VOLUME 9, 2021 4241

