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ABSTRACT Fully convolutional networks (FCNs) have been widely applied for dense classification tasks
such as semantic segmentation. As a large number of works based on FCNs are proposed, various semantic
segmentation models have been improved significantly. However, duplicated upsampling and deconvolution
operations in the FCNs will lead to information loss in semantic segmentation tasks and to problems such
as ignoring the relationship between pixels and pixels and the lack of spatial consistency. In this study,
we propose a parallel fully convolutional neural network that integrates holistically-nested edge detection
(HED) network to capture image edge information, improving semantic segmentation performance.We carry
out comprehensive experiments and achieve a better result on the PASCAL VOC 2012 , PASCAL-Context
and Cityscapes, comparing the results with some existing semantic segmentation methods.

INDEX TERMS Fully convolutional networks, edge detection, edge refinement, semantic segmentation.

I. INTRODUCTION
Semantic segmentation is a fundamental problem in image
understanding [1] and in video interpretation [2]–[4].
Recently, several deep learning approaches, especially con-
volutional neural networks (CNN) [5], VGG [6], Residual
Net [7], have achieved great success in recognition tasks.
However, these methods have severe limitations in dense pre-
diction tasks such as dense depth, normal estimation [8], and
semantic segmentation. Therefore, Image semantic segmen-
tation, as the classification of all pixels of images, is proposed
in [9] to tackle the above problems.

Proposed in [9] for the first time, FCN is an innovative
visual model that can improve the performance of semantic
segmentation tasks. By utilizing the FCN method, many
subsequent models based on FCNs have yielded signifi-
cant improvements in [10]–[18]. However, FCN has larger
receptive fields and weak edge constraints which result in
low segmentation accuracy. [19] suggests that the insuffi-
cient contextual fields of FCN perform poorly in ambiguous
regions’ predictions, while remedies such as adapting down-
sample would instead degrade the performance on small-size
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objects. [11] points out that the excessive pooling layers
of FCN would reduce feature map sizes, imposing negative
effects on the up-sampling. Therefore, the authors propose
DenseASPP that can cover large receptive field sizes to
tackle the problem. Recently, Chen et al. [10] came up with
DeepLab that adopted atrous convolutions to expand recep-
tive fields without reducing the resolution of the feature map
and applied the Dense-CRF post-processing operations to
refine the coarse FCN semantic segmentation. This method
has been widely applied in semantic segmentation task and
achieved state-of-the-art performance. Although DeepLab
makes significant progress to a degree, it requires much
memory to generate high-resolution feature maps and more
computational cost to return results, imposing detrimental
effects on computational studies of high-resolution predic-
tion. Therefore, balancing valuable information on image
extraction, avoiding the overestimation of computational
complexity, and preventing excessive memory consumption
are the critical issues needed to be addressed. Some popular
approaches generate high-resolution predictions by taking
advantage of the features maps produced by shallow and
middle layers, such as the FCN method in [9], DenseASPP
in [11], and multi-label segmentation in [13]. The purpose
of these works is to obtain more detailed information from
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shallow layers and middle layers which contain more mid-
level representations and spatial information than deeper
layers.

To address the challenges of low segmentation accuracy in
FCN and high computational cost in DeepLab, we introduce
a simple, yet efficient parallel fully convolutional network
(PFCN) for image semantic segmentation. PFCN consists of
two convolutional branches: one for coarse semantic segmen-
tation, the other for edge extraction. Then, domain transform
is employed to combine the edge information and the coarse
semantic segmentation results, to predict a refined final out-
put. Subsequently, we implement an end-to-end process for
coarse-to-fine semantic segmentation. Our contributions are
as follows:

Firstly, for the semantic segmentation branch in our pro-
posed method, we employ the FCN-32s model as the base
model to generate the coarse semantic segmentation result.

Secondly, a parallel image-to-image edge detection model
is embedded to extract more edge information for refining
the semantic image. For our work, we employ holistically-
nested edge detection (HED) to finish this work, which can
automatically learn rich image-level features to solve the
problem of edge ambiguity in natural images.

Thirdly, domain transform, a new method for high-quality
edge-preserving filtering, is proposed to combine the coarse
semantic result with the edge information to achieve a seman-
tic segmentation image with a clear edge. Moreover, through
a series of analyses, domain transform can be regarded as a
recurrent neural network (RNN) that can be integrated into
the model, making it plausible to do end-to-end training.

We evaluate the proposed segmentation method on
PASCAL VOC 2012 dataset, PASCAL-Context and
Cityscapes. The experiments show that the performance of
our proposed method is better than the popular semantic
segmentation method. In this work, we also validate the
performance of edge extraction by using the HED model on
BSDS dataset.

A. RELATED WORK
1) SEMANTIC SEGMENTATION
CNN [20] has been the most successful approach for
computer vision tasks, including semantic segmenta-
tion [21]–[23], and object detection [24], [25] over the past
few years. Early methods for semantic segmentation were
based on the regional proposal that classified the regional
proposals to produce segmentation results. FCNs [9]–[13]
achieve success by adopting fully connected layers and
deconvolution and allowing end-to-end training. They are
proved effective for feature generation on the task of semantic
image segmentation, hence becoming the most prevalent
method for semantic segmentation. However, FCNs would
lower spatial resolution in the deeper layers and lose fine
object boundary details because of receptive fields and mul-
tiple pooling layers.

For the limitations given above, many scholars have
improved CNN models [5], [26], [27] aiming to generate

high-resolution predictions. Hence, many subsequent meth-
ods based on CNN are proposed. To overcome this problem,
FCN [9] introduces a skip connections architecture to fuse
the feature maps produced by the shallow and middle layers.
SegNet [14] is more efficient than FCN in memory usage,
by replicating the max pool index. However, its benchmark
score cannot meet the practical needs. DeepLab [10], [12]
directly outputs a medium resolution segmentation by uti-
lizing atrous convolution and then takes advantage of fully
connected CRFs to refine boundaries. DenseASPP [11] con-
nects multiple parallel atrous convolutional layers in a dense
way, which effectively generates multi-scale features with
a larger scale range. CRF-RNN [15]formulates mean-field
approximate inference for the dense CRF as RNN, forming an
end-to-end system. [20], [28], [29] take advantage of contexts
and features of hidden layers to accurately learn specified
object edges or details. [30] propose an encoder-decoder
network called Stacked Deconvolutional Network (SDN),
aiming at obtaining more textual information by deconvolu-
tional networks. Likewise, [12] takes advantage of encoder-
decoder modules and Xception to strength their performance.
And [31] achieves success in dense image prediction via neu-
ral architecture search and network level architecture search
space. Although we introduce some approaches that utilize
features of middle or shallow layers for semantic segmenta-
tion, how to effectively use low-level edge features is still a
serious problem needed to be solved.

2) EDGE DETECTION
Some works [32]–[39] have obtained remarkable improve-
ment on the edge detection by applying CNNs models, such
as N4-Fields [32], DeepEdge [33], CSCNN [34] and Deep-
Contour [35] in recent years. In our work, we mainly employ
CNNs to extract features from the low and middle layers,
especially edge information of the original images.While Xie
and Tu [36] also exploits the features of edge detection in
the middle layers of deep networks just for the sake of edge
extraction, which is not applied in the higher-level feature
learning. Moreover, Bertasius et al. [37] and Kokkinos [38]
achieve better improvement in semantic image segmentation
tasks by using the edge of objects.

However, edge detection system and semantic segmen-
tation are regarded as two independent works. They only
optimize the performance of edge detection rather than the
performance of semantic segmentation tasks. In our study,
we learn both object boundaries and optimize rough segmen-
tation results by applying edge information.

We propose a parallel fully convolutional neural network
consisting of two network branches. The network architecture
is different from some existing FCN-based methods. It con-
sists of two convolutional components that can use low-level
edge features to refine coarse semantic feature maps. In par-
ticular, the network employs the domain transform structure
which allows our whole system to train an end-to-end sys-
tem. Therefore, our segmentation system can obtain excellent
performance.
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II. BACKGROUND
Before introducing our approach, we briefly review two
related approaches, FCN for semantic segmentation andHED
network for edge detection respectively.

A. FCN FOR SEMANTIC SEGMENTATION
Recently, FCN model is the first choice for most semantic
segmentation systems. FCN model [9] replaces the fully
connect layer of CNN with a 1×1 convolution layer to pro-
duce feature maps. To reduce parameters and computational
cost, they import multiple pooling layers that lead to outputs
of 1/32 resolution of the original images into the network
framework. In order to overcome this problem, FCN adds
an upsampling path (deconvolution or bilinear interpolation)
to recover the resolution to the original size. Therefore, it can
be trained end-to-end. However, the final predictions in the
FCN model are low-resolution predictions. In order to solve
this problem, a skip structure is introduced to refine the final
predictions, whose idea is to combine itself with features of
different pooling layers by the upsampling operation, to gen-
erate a more detailed feature score map. In this way, FCN can
produce more accurate and detailed semantic segmentations.

In this work, motivated by the success of the FCN
model [9] in semantic segmentation tasks, our semantic
segmen- tation branch is based on the FCN structure. This
branch is trained to produce low-resolution predictions. After
that, we can combine the edge extract branch with domain
transform to refine the segmentation results.

B. HED FOR EDGE DETECTION
In order to capture the edge information and refine the low-
resolution prediction obtained from FCN model, we embed
a parallel edge detection branch to extract edge information.
The edge detection branchmakes use of HED to exploits edge
information from the input image. HED is a VGG network
model that combines fully convolutional neural networks
with deeply-supervised nets to tackle the problem of image-
to-image prediction. The HED network removes the fully
connected layer and the fifth pooling layer of the VGG,
adding a side output layer to produce edge maps and a
hybrid layer to fuse the edge maps to refine the final results.
Therefore, the learning process of the HED model is not only
multi-scale but also multi-level. For the receptive fields of
each group will increase in turn, the resolution of the edge
map produced by each side-output layer will become smaller.
And the result is produced by mixing different results of the
side-output layers. The HEDmethod will automatically study
rich hierarchical representations, significant for resolving the
ambiguity in object edge detection or details. The result of
global representation based on edge prediction is an image-
to-image and end-to-end training process.

The HED architecture is shown in Figure 1. There are
some differences with VGG Net as follows: (1) the network
adds a side output layer at the last convolution layer at
stages, conv1_2, conv2_2, conv3_3, conv4_3, and conv5_3

FIGURE 1. Illustration of HED architectures. Multiple side outputs are
added after convolutional layers and a fusion layer is added to combine
the side output.

respectively; (2) the fifth pooling layer and the full connec-
tivity layer of VGGNet are removed. There are two main rea-
sons for trimming VGG Net. One is that those layers whose
strides are 32 will produce too small feature maps because
of expecting useful side output with different scales. Besides,
the full connectivity layer is computationally intensive, so the
memory/time cost in the training and testing process can
be significantly reduced by these trimming. Another reason
is that the HED network is a multi-scale and multi-level
feature learning process, because of the side output layers.
HED network model can be divided into five stages, whose
receptive fields are 5, 14, 40, 92, and 196 respectively, all
nested in the HED model.

The HED network architecture is a multi-stage and multi-
level structure which can effectively capture multi-level edge
features and the inherent scale of the edge map. This archi-
tecture is similar to some previous works, especially the
deep supervised network method. It is proved that the hidden
layer monitoring can enhance the ability of optimization
and generalization in the image semantic segmentation tasks.
Moreover, the multiple outputs will give us extra flexibility.
Recent works have also shown that fine-tuning of deep neural
networks for image semantic segmentation tasks is helpful for
the preprocessing of low-level edge detection tasks.

III. PROPOSED MODEL
A. NETWORK ARCHITECTURE
Our proposed method is a novel parallel fully convolutional
neural network for semantic segmentation which combines a
semantic segmentation network with an edge detection net-
work, achieving a better performance. As shown in Figure 2,
the proposed network framework can be divided into three
components: (1) a semantic segmentation branch described in
part A of Section II, (2) an edge extraction branch described
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FIGURE 2. Illustration of the proposed model. This model is made up of three parts, including two parallel convolution branches and domain
transforms. The two parallel convolutional branches produce coarse semantic segmentation and an edge map, respectively, served as inputs for a
domain transform edge-preserving filter for accurate edge recovery in semantic segmentation tasks.

in part B of Section II, and (3) a domain transform structure
describes in part B of Section III. The semantic segmen-
tation branch is used to produce coarse semantic segmen-
tation results, while the edge extraction branch is used to
capture edge information. These two branches are parallel
with each other in our model. In addition, we take advantage
of the domain transform structure to refine the semantic seg-
mentation results using the extracted edge information with
end-to-end training.

B. DOMAIN TRANSFORM FOR EDGE REFINEMENT
In order to associate these two branches, we employ a domain
transform structure to combine the coarse semantic segmen-
tation method with the edge detection in a parallel fashion.
Therefore, our model can refine the coarse semantic segmen-
tation guided by the edge information, and also be jointly
trained end-to-end.

The domain transform we employ requires two different
inputs. One is the original input signal X , which corresponds
to the coarse semantic segmentation results in our model.
The other is a positive domain transform density signal d ,
which relates to the edge prediction map. The output of the
domain transform is a filtered signal Y , which corresponds
to the final refined semantic segmentation. We will introduce
the recursive formula of domain transform to explain how the
filtered signal Y is obtained.
Let us consider the case of a one-dimensional signal of

lengthX of lengthN . The output can be computed recursively
for i = 2...N :

yi = (1− wi)xi + wiyi−1, (1)

where y1 = x1, and wi is the weight that lies in the density
signal di. It is computed as:

wi = exp(−
√
2di/σs), (2)

where σs is the standard deviation of filter kernel over the
input signal spatial domain. From the Eq. (2), it can be
intuitively obtained that the value of the density signal di is
related to the amount of diffusion/smoothing. This amount
controls the contribution of the original input data xi previous
point yi−1 when the network computes the filtered output
value yi. The weight wi acts like a gate, which controls how
much information is propagated from pixel i− 1 to i. If di is
very small, the weights are full diffusion, meaning thatwi = 1
and yi = yi−1. At the other extreme, if di is very large, then
wi = 0 and diffusion stops, leading to yi = xi.

The density signal d is defined as:

di = 1+ ϑi
σs

σr
, (3)

where ϑi corresponds to the edge prediction map and σr
is the standard deviation of the filter kernel over the edge
map’s range. Note that the larger the value of ϑi is, the more
confidence that the pixel xi gains at the edge.
According to the above formulas, it is known that the

current output only depends on the previous outputs. To solve
the asymmetry problem, the one-dimensional signal will be
filtered two times, one from left to right, and the other from
right to left on the previous output passes.

Domain transform works for a 1-D signal, but we apply it
in a separable way to transform a 2-D score map generated
by our model. In other words, a 1-D filter will be employed
sequentially along each signal dimension, performing hori-
zontal transmission along each row (from left to right and
right to left), and performing vertical transmission along each
column (from top to down and down to top).

In order to transform the domain transform into a trainable
filtering, we introduce how the backward propagation process
of Eq. (1) of domain transformis, whose computation process
of forward propagation is illustrated in Figure 3(a). For each
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FIGURE 3. Computation process for domain transform recursive filtering:
(a) Forward pass that arrows from nodes yi+1 denote feeds to
subsequent layers. (b) Backward pass, including contributions ∂L/∂yi
from subsequent layers.

node yi, it not only directly affects the next node yi+1, but also
indirectly affects the subsequent layers through the forward
propagation. Thus, the gradient contribution ∂L/∂yi of the
layer can be obtained from the back propagation. Similar
to the process of standard back propagation, the reverse
recursion process of Eq. (1) for i = N , ..., 2 is as shown
in Figure 3(b). The back propagation mainly updates the
derivatives with respect to y, and also obtain derivatives about
x and w: (

∂L
∂xi

)′
= (1− wi)

∂L
∂yi
, (4)(

∂L
∂wi

)′
=
∂L
∂wi
+ (yi−1 − xi)

∂L
∂yi
, (5)(

∂L
∂yi−1

)′
=

∂L
∂yi−1

+ wi
∂L
∂yi
, (6)

where ∂L/∂xi and ∂L/∂wi are initialized to 0, and ∂L/∂yi−1
is set to the value obtained from subsequent layers. It is worth
noting that the weightwi is shared in each filtering step (along
each row and column) and K iterations.

The forward and backward propagation of the domain
transform can be integrated into our model as a trainable
layer. In other words, our approach is similar to the recur-
rent neural network (RNN) that can be added to the whole
model. And it can be jointly trained end-to-end with the
semantic segmentation branch and edge detection branch.
Finally, the coarse semantic segmentation can be refined
by edge maps to obtain a refined semantic segmentation
result.

IV. EXPERIMENT
In this section, in order to demonstrate the correctness and
effectiveness of our approach, we carry out comprehensive
experiments on the public dataset and also compare themwith
some state-of-the-art methods.

A. EXPERIMENT PROTOCOL
1) DATABASES
We train and test our semantic segmentation model on the
PASCAL VOC 2012 database. PASCAL VOC 2012 provides
a standardized set of excellent datasets for image recognition,
classification, and semantic segmentation, containing pixel-
wise semantic segmentation images that can classify objects
from pixel point to pixel point, involving twenty foreground
objects and a background object. The size of the pixel in
PASCALVOC 2012 is different, but the size of the transverse
images is about 500× 375, and the size of the vertical images
is about 375 × 500. The deviation will not exceed 100 (in
subsequent training, the first step is to resize these images
to 500 × 500. Additionally, we evaluate the edge extrac-
tion branch HED on a boundary detection dataset, Berkeley
Segmentation Dataset and Benchmark 500 (BSDS), which
contains 200 training images, 100 validation images, and
200 testing images. Each image has been annotated with a
ground real edge.

2) STATE-OF-THE-ART APPROACHES
We compare our proposed approach to several popular state-
of-the-art methods, such as DeepLab [10], FCN-8s/32s [9],
SegNet [14], PSPNet [22], and U-Net [23].

3) EVALUATION MEASURES
In semantic segmentation tasks, we employ mean IoU (Inter-
section over Union) to evaluate the performance of our pro-
posed model. We assume that nii is the number of pixels that
should belong to the class i, but aremisclassified as the class j.
ncl represents available classes and ti =

∑
j nij represents the

total amount of pixels that belong to the class i. The mean IoU
is defined as:

mean IoU =
(

1
ncl

)∑
i

nii
ti +

∑
j nji − nii

. (7)

Besides, the accuracy of edge extraction is assessed via
three standard metrics: fixed contour threshold (ODS), per-
image best threshold (OIS), and average precision (AP).

4) TRAINING
Our proposed method in training process adopts two-step
training. The first step is to train the semantic segmentation
branch and the edge detection branch, respectively. Firstly,
the setting of parameters is the same as [9] to train when we
are in the first step. The parameters are adjusted to getting
best performance. Secondly, we train the HED to obtain edge
feature maps. The HED is a deep learning model with full
use of convolutional neural network and deeply-supervised
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FIGURE 4. Visualizing results on BSDS in each row. We show (a) original image, (b) edge result generated by fusion layer in
HED model, (c) (d) (e) (f) (g) are the output of the added five side.

TABLE 1. Results on BSDS Dataset by the HED Model, as well as Some
CNN-Based Edge Detection Methods.

network, which can be trained image-to-image and end-to-
end. For the parameters of HED system, we set themini-batch
size 20, set the learning rate 1e-5, set the loss weight 0.2 for
each side-output layer, and set the iteration number 10K.
The second step is jointly to fine-tune the three components
for an end-to-end system, which employs the edge feature
maps to refine the coarse semantic segmentation by domain
transforms.

B. EXPERIMENTAL RESULT
1) EDGE EXTRACTION RESULTS
We assess the HED model on the BSDS dataset. In order to
verify the side outputs from the convolutional layer with the
multi-scale feature mapping, we check the results produced
by each side outputs in Table 1. In this step, we stress that all
the side output predictions can be achieved, resulting in com-
prehensive analysis in different configurations of combined
outputs. We observed a few interesting phenomena in the
result: (1) We put in better performance by using multi-scale
prediction; (2) All of the side output layers help for improving
performance; (3) the side-output layer 1 and layer 5 (the
lowest and highest layers in HED model) get a relatively
lower performance on edge extraction. We are suspicious that

these side outputs make no difference in the average result.
But the fact is that, for instance, we can acknowledge the
contribution of the side output layer 5 on the average result
by the average 1-4 obtaining ODS=0.755 and the average 1-5
obtaining ODS=0.768.

Several visualizing examples are as shown in Figure 4,
which illustrates the final edge results and the edge feature
maps produced by each side output layer. Note that the higher
layers of the side output image are, the less the edge infor-
mation the output contains. For example, the edge of the
side output layer 5 (the highest layer) is blurred. However,
the fusion layer’s ideal outputs will discard some unnecessary
information, such as textures and colors, which can be seen
in the side output layer 1. And the outputs also contain
rich edge information, compared with the higher side layer,
so the fused-outputs preserve the critical for edge refine-
ments’ object boundaries.

We carry out an experiment on the HED framework and
compare its result with recent CNN-based edge detection
models. In this model, we utilize the available side out-
puts and the fusion layer’s outputs to compensate for the
loss of average precision by merging all the outputs. This
simple operation allows us to achieve better performance.
The result are as shown in Table 2, HED achieving a score
of 0.827 AP.

2) SEMANTIC SEGMENTATION RESULTS
When training our model, we have attempted different learn-
ing rate policies. Different from the fixed learning rate policy
and the step learning rate policy, we adopt the ‘‘poly’’ learn-
ing rate policy (the learning rate is multiplied by (1 – iter /
max_iter)power ) to train our model on PASCAL VOC 2012.
As shown in Table 3, our experiment is to test the value of
batch size and iteration to put in a better performance. We can
learn that applying the ‘‘poly’’ learning policy is more effec-
tive than ‘‘step’’ or ‘‘fixed’’ learning policy when training our
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FIGURE 5. The results on the PASCAL VOC 2012 val set.

TABLE 2. Results of Single and Averaged Side Output in HED on the BSDS
Dataset. The Single Side Output Contributes to the Fused / Averaged
Result and the Fused Result Achieves the Best Performance. The
Average1-5 (Averaging of all the Five Layers) Also Produces Better
Average Precision.

model. Adjusting the value of the batch size and increasing
the iteration number can achieve better performance.

After initializing the parameters, we tested the semantic
segmentation performance of our model on the PASCAL
VOC 2012 dataset. Table 4 gives the result of our PFCN on
the PASCAL VOC 2012 val. set and compares it with some

TABLE 3. The Results on PASCAL VOC 2012 val. Set When We Apply
Different Learning Hyper Parameters.

state-of-the-art methods, such as FCN-8s [9], the well-known
DeepLab [10], SegNet [14], CRF-RNN [15], PSPNet [22],
and U-Net [23]. The inference time of our model on an
NVIDIA GTX 1080TI GPU is 241 ms/image, slower than
FCN-8s, SegNet, and DeepLab for the reason that our model
needs to extract the edge map additionally, but our model
outperforms the compared models. We achieve 66.76 mean
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TABLE 4. Performance and Inference Time of Some Semantic
Segmentation Methods on PASCAL VOC 2012 val. set.

TABLE 5. Segmentation Performance and Comparison on
PASCAL-Context.

TABLE 6. Segmentation Results and Comparison on Cityscapes.

IOU score which is better than FCN-8s (about 6.3% improve-
ment), SegNet (about 9.8% improvement), and DeepLab
(about 1.5% improvement), interestingly, the accuracy has
significantly improved compared to 52.42% of FCN-32s.
Meanwhile, it is also much faster and better than PSPNET
and CRF-RNN.

Figure 5 gives the semantic segmentation result of our
model on the PASCAL VOC 2012. Interestingly, our model
puts in a reasonably good performance compared with some
recently CNN-based methods. From the coarse semantic seg-
mentation to the refined semantic segmentation, we deliver a
noticeable improvement on the boundary of the segmentation,
such as the boundary between bicycles and people.

Meantime, we test our method on PASCAL-Context and
Cityscapes, as shown in Tables 5 and 6, respectively. The
tables illustrate quantitative results of different methods that
we achieves mIoU 43.6% on PASCAL-Context, IoUclass
67.1% on Cityscapes, and IoUcategory 86.5% on Cityscapes,
better than current methods such as DeepLab [40] and
PixelNet [44].

The above experimental results demonstrate that the per-
formance of FCN can be effectively improved by using the
edge information of the image. The coarse segmentation
results generated by FCN-32s are refined by domain trans-
form under the guidance of edge mapping, as shown in
Figure 5. Just like the state-of-the-art works improving their
performance by applying different modules, for instance,
DeepLabv3+ [12] adopting the decoder structure and mul-
tiscale inputs, and Auto-DeepLab [31] adopting multiscale
inference and NAS, edge extraction and the domain trans-
form, as detached detachable modules, have improved FCNs
to a great extent. And they undoubtly have potentials in other
networks.

V. CONCLUSION
In this work, we introduce a parallel fully convolutional
network for semantic segmentation. We base our method on
FCN and add an additional edge extraction branch to capture
the edge information, which is parallel with the semantic
segmentation branch. In this way, our approach can generate
a more accurate segmentation result by combining coarse
semantic segmentation and edge information with domain
transform, a traditional edge-preserving filter for graphics
applications. Compared to FCN, our method only adds a
few additional learnable parameters and obtain satisfactory
semantic segmentation accuracy on the PASCAL VOC 2012,
PASCAL-Context and Cityscapes.
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