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ABSTRACT Drones may be more advantageous than fixed cameras for quality control applications in
industrial facilities, since they can be redeployed dynamically and adjusted to production planning. The
practical scenario that has motivated this paper, image acquisition with drones in a car manufacturing
plant, requires drone positioning accuracy in the order of 5 cm. During repetitive manufacturing processes,
it is assumed that quality control imaging drones will follow highly deterministic periodic paths, stop at
predefined points to take images and send them to image recognition servers. Therefore, by relying on
prior knowledge about production chain schedules, it is possible to optimize the positioning technologies
for the drones to stay at all times within the boundaries of their flight plans, which will be composed of
stopping points and the paths in between. This involves mitigating issues such as temporary blocking of
line-of-sight between the drone and any existing radio beacons; sensor data noise; and the loss of visual
references. We present a self-corrective solution for this purpose. It corrects visual odometer readings
based on filtered and clustered Ultra-Wide Band (UWB) data, as an alternative to direct Kalman fusion.
The approach combines the advantages of these technologies when at least one of them works properly at
any measurement spot. It has three method components: independent Kalman filtering, data association by
means of stream clustering and mutual correction of sensor readings based on the generation of cumulative
correction vectors. The approach is inspired by the observation that UWB positioning works reasonably
well at static spots whereas visual odometer measurements reflect straight displacements correctly but can
underestimate their length. Our experimental results demonstrate the advantages of the approach in the
application scenario over Kalman fusion, in terms of stopping point detection and trajectory estimation error.

INDEX TERMS Ultra-wide band, visual odometer, sensor fusion, wireless technologies, drone positioning,
industry applications, Industry 4.0, quality control.

I. INTRODUCTION
In general, three main applications have been proposed for
drones in industrial scenarios [1], [2]: surveillance (both for
security and safety), just-in-time part delivery (in which the
drones carry the parts) and inventory control (where drones
scan the identifiers of items beyond manual reach). In these
scenarios, drone payloads will be typically light, consisting
in imaging cameras (for surveillance or barcode scanning),
data communication units and limited onboard processing
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power. Delivery drones are an exception1. These, and in
general all transport drones [3], need powerful battery packs,
suitable motors and actuators to carry significant weights.
They have been proposed for logistics [4] and healthcare [5].
Imaging applications in open spaces are the most feasible of
these scenarios. Cheap drones can easily support them and
drone cameras may compensate even for coarse positioning
errors. So far, in the most realistic industrial applications of
drones, piloting is manual. They take place in large facili-
ties outdoors (e.g. chemical plants), so tight flight planning

1https://www.digitaltrends.com/cars/zf-drone-delivery-factories-
germany/, November 2020.
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FIGURE 1. Quality control protocol of a car in a production chain (courtesy PSA Mangualde Portugal). The elements
in the sequential protocol are highlighted in red.

is unnecessary2. Intelligent flight scheduling, nonetheless,
may be needed to track indoor processes with a high degree
of automation, and this problem has already attracted the
attention of the research community [6], [7].

Quality control procedures are akin to surveillance appli-
cations. They are quite repetitive and, therefore, the resources
they need can be scheduled. Particularly, in robotic plants
drone flight scheduling is feasible even if drones must coexist
with mobile robots, since they can avoid each other, as the
movements of the robots are predictable. In these procedures
drone communications may rely on the robust wireless net-
works [8] that will be part of the Industry 4.0 paradigm [9],
and, even though the image recognition algorithms involved
differ from those in surveillance, they can also be delegated
to external servers in the plant. In general, it is expected that,
with the advent of low latency 5G communications, edge
computing [10] will enable many industrial use cases [11],
so that computational offloading from the drones will not be
an issue even if manufacturing plants themselves lack local
computing resources.

Diverse practical solutions for indoor airborne sensing
have been studied. For example, in [12] ultrasound sensors
assisted piloting inside industrial facilities with limited line
of sight. PSA, a major car manufacturer, has considered
airborne sensors for image recognition in production chains

2www.cnet.com/roadshow/news/ford-dagenham-plant-drone-safety/
and https://www.thedrive.com/tech/22128/pilsner-urquell-used-flyabilitys-
elios-drone-to-inspect-beer-bottling-plant, November 2020.

(see Figure 1). Drones are much more flexible for this type of
environment than fixed cameras, because drones can easily
adapt themselves to production line rescheduling and they
can coexist with predictable dynamic obstacles in robotic
areas. In other words, a key differential characteristic of
the indoor quality control scenario (unlike outdoor surveil-
lance) is that drone flights are deterministic, so they can be
automated.

Figure 1 shows a car that has been prepared for a man-
ual quality check in a real production line. The red boxes
highlight the areas in which a human operator must check
information stickers and plastic parts, by following a written
protocol (note the protocol sequence numbers in the red
boxes). The idea is replacing the human operator by a drone
that will circle the car while transmitting images of those
areas to an image recognition server. In the case in the fig-
ure, considering that the drone must place itself at spots at
the right distance for its camera field, six stopping points
should be necessary (front, left and two at each side of the
vehicle). The narrowest free space around the vehicle in the
manipulation cage is around one meter wide, leaving around
forty centimetres at each side of the drone when it crosses that
space. The flight plan of the drone depends on the particular
model of the car that occupies the manipulation cage, but
this information, as well as the time the vehicle will spend in
the cage, are known beforehand. A group of drones depart-
ing from charging stations can cover the whole production
line.
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In an indoor scenario GPS will typically be useless. Low
cost distance measurement sensors such as ultrasound sen-
sors or Light Detection and Ranging (LIDAR) Time of
Flight (ToF) rangefinders can be used to avoid collisions,
but the main positioning technology should have a longer
indoor range (around 10 m) and provide ∼5 cm accuracy
during flight (it is assumed that the charging station will
have its own close range positioning solution, by relying on
image recognition or other precision landing methods such as
infrared beacons).

II. BACKGROUND
There exist diverse positioning alternatives that fit into the
requirements in the previous section. We decided to focus
on two candidates, visual odometers and Ultra-Wide Band
(UWB) positioning, because they need few or no references,
the equipment that must be installed in the drone is light,
and they can be easily deployed in a technical environment
(in theory visual odometers need no references as they sim-
ply process variations in background images, whereas UWB
positioning needs three or four radio beacons with nowireless
backbone for triangulation purposes). Also, there exist robust
commercial implementations. For example, Intel released
in 2019 the RealSense T265 Tracking Camera, a light and
cheap device (less than $200) with two fish eye lens sensors,
an Inertial Measurement Unit (IMU) and a Visual Processing
Unit (VPU), which executes a visual Simultaneous Localiza-
tion and Mapping (SLAM) algorithm [13]. Thus, this device
is an adequate visual odometer for small drones. Regarding
UWB indoor localization systems, Decawave’s transceivers
are specifically designed for accurate indoor positioning [14].
Pozyx integrates Decawave transceivers in beacons and tags
that determine distances and orientations respect to UWB
beacons [15].

Vision based methods are nowadays widely employed in
unmanned autonomous vehicle navigation [16]–[18]. UWB
localization has been applied to this field as well [2]. Indeed,
UWB has good propagation characteristics in indoor indus-
trial facilities. In [19] it was shown that it is not only useful for
localization purposes, but also for industrial communications,
whereas technologies like WiFi and ZigBee do not meet
certain requirements of data rate, power consumption and
robustness.

The well known Kalman algorithm is a common sensor
fusion approach that estimates the state of a system by com-
bining sequential measurements provided by different sensor
technologies [20]. A Kalman filter is a recursive least mean
square algorithm that calculates the next state of a dynamic
system by assuming a Gaussian distribution of noisy observa-
tions. It has been widely used for optimal control of naviga-
tion systems since its conception, and different models have
been applied to unmanned aerial vehicle localization [21]
and tracking [22]. The Constant Turn Rate and Acceleration
(CTRA) model [23] considers the motion clothoid of the
target. It yields better performance than other state-of-the-
art models such as the Constant Velocity (CV) and Constant

Acceleration (CA) models for general motion tracking [24].
It assumes constant turn rate and tangential acceleration of
the target. Notwithstanding these assumptions, this approx-
imation of real motion is adequate for the scenario in our
research (drone motion tracking around a car with minimal
height variations).

In [25] the authors proposed a Kalman fusion method that
exploits the different intrinsic advantages of visual odometers
and UWB positioning. In particular, they stated that visual
odometry can smooth out UWB measurement data (which
are much noisier) and compensate for the deficiencies caused
by multipath propagation. They also stated that UWB sen-
sors can correct the cumulative error produced by visual
odometry. Their approach simply applies Kalman filtering
to linear combinations of the outputs from the two sen-
sor types, and it yields satisfactory performance. Therefore
they gain in simplicity by ignoring the statistical dependen-
cies between sensor readings, unlike more complex fusion
schemas (see [26] for a comprehensive review). In general,
sensor fusion is advantageous compared to the independent
usage of any of the technologies alone (consider for exam-
ple the fusion of UWB and micro electromechanical IMU
information [27], [28]), if certain conditions are met. In our
production chain scenario, flight plans will be expected to be
short and noncomplex. In these plans, drones will perform
small hops between predetermined stopping points, and they
will return to their bases or charging stations periodically.
The main problems will be: (i) achieving enough position
accuracy at certain stopping points (from which quality con-
trol images will be taken and transmitted to the application
server) and (ii) guaranteeing a straight flight in the segments
between those stopping points (while maximizing the dis-
tance to known obstacles). We found that visual odometers
excel in the second goal but they may return incorrect outputs
if their visual references get lost for any reason (so that
cumulative errors get exacerbated). Therefore, we propose
a self-corrective approach in which filtered and clustered
UWB readings provide references to estimate the stopping
points, for correcting the underestimations of the (much less
noisy) readings of visual odometers. We demonstrate that this
approach outperforms the Kalman fusion in [25] when the
mutual error between the technologies involved becomes too
large.

Let us remark that other authors have already studied the
problem of incorrect airborne sensor readings. For example,
R. Wang et al. analyzed with a Hidden Markov Model the
‘‘digital upsets’’ in airplane sensors due to electromagnetic
interference [29]. We also indirectly detect sensor distur-
bances (in our case in visual odometry), although we do
so by comparing the estimates from sensors of different
technologies. Z. Zhao et al. have proved that by analyzing
flight dynamics it is possible to detect sensor anomalies and
performance degradation [30]. In particular, they considered
different ‘‘modes’’ corresponding to different faulty sensors,
and they assumed that two different sensors cannot fail simul-
taneously (in our scenario this is also empirically observed).
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A main difference with our scenario is that our method cor-
rects the estimates from a faulty sensor (the visual odometer)
using the estimates from another sensor (the UWB system),
by generating cumulative correction vectors.

III. HARDWARE DESIGN
We deployed in our lab a Pozyx positioning system with
four anchors B1 - B4 in a square arrangement as shown
in Figure 3, all of them at a height of 1 m. The Pozyx
unit provided absolute localization data based on trilateration
in a coordinate system, as described in [25]. It is possible
to improve its accuracy by combining multilateration with
anchor selection to overcome measurement errors in extreme
environments [31], but this was not our case, so we employed
the default algorithm settings. The system has a bandwidth
of 500 MHz with 0.16 ns pulses. It has been used for indus-
trial indoor positioning [32], urban navigation [33] and pho-
togrammetry [34] research, just to cite some examples.

Pozyx anchors are static. Their installation can be planned
or, alternatively, the anchors can calibrate themselves, for
which the manufacturer provides a software application.
We chose the first option because it was more precise. The
square layout of the anchors was measured with a Bosch
GLM30 laser telemeter and the resulting parameters were
uploaded to the Pozyx monitoring software in the control
station. Measurement data are extracted from Pozyx tags
via a serial connection. The user can select the exact data
to be transferred. For our experiments we chose x, y and z
coordinates with timestamps, although the z coordinate was
discarded as the drone could take exact height measurements
by pointing a LIDAR to the ground (Figure 2).

FIGURE 2. Drone LIDAR.

The visual odometer was an Intel RealSense T265 unit.
As previously said, this is not a pure visual odometer. Besides
of two fisheye lenses, it also includes IMUs and an inte-
grated VPU that runs a SLAM algorithm. This light device
(55 g) with low battery consumption (300 mAh) can be easily
attached to a small size drone. In [35], the authors character-
ized it. They reported that it is sufficiently accurate to acquire
information at very close range (from 15 cm to 50 cm),
so it is adequate for our purposes. Unlike the Pozyx unit,
the RealSense device does not need any configuration. Its
firmware allows it working out of the box. For accessing

RealSense T265 data, there exist a driver and an API with
interfaces for many programming languages. Our choice
was Python for its simplicity. Again, the data we extracted
were x, y and z coordinates with timestamps, and we also
discarded z.
Unlike the Pozyx unit, the RealSense T265 unit does

not depend on external peripherals. Its tracking calculations
are based primarily on information gathered from the two
onboard fish eye cameras, each with a 160 degree field of
view, capturing 30 frames per second. This wide field allows
keeping points of reference visible for relatively long times
as the drone passes by. The images from the visual sensors
are combined with data from the onboard IMU and they
jointly feed the proprietary localization algorithms. The sys-
tem has been used for medical [36] and robotic mapping [37]
research, just to cite some examples.

The controller extracted data simultaneously from the
interfaces of both sensors with a Python script. As the
RealSense T265 device works at a higher measurement rate,
the timestamps were matched to preserve the temporal con-
sistency of the data. Also, a trivial conversion was applied
to the coordinates, because they were expressed in different
units (mm and cm).

Regarding their references, the Pozyx system requires
three anchors arranged in two perpendicular straight lines as
the x and y axes of its coordinate system. A fourth anchor
can be placed anywhere and is not required to form a perfect
rectangle with the other three. Coordinate (0, 0, 0) is the
precise location of the first anchor, which has always the
lowest identifier. The RealSense T265 device sets coordi-
nate (0, 0, 0) as the precise location where the system starts
recording data after booting, and the x, y, and z axes are set
depending on the initial motion of the camera.

Figure 4 shows the drone we developed, a custom made
carbon fiber platform with four 2300 KV brushless motors,
30 A electronic speed controllers, a 3S 4000 mAh battery and
a Pixhawk 2.4.8 autopilot board. This configuration weighs
less than 700 g without any payload. Once the 359 g battery
is installed, the empty weight of the setup is around one
kilogram. Its thrust is enough for lifting a payload consisting
of an Odroid XU4Q companion computer, the RealSense
T265 device and the Pozyx tag, which weigh 38, 55 and 12 g
respectively. Overall flight time is around 12 minutes, at a
worst-case battery discharge of approximately 80%. In case
of needing extra thrust, the propeller layout can be modified.
The propellers in Figure 4 were chosen for maximizing drone
stability, with indoor image acquisition in mind.

This platform can support a wide spectrum of applica-
tions satisfying the payload limits. Its excellent stability
allows for safe and controlled indoor flights avoiding the
obstacles in the manipulation cage. Regarding data trans-
mission, there also exist diverse alternatives. In addition to
a 433 MHz transceiver for serial telemetry and automated
flight commands, the onboard computer supports Wi-Fi and
LTE dongles that can be installed for extended wireless
communication.
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FIGURE 3. Laboratory testbed indicating the locations of Pozyx anchors B1 - B4, surface X and reinforced concrete
columns Y.

FIGURE 4. Drone sensor platform. Left: front view. Right: rear view.

IV. PROPOSED METHOD
The terminology in this section is as follows: we wish to
estimate a sequence of position vectors y[n] ∈ R2 from some
noisy estimations xu[n] ∈ R2 and xo[n] ∈ R2, corresponding
respectively to UWB triangulation and visual odometry, both
related to the same time index n ∈ {0, · · · ,N }.

A. EXPERIMENTAL MOTIVATION
Figure 5.a shows an example of raw readings of the RealSense
T265 and Pozyx sensors for respective sampling rates
of 200 Hz and 27 Hz, along an octagonal trajectory inside the
green square in Figure 3, where the first stopping point was
(1000, 0) and the drone moved counterclockwise until com-
pleting a cycle. This example corresponds to the worst case
in our experiments with severe loss of RealSense references
around the sixth stopping point (3000, 1500). The positions of
the Pozyx beacons on the floor plane are marked with ‘‘×’’
symbols. Beacons B1, B2, B3, and B4 were thus placed at
coordinates (3000, 0), (3000, 3000), (0, 3000) and (0, 0),
respectively. As previously said, the sensors were installed

on the drone platform in Figure 4, which flied straightly in
automated mode between each successive pair of stopping
points (therefore, the measurements between stopping points
should ideally reflect straight lines). There were 16 such
points, marked with ‘‘+’’ symbols in Figure 5.
As shown in Figure 5.a, raw UWB readings xu[n] were

in general much noisier and more irregular than those of
the RealSense unit, xo[n], even after applying built-in Pozyx
default enhancements. These readings can be affected by
obstacles and metallic elements. Note for example the irreg-
ular pattern between stopping points (0, 2000) and (0, 1000),
which seemed due to the metallic equipment in the worksta-
tions to the right of Figure 3 (not shown in the image). Note
also the columns marked with an ‘‘Y’’ symbol in Figure 3,
which are made of reinforced concrete and thus could reflect
signal energy. Regarding the visual odometer, it severely
underestimated the length of some displacements between
stopping points in 40% of the trials, possibly due to varying
illumination conditions. Consider the case between stopping
points (3000, 1000) and (3000, 2000) in the example in
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FIGURE 5. Worst case in the laboratory testbed with severe loss of RealSense references. Stopping points marked as ‘‘+’’.
Pozyx anchors marked as ‘‘x’’. Ideal path marked as straight segments. Scales in mm.

Figure 5.a, for instance. This behavior was clearly associated
to the uniform surface with no contrast at all marked with an
‘‘X’’ symbol in Figure 3 (since the RealSense T265 cameras
pointed to that direction when the drone was moving nearby).
Regarding the respective advantages of the two technologies
during their initial assessment, UWB positioning, despite of
its noisier output, was able to register measurements centered
on all stopping points, whereas the visual odometer regis-
tered rather linear trajectories in between, regardless of their
(sometimes wrongly) estimated length.

Let us remark that it is possible to mitigate the issues
of both methods to some extent: by separating UWB bea-
cons from troublesome spots, so that their transmissions
experience less blockage and reflections; and by placing
stickers with rich visual references on uniform surfaces.
Nevertheless, in industrial environments it could be diffi-
cult to find fully obstacle-free positions and visual refer-
ences might get scratched and fade over time. Therefore,
it will still be interesting to combine different technologies
to increase the probability that at least one of them works
properly.

B. SELF-CORRECTIVE APPROACH
In this work we propose the following self-corrective
approach, with three method components: A) independent
Kalman filtering of UWB data (to avoid the effect of high
mutual errors in Kalman fusion), B) data association by
means of stream clustering (to filter out UWB noise at stop-
ping points) and C) Correction of odometer data with filtered
UWB data based on the generation of cumulative vectors
(when sensor readings diverge).
A) Independent Kalman filtering. Here, by mutual instanta-

neous positioning error we refer to d(xu[n], xo[n]), where
d(·) = ‖xu[n]− xo[n]‖2 is the Euclidean distance. If this
error becomes too large, it will be likely that one of

the technologies has failed temporarily, so its outputs
could be problematic for Kalman fusion, for example.
In particular, in our scenario, visual odometer errors may
become too large if the unit underestimates the displace-
ment. Thus, unlike in [25], we apply Kalman filtering
independently to Pozyx readings xu[n] to obtain interme-
diate information yu[n] (RealSense T265 readings are so
clean that we took yo[n] = xo[n] directly). Regarding
the Kalman filter model, we obtained satisfactory results
with the CTRAmodel wementioned in Section II. Specif-
ically, we followed a freely available implementation3,
by adjusting the covariance matrices to our scenario as
described in Section V. Figure 5.b shows the RealSense
T265 and Pozyx intermediate signals yo[n] and yu[n]
corresponding to the example in Figure 5.a once inde-
pendently processed (note how Kalman filtering smooths
out the zig-zag pattern between (0, 2000) and (0, 1000)
in Figure 5.a).
We next describe the particularization of the Kalman
CTRA model, an Extended Kalman Filter (EKF), to our
case. As its name indicates, it assumes that the turn
rate and the acceleration of the drone are constant. Our
scenario fits well into these assumptions, because the
drone adjusts its direction between trajectory segments
by rotating around the z axis and accelerates between
stopping points (for this reason, a constant velocity model
is not valid).
The state of the system is defined by xk = (x, y, υ,
ψ,ψ ′, a), where the x and y coordinates indicate the
drone position, υ is the linear velocity, ψ is the heading
direction angle, ψ ′ is the yaw rate and a is the accel-
eration, where the last two are supposed to be constant.

3Available at https://github.com/balzer82/Kalman/blob/master/Extended-
Kalman-Filter-CTRA.ipynb, November 2020.
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The predicted state is:

xk+1 = g(x, y, υ, ψ,ψ ′, a)

= (x +
v
ψ ′

(−sin(ψ)+ sin(Tψ ′ + ψ)),

y+
v
ψ ′

(cos(ψ)− cos(Tψ ′ + ψ)),

Tψ ′ + ψ,Ta+ v, ψ ′, a) (1)

where T is the sampling period. The rest of the EKF
equations are:
• Projection of error covariance: Pk+1 = JkPkJTk + Q
• Kalman gain: Kk = Pk (Pk + R)−1

• State update via measurements uk : xk = xk +
Kk (uk − xk )

• Error covariance update: Pk = (I − Kk )Pk
All matrices have dimension 6×6 in our case. Jk is the
Jacobianmatrix of g() with respect to the state vector,Q is
the process noise covariance diagonal matrix and R is the
measurement noise covariance matrix. All measurements
uk are calculated from positioning data, although a can be
taken from the drone accelerometers.
The Kalman filter is restarted at each stopping point.
In Section V we detail all parameter settings and variable
initializations.

B) Denoising of UWB positioning data at stopping points.
UWB data yu[n] form noisy clouds around these points
(see Figure 5.a). As noted in [26], even though the
Kalman filter and its derivatives are adequate for esti-
mating the positions of the targets, complementary data
association algorithms are useful for identifying targets
(in our case the next stopping point). This is the motiva-
tion for method component B. To eliminate the noise we
apply an unsupervised clustering algorithm to estimate
the stopping points as the centers of clusters of measure-
ments. Specifically, inspired by the Density Based Clus-
tering method [38] we formulated the stream clustering
Algorithm 1, which is activated within Euclidean distance
γ from each stopping point si:

Algorithm 1 Component B of the Method
Initialization: L = ∅,C = ∅, candidate = 0
Repeat:
If yu[n] /∈ L then c(yu[n]) = 0 and yu[n]→ L.
∀z ∈ L, if z 6= yu[n] and d(z, yu[n]) ≤ α then
c(yu[n]) = c(yu[n])+ 1 and c(z) = c(z)+ 1.
∀z ∈ L,

If c(z) ≥ K1 then
z→ C and candidate = 1

If c(z) = K2 and candidate = 1 then
end repeat

s′i = argmax(c(z)), z ∈ C

where L is a temporary list of Kalman output vectors,
z is an element of L, c(z) is an auxiliary counter (one
per each element z in L), parameter α is the maximum

FIGURE 6. Example of asymmetric outliers in the event of temporary loss
of Pozyx anchor connection. Scales in mm.

intracluster distance, C is the temporary set of denoised
candidates for predicting stopping point si, parameter
K1 is the number of neighbors above which a cluster is
suspected to exist around a point, and parameter K2 is
the number of neighbors at which the current algorithm
instance is terminated and an estimate s′i for the i − th
stopping point is provided. Logically, the values of α
and K1 must be tuned to maximize the elimination of
outliers around a stopping point. If these parameters are
too large, the method may lose denoising performance.
The method works because two samples in close vicinity
will have similar neighbor populations. The two different
parameters K1 and K2 thus define a hysteresis region.
In some repetitions of our experiments, the drone experi-
enced intermittent connections with some UWB anchors
at some stopping points. Consider the example of the
stopping point in Figure 6. Note the main ‘‘cloud’’ of
Pozyx readings around the stopping point and the linear
pattern of outliers that extend nonlinearly to the right
when one of the anchors becomes temporarily unreliable,
so that non-Gaussian non-convex readings emerge around
the stopping point.
We remark that the density based association in method
component B could be replaced by any other data associ-
ation algorithm, such as the Nearest-Neighbor Standard
Filter (NNSF) [39] or the Probabilistic Data Association
Filter (PDAF) [40]. However, despite its simplicity, noisy
readings around some stopping points, as in the example
in Figure 6, discouraged choosing NNSF, whereas PDAF
assumes a Gaussian distribution of noise and convex
noise clouds, which does not always hold in our scenario.
For a comprehensive review of data association algo-
rithms see [26]. Logically, in our case, the multi-target
variants in [26] do not apply, since there is a single target
(the next stopping point).

C) Correction stage. This is the method component
that introduces the self-corrective combination of
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FIGURE 7. Flow diagram of the method. Red letters A-C indicate the method components (VO: visual odometer,
‘‘Kalman selected’’ condition holds when d (yo[n], yu[n]) ≥ β, ‘‘VO selected’’ condition holds otherwise).

sensor outputs. It is based on the observation that visual
odometer displacement errors are cumulative, as men-
tioned in [25]. Therefore, if we can correct a visual
odometer error at some point, the same correction vector
should be applied to all visual odometer measurements
from that moment on. Basically, we trust Pozyx estimates
at the stopping points. Let S ′ be the set of stopping
point estimates that result from applying Algorithm 1 in
method component B above to Pozyx outputs. Then, let
wi be a correction vector (which we initialize to (0, 0))
that must be added to all visual odometer outputs xo[n]
between stopping point estimates s′i and s

′

i+1, yo[n] =
xo[n]+ wi, and s′i = argmin(d(yo[n], si)). This is applied
unless the mutual error between technologies becomes
too large, d(yo[n], yu[n]) > β, where β is a mutual
error threshold, in which case the visual odometer is
suspected to have lost its references and the stopping
point s′i is detected by method component B. If, during
the current trajectory, at some pair of associated points
s′i and yo,i, d(s′i, yo,i) > β, where yo,i is the closest
vertex in yo[n] to s′i (yo,i = argmin(d(yo[n], s′i))), then
wi = wi + s′i − yo,i, and the RealSense T265 unit is
rebooted. Logically, we assume that the UWBpositioning
unit is able to detect all stopping points.

Figure 7 formalizes the complete method as a flow dia-
gram. We indicate with red letters the method components to
which the different blocks belong. Note that method compo-
nent B for stopping point detection is only needed in case
the readings from the visual odometer diverge from UWB
sensor readings. Otherwise, the visual odometer takes the
drone to the stopping points with high accuracy, as shown in
Section V.

As a closing remark note that we are using the
Euclidean distance instead of a probabilistic measurement
like Mahalanobis distance. This is because all conditions
d(yo[n], yu[n]) ≥ β, d(s′i, yo,i) ≥ β, d(yo[n], si) ≤ γ

and d(yu[n], si) ≤ γ are based on deterministic data (si),
‘‘clean’’ RealSense data (yo[n], yo,i) or data with reduced
uncertainty by Kalman filtering or data association (yu[n], s′i).
Therefore we did not consider probabilistic distance mea-
sures necessary and employed Euclidean distances instead for
simplicity.

V. RESULTS
We tested the self-corrective approach in the scenario in
Figure 3. The parameter settings of the laboratory testbed
were:

• Pozyx sampling rate of 27 Hz
• RealSense T265 sampling rate of 200 Hz
• Distance γ was set to 100 mm
• Distance α was tuned between 5 and 20 mm in
5 mm steps

• Threshold β was set to 3 cm and 6 cm in different
tests.

Note that, even though the sampling rates of the two sen-
sors are different, they are regular, so their readings can be
synchronized for downsampling or interpolation.We refer the
interested reader to [41] as an approach to the problem of
irregular sampling rates in target tracking.

In addition to our self-corrective approach, which includes
CTRA Kalman filtering of Pozyx data, we considered pure
RealSense tracking and other three Kalman variants in our
tests:
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FIGURE 8. Self-corrective method, worst case. Scales in mm. Red circles indicate RealSense restarts.

TABLE 1. Stopping point positioning accuracy (average and standard deviation) and RMSEs of the trajectories.

• CTRA Kalman filter applied only to Pozyx data.
• Direct Kalman fusion: The same Kalman CTRA algo-
rithm as in our approach, by assuming a single sensor
that delivered both RealSense and Pozyx measurements,
and by merging RealSense and Pozyx measurements.

• Kalman fusion: The sameCTRAKalman algorithm as in
our approach, by assuming a single sensor that delivered
x[n] = 1

2 (xo[n] + xu[n]) at Pozyx rate, so we synchro-
nized RealSense measurements with Pozyx measure-
ments as approximately as possible. This is similar to
the approach in [25], which obtained good results by
applying Kalman filtering to linear combinations of the
outputs of a visual odometer and a UWB positioning
unit.

We tuned CTRA Kalman settings to maximize perfor-
mance in our scenario. Specifically, we set R = diag
(25, 25, 0.01, 0.01, 0.01, 0.09) and Q = diag(0.0625, 0.0625,
1.44e-4, 9e-6, 9e-4, 0.25) (in mm, radians and seconds where
respectively applicable).

Parameters α, K1 and K2 were set by successive trials for
the two values of β we considered, and we obtained the best
positioning accuracy for α= 10 mm,K1 = 100 andK2 = 500
in our scenario. Figure 8 shows the trajectories with our self-
corrective approach for the worst case in Figure 5, when
the RealSense unit lost its references severely. Note that in

that case it was necessary to update the correction vector
in method component C (and thus to restart the RealSense
T265 visual odometer) 9 out of 16 times for β = 6 cm and 15
out of 16 times for β = 3 cm. Therefore, for β = 3 cm
the roles of the two technologies were almost fully com-
plementary, but for the stopping point at (2000, 0): in other
words, in this case the approach automatically selected the
RealSense T265 visual odometer for segment tracking and
the Pozyx unit for stopping point detection and cumulative
correction vector generation.

Alternatively, we applied the two Kalman fusion variants
we considered to the outputs of the two technologies. Figure 9
shows the results in the best (RealSense working correctly)
and worst (RealSense losing its visual references severely)
cases of the tests.

Observe that, in the worst case (RealSense data in
Figure 5), Direct CTRA Kalman fusion only worked reason-
ably well until the sixth stopping point (3000, 1500), up to
which the visual odometer had satisfactory visual references.
From that point on, the high deviation of the visual odometer
had strong impact on detection accuracy and overall root
mean square error (RMSE), as shown in Table 1. CTRA
Kalman fusion based on linear combinations of sensor read-
ings behaved better than Direct CTRA Kalman fusion in the
worst case: until the sixth stopping point visual odometer data
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FIGURE 9. Kalman fusions, worst and best cases. Scales in mm.

FIGURE 10. Stopping point positioning accuracy (average and standard deviation) and trajectory RMSEs. RS: RealSense
data, CTRA: CTRA Kalman fusion based on lineal combinations, DCTRA: Direct CTRA Kalman fusion, PCTRA: CTRA
Kalman-filtered Pozyx data, SC(x): Self-Corrective approach with β = x cm, W: Worst case, B: best case.

helped to reduce Pozyx noise and, from that point on, Pozyx
data alleviated the large deviation of RealSense data. In the
best case both Kalman fusion variants performed similarly.

Table 1 summarizes average results for 10 separate tests.
It shows the positioning accuracies (in mm) at the stopping

points of our self-corrective approach and the three Kalman
filter variants. Ground truth data was collected by placing
the drone manually at the stopping points. The values for the
self-corrective approach correspond to the worst case, as the
differences among tests with this approach were negligible.
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Therefore, our approach was comparable to the RealSense
unit when the latter worked correctly, as expected given
the algorithmic flow in Figure 7, which gives priority to
RealSense intermediate data over Pozyx intermediate data
if the mutual error is small. However, when the RealSense
unit lost its visual references (as shown in Figure 5),
it was no longer able to provide sub-5-cm stopping point
detection accuracy (observe the large standard deviation of
the detection accuracy at the stopping points), unlike our
approach.

The results by only applying CTRA Kalman filtering
to Pozyx data in laboratory conditions also met the accu-
racy goal by far, although they were worse in terms of
stopping point detection accuracy than our self-corrective
approach and the RealSense unit when the latter worked
correctly.

Direct CTRA Kalman fusion performed better than CTRA
Kalman fusion based on linear combinations of sensor read-
ings as in [25] if the RealSense unit worked correctly. Also
in that case, the results of these two variants were superior to
CTRA Kalman-filtered Pozyx data, reflecting the beneficial
effect of RealSense data. However, if the RealSense unit
failed both Kalman fusion variants could not satisfy the accu-
racy goal, and Direct CTRAKalman fusion accused this issue
more severely. In this situation our approach outperformed
both of them.

Figure 10 offers a graphical view of the results in Table 1.

VI. CONCLUSIONS
The results of the experiments were consistent with our
assumptions about the characteristics of indoor facilities. The
challenges they pose to positioning technologies are less
evident in more open scenarios like the experimental setting
in [25]. In the case of UWB positioning (Pozyx in our trials),
indoor obstacles such as reflective surfaces or equipment
nearby cause noisy readings. In the case of visual odometers
(RealSense T265 in our trials), it is necessary to guarantee
that sensor cameras will have rich backgrounds to prevent
loss of visual references. The issues of these two technologies
may lead to high mutual errors, which are troublesome for
Kalman fusion.

However, since these issues do not co-occur in time,
we have designed a novel self-corrective approach that com-
bines the advantages of different technologies when some of
them work properly. This approach has three method com-
ponents: independent Kalman filtering (to avoid the effect
of high mutual errors in Kalman fusion), data association by
means of stream clustering (to filter out non-gaussian outliers
due to intermittent anchor signal loss) and mutual correction
of sensor readings based on the generation of cumulative
vectors (to avoid the issue of wrong odometer estimations
due to lack of visual references). The approach is inspired
by the observation that UWB positioning works reasonably
well at static spots whereas visual odometer measurements
reflect straight displacements correctly even if their lengths
are underestimated.

The self-corrective approach has achieved promising
results in our target scenario of quality control imaging for
car manufacturing. Even though there is a clear trade-off
between positioning accuracy and number of visual odometer
restarts (the higher the first the more restarts are necessary),
our initial accuracy goal (∼5 cm) was fulfilled. We have
also demonstrated that, in this scenario, our approach keeps
the benefits of visual odometry by correcting it with UWB
data, outperforming the Kalman fusion in [25] in case visual
odometry fails, both in terms of stopping point accuracy and
path RMSE.

As future work we are considering a variant of our
approach with a modification of method component A,
by combining Kalman fusion of both technologies with
independent technology-wise filtering, where the fusion out-
come would be used for flight tracking unless the mutual
error of independently filtered outputs exceeds a threshold.
We will also report experiences in the real industrial scenario
in Figure 1.
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