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ABSTRACT Surface temperature (ST) plays a great role in urban heat island effect, environment monitoring,
earth resources monitoring, and water balance at local and global scales. The Chinese Gaofen-5 (GF5) satel-
lite can capture Earth’s thermal infrared information for use in national high-resolution Earth observations.
In this article, the nonlinear split-window algorithm and the refined generalized split-window method are
used to retrieve sea surface temperature (SST) and land surface temperature (LST) from GF5 observations.
For different atmospheric and surface conditions, the algorithm coefficients are calculated using a statistical
regression method from the numerical values simulated with the atmospheric radiative transfer model
MODTRAN 5.0. The simulation results show that the root mean square error (RMSE) for SST and LST
retrieval ranges from 0.09 K to 0.46 K and 0.19 K to 0.69 K, respectively, with increasing water vapor
content (WVC). To validate the retrieved STs, Moderate Resolution Imaging Spectroradiometer (MODIS)
STs extracted from the MYD11A1 product are used. Note that the RMSEs of both the LST and SST are
less than 3.3 K. The RMSE for SST retrieval varies from 1.2 K to 1.45 K, with a mean value of 1.33 K; the
RMSE for LST retrieval ranges from 1.57 K to 3.3 K, with a mean value of 2.41 K.

INDEX TERMS Surface temperature, Gaofen-5, thermal infrared.

I. INTRODUCTION
Surface temperature (ST), which includes land surface tem-
perature (LST) and sea surface temperature (SST), is a signif-
icant parameter for monitoring the changes in earth resources
and one of the most critical indicators in the physical process
of surface energy at local and global scales [1]–[6]. The ST
can provide information on the spatiotemporal changes of
the state of the surface [7]–[11]. It has been widely used in
research fields such as numerical prediction, global circu-
lation models, regional and global climate studies, geology,
oceanography and vegetationmonitoring [12]–[17]. Accurate
ST contributes to assessing the surface energy, hydrologi-
cal balance, and soil moisture [10], [18]–[23]. Fortunately,
since the development of remote sensing in the last three
decades, some infrared sensors including Gaofen-5 (GF5),
Visible Infrared Imaging Radiometer Suite (VIIRS), Mod-
erate Resolution Imaging Spectroradiometer (MODIS), etc.,
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have provided us with a reliable data source to obtain ST over
the entire globe.

To date, a large number of methods have been proposed to
retrieve LST and SST from thermal infrared (TIR) remotely
sensed data. McMillin first proposed a split-window (SW)
algorithm to retrieve SST from two satellite TIR channels
without atmospheric profile information [24]. Subsequently,
many algorithms were developed to successfully obtain SST.
Additionally, with the development of remote sensing appli-
cations, scientists have proposed many methods to retrieve
LST based on the approximation and hypothesis of the atmo-
spheric radiation transfermodel. Some scientists extended the
SW algorithm to LST retrieval with the knowledge of land
surface emissivity (LSE), such as the linear SWalgorithm and
nonlinear SW algorithm. Wan et al. proposed a generalized
split-window (GSW) method that is widely used to retrieve
LST based on the differential water vapor absorption in two
adjacent TIR channels [25].

The Chinese GF5 satellite with Multiple Spectral-Imager
(MSI) payload, which was launched on May 9, 2018, is the

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 9403

https://orcid.org/0000-0001-7165-1861
https://orcid.org/0000-0002-6485-393X


E. Zhao et al.: Surface Temperature Retrieval From Gaofen-5 Observation and Its Validation

fifth satellite of the China High-resolution Earth Observation
System (CHEOS). The orbit altitude is 705 km, and the local
time of the ascending node is 13:30. The satellite has four
TIR channels centered at 8.20µm (channel 9: 8.01–8.39µm),
8.63µm (channel 10: 8.42–8.83µm), 10.80µm (channel 11:
10.30–11.30 µm), and 11.95 µm (channel 12: 11.40–12.50
µm), with a 40 m spatial resolution. There are two terrestrial
observation payloads and four atmospheric observation pay-
loads on the GF5 satellite, which enable the GF5 satellite to
be used for air pollution, inland water bodies, terrestrial sur-
face ecological environment, mineral exploration and other
aspects [26]–[30], [32], [32].

Over the past two years, some methods have been pro-
posed to retrieve LST or SST from simulated GF5 data.
For example, Chen et al. used the semiempirical quadratic
SW equation to retrieve SST from simulated GF5 data, and
a bias of −0.05 K and a root mean square error (RMSE)
of 0.53 K were obtained [28]. Tang developed nonlinear
SW algorithms to estimate LST and SST from simulated
Chinese GF5 satellite data, and the results showed that the
methods are appropriate, with an RMSE of 0.7 K for LST
retrieval and an RMSE of 0.3 K for SST retrieval [33]. Ye et
al. proposed a four-channel method to retrieve LST from
GF5 data simulated from Thermal Airborne Spectrographic
Imager (TASI) data with an RMSE less than 1 K [34]. Ren et
al. used a hybrid algorithm to retrieve LST and LSEwith sim-
ulated GF5 data, and the results showed that this method can
obtain an RMSE less than 1 K and 0.015, respectively [35].
Meng et al. used the real GF5 data to obtain LST and SST,
the retrieval results were relatively ideal cross-validated by
Moderate-resolution Imaging Spectroradiometer (MODIS)
LST/SST, Visible infrared Imaging Radiometer (VIIRS)
LST/SST, and Advanced Himawari Imager (AHI) SST prod-
ucts [26]. However, LST and SST retrieved from the simu-
lated data can obtain acceptable results, but these retrieval
methods used on the real GF5 data still need to be further
verified with sufficient images. The objective of this article is
to evaluate the LST and SST retrieval approaches applied to
real GF5 TIR observations based on different test sites.

This article is organized as follows: Section 2 describes
the methodology for the LST and SST retrieval methods.
In Section 3, the retrieval algorithms are applied GF5 data,
and the results are validated with MODIS LST products. The
conclusions are presented in Section 4.

II. METHODOLOGY AND SIMULATION DATASETS
A. THERMAL RADIATIVE TRANSFER EQUATION
From the radiative transfer theory, for a cloud-free atmo-
sphere under local thermodynamic equilibrium, the radiative
transfer equation (RTE) in the TIR channel can be written
as [36]

Bi(Ti) = τi
[
εiBi(Ts)+ (1− εi)R

↓

atm_i

]
+ R↑atm_i (1)

in whichBi(T ) is the radiance of the blackbody at temperature
T, Ti is the brightness temperature for channel i, εi and Ts are

surface emissivity in channel i and the surface temperature,
respectively, τi is the transmittance in channel i, and R↑atm_i
and R↓atm_i are the upwelling and downwelling atmospheric
thermal radiance in channel i, respectively. To obtain ST
from (1), the atmospheric effect and LSE must be known
or removed in advance. According to the SW algorithm,
the atmospheric effect can be removed based on the differen-
tial water vapor absorption in the two adjacent TIR channels.

B. SST RETRIEVAL ALGORITHM
The linear SW algorithm for SST retrieval was first proposed
by McMillin in the 1970s. To improve the accuracy of SST
retrieval, a nonlinear SWalgorithmwas developed from satel-
lite TIR data as [28]

SST = a0 + a1T 2
i + a2T

2
j + a3Ti · Tj + a4Ti + a5Tj (2)

where SST is the sea surface temperature, Ti and Tj are
the TOA brightness temperatures in TIR channels i and j,
respectively, and a0 ∼ a5 are fitting coefficients.

C. LST RETRIEVAL ALGORITHM
Wan et al. first used a GSW algorithm to retrieve LST based
on the differential water vapor absorption in two adjacent TIR
channels. Then they refined thismethod by adding a quadratic
term of the difference between two TIR brightness tem-
peratures to improve the accuracy. Therefore, in this study,
the widely used GSW algorithm is selected, this algorithm
can be written as [37]

Ts = b0 + (b1 + b2
1− ε
ε
+ b3

1ε

ε2
)(
Ti + Tj

2
)

+ (b4 + b5
1− ε
ε
+ b6

1ε

ε2
)(
Ti − Tj

2
)+ b7(Ti − Tj)2

(3)

with ε = (εi + εj)/2, 1ε = εi − εj.
where εi and εj are the LSEs in channels i and j, respectively,
ε is the averaged emissivity, 1ε is the emissivity differ-
ence between the two TIR channels, and bi(i = 0∼7) is the
unknown coefficient that can be derived from simulated data.

D. LSE ESTIMATION
LSE is a crucial factor in the retrieval of LST. It can be seen
from (1) that LSE must be corrected before LST retrieval.
However, LST and LSE are coupled together through the
RTE, and it is quite difficult to separate the two param-
eters. Tang et al. used an improved normalized differ-
ence vegetation index (NDVI)-based threshold method to
retrieve LSE [38]. In this method, the pixels are divided into
three kinds: bare soil pixels, dense vegetation pixels, and
soil/vegetation mixed pixels. For the bare soil pixels, LSE
is estimated from the relationship between the visible/near-
infrared channel reflectances and TIR emissivities (see (4)).
For the dense vegetation pixels, LSE is calculated by the rela-
tionship between the TIR emissivities and NDVI for dense
vegetation (NDVIv) (see (5)). For the soil/vegetation mixed
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pixels, LSE is calculated according to the proportion of bare
soil to vegetation (see (6)). LSE can be calculated as:

εsi = ai0 +
n∑
j=1

aijρj (4)

εvi = bi0 + NDVIv (5)

εi = εviPv + εsi(1− Pv)+ Ci (6)

where εsi represents emissivity of bare soil in the pixel for TIR
channel i, ai0 and aij are the regression coefficients for TIR
channel i, ρj is visible/near-infrared reflectance in channel j,
and n means that there are n visible/near-infrared channels.
The value εvi represents the emissivity of dense vegetation in
the pixel for TIR channel i, bi0 is the regression coefficient for
TIR channel i, and εi is the emissivity of the soil/vegetation
mixed pixel for TIR channel i.
Pv is the vegetation proportion, and it can be calculated

from:

Pv = [
NDVI − NDVIs
NDVIv − NDVIs

]2 (7)

whereNDVIv andNDVIs are the values for full vegetation and
bare soil pixels, respectively. In this part, NDVIv and NDVIs
are set to be 0.86 and 0.2, respectively. This means that if the
NDVI value is less than 0.2, the pixel is regarded as a bare
soil pixel, while the full vegetation pixel is determined with
an NDVI larger than 0.86. NDVI can be calculated from the
red and near-infrared reflectance.

The term Ci in (6) includes the effect of geometrical distri-
bution on natural surfaces and internal reflections, expressed
as

Ci = (1− εsi)(1− Pv)Fεvi (8)

where F is a shape factor ranging from 0 to 1, and normally
to be set as a mean value of 0.55.

E. DATA SIMULATION
The MODTRAN 5.0 radiative transfer code is used to predict
the brightness temperatures at TOA to obtain the coefficients
in (2) and (3). A set of 545 radiosounding profiles (only clear-
sky conditions with atmospheric bottom temperatures (Ta)
ranging from 260 K to 310 K and water vapor content (WVC)
ranging from 0.06 g/cm2 to 5.39g/cm2 are taken into consid-
eration) are extracted from the TOVS Initial Guess Retrieval
(TIGR) database to analyze atmospheric effects. To make
the simulation data closer to the real situations, the LSTs
are made with the rule that the LSTs range from Ta − 5K
to Ta + 15K with a step of 5 K, whereas the SSTs range
from Ta − 4K to Ta + 4K with a step of 2 K. Further-
more, 70 different emissivities (soils, vegetation, water, etc.)
obtained from the Johns Hopkins University (JHU) Spectral
library are considered. To determine the coefficients, WVC is
divided into five sub-ranges, namely, [0-1.5], [1-2.5], [2-3.5],
[3-4.5], and [4-5.5] g/cm2, to improve the fitting accuracy.
Considering that the GF5 satellite observes the earth almost

FIGURE 1. RMSEs of SST and LST retrieval.

TABLE 1. SST retrieval algorithm Coefficients in (2) in different WVC
subranges.

TABLE 2. LST retrieval algorithm Coefficients in (3) in different WVC
subranges.

at nadir, the view zenith angle (VZA) is set to be 0◦ in
MODTRAN 5.0.

Fig. 1 shows the RMSEs of SST and LST retrieval using
the coefficients of (2) and (3) obtained from simulation data
(see Table 1 and Table 2). The accuracies of SST retrieval
are better than those of LST retrieval in all WVC subranges.
The RMSEs increase with increasing WVC for both SST and
LST retrieval. The minimum RMSE for SST (LST) retrieval
is 0.09 K (0.19 K) and appears in the subrange of WVC ∈
[0-1.5 g/cm2], while the maximum RMSE for SST (LST)
retrieval is 0.46 K (0.69 K) appears in the subrange of WVC
∈ [4-5.5 g/cm2].
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F. SENSITIVITY ANALYSIS
The LST and SST retrieval accuracies are mainly affected
by the instrument noise equivalent difference temperature
(NE1T), and the uncertainties of LSEs and WVCs. In this
section, the uncertainties of NE1T, LSE, and WVC for ST
retrieval are investigated.

FIGURE 2. ST retrieval error caused by NE1T for: (a) LST retrieval. (b) SST
retrieval.

Fig. 2 shows the impact of NE1T on ST retrieval. The
RMSEs increase for both SST and LST retrieval as NE1T
increases. The NE1T of 0.1 K, 0.2 K, and 0.5 K can produce
the errors ranging from 0.32 K to 0.89 K (0.21 K to 0.76 K),
0.41 K to 1.29 K (0.29 K to 1.00 K), and 0.57 K to 2.32 K
(0.45 K to 1.84 K) for LST (SST) retrieval, respectively.

FIGURE 3. ST retrieval error caused by LSE and WVC. (a) LST retrieval error
caused by LSE. (b) LST and SST retrieval errors caused by WVC.

The errors caused by the uncertainties of LSE and WVC
are shown in Fig. 3. The results demonstrate that an uncer-
tainty of 1% in the LSEs causes an error ranges from 0.37K to
0.73 K for LST retrieval; an uncertainty of 10% in the WVCs
can produce errors ranging from 0.19 K to 0.69 K (0.09 K
to 0.46 K) for LST (SST) retrieval, respectively. Both errors
increase with increasing WVCs.

Considering the instrument noises (δ(LSTNE1T )), the
uncertainties of LSEs (δ(LSTε)) andWVCs (δ(LSTWVC )), and
the accuracy of the algorithm (δ(LSTr )), the overall error on
the ST (δ(ST )) can be described as follows:

δ(ST )

=

√
δ2(LSTr )+ δ2(LSTNE1T )+ δ2(LSTε)+ δ2(LSTWVC )

(9)

Fig. 4 shows the overall errors in LST and SST retrieval.
It can be seen from Fig. 4(a) that the maximum RMSE is

FIGURE 4. Overall errors on ST retrieval for: (a) LST retrieval. (b) SST
retrieval.

approximately 2.5 K for the uncertainties of NE1T: 0.5 K,
LSE: 1%, and WVC: 10%; the minimum RMSE is approx-
imately 0.46 K for the uncertainties of NE1T: 0.1 K, LSE:
1%, andWVC: 10%. Fig. 4(b) shows the overall errors in SST
retrieval without LSE error. The figure demonstrates that the
maximumRMSE is approximately 1.9 K for the uncertainties
of NE1T: 0.5 K and WVC: 10%; the minimum RMSE is
approximately 0.21 K for the uncertainties of NE1T: 0.1 K
and WVC: 10%. Because the uncertainty of WVC has rel-
atively little influence on SST retrieval, the overall error is
mostly caused by NE1T.

III. PRELIMINARY APPLICATION TO GF5 DATA
A. CROSS-CALIBRATION
To obtain the LST and SST information, radiometric calibra-
tion is the first and most important step. Because of the unser-
viceable official calibration coefficients for GF5 images,
the VIIRS TIR images are used for cross-calibration because
of the high calibration accuracy. Fig. 5 displays the spec-
tralresponse functions of VIIRS TIR (bands 15 and 16)
and GF5 TIR (bands 9, 10, 11, and 12). GF5 bands
11 and 12 are selected as the ST retrieval bands due to
the similarity between GF5 bands 11 and 12 and VIIRS
bands 15 and 16.

FIGURE 5. Spectral response functions of VIIRS and GF5.

Because of the difference between the spectral response
functions of VIIRS and GF5, 70 different emissivities and
atmospheric profiles with WVC ∈ [0-1.5 g/cm2] are used
to calculate the spectral matching factor. Fig. 6 shows the
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FIGURE 6. Spectral matching factors for GF5 TIR bands for: (a) GF5 band
11. (b) GF5 band 12.

spectral matching factors for VIIRS bands 15 and 16. We can
see that for VIIRS band 15 (16), the slope is 0.98435
(0.98897) and the intercept is 0.09177 (0.04396). Therefore,
the GF5 TIR radiances can be obtained using the two empir-
ical relationships below from VIIRS TIR images.

RG11 = 0.98435 · RV15 + 0.09177 (10)

RG12 = 0.98897 · RV16 + 0.04396 (11)

where RG11 and R
G
12 are the radiances of GF5 TIR data and RV15

and RV16 are the radiances of VIIRS TIR data.
For GF5 TIR channel i, the relationship between the TOA

radiance and the image digital number (DN) can be written
as:

RGi = Gain · DNj + Offset (12)

where DNj is the DN value in pixel j and the value of Offset
is assumed to be 0 in this article, RGi is the TIR radiance in
channel i of GF5.

FIGURE 7. False-color images for GF5 (sites for SST retrieval). Imaging
time: (a) for 20190308. (b) for 20190625. (c) for 20190815.

To derive the cross-calibration coefficientGain, a common
calibration area is selected. In this article, only 7 clear-sky

FIGURE 8. False-color images for GF5 (sites for LST retrieval). Imaging
time: (a) for 20190314. (b) for 20190504. (c) for 20190517. (d) for
20190811.

TABLE 3. Calibration coefficients (Gain).

GF5 TIR images are available for retrieving STs: three
images of the Qinghai Lake (see Fig. 7) for SST retrieval,
and four images of Dalat, Dunhung, and Geermu (see Fig. 8)
for LST retrieval. First, the spatial resolution of GF5 and
VIIRS TIR images should be matched. Then calibration sites
including 6 × 6 pixels covered by soil (for LST retrieval)
and sea water (for SST retrieval) are selected to calculate the
coefficients. Based on the mean value of DNs for GF5 and
radiances obtained from VIIRS radiances using (10) and (11)
in the calibration sites, the calibration coefficient (Gain) can
be derived from (12). From the results, it can be found that
the calibration coefficients are not the same for different days
(see Table 3); therefore, radiometric calibration should be
carried out for each GF5 image.

B. RESULTS AND VALIDATION
After data processing, the SSTs and LSTs can be derived
using (2) and (3) from the real GF5 TIR data, respectively.
The coefficients of the two retrieval algorithms are both deter-
mined by the WVC. In this part, the MODIS WVC product
is used to obtain information on the water vapor content.
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The MODIS level-2 atmospheric precipitable water product
consists of total atmospheric column water vapor amounts
over clear land and oceanic areas of the globe, and the short
name for this level-2 MODIS total precipitable water vapor
product is MYD05 [39]. Based on MYD05, the coefficients
can be selected.

FIGURE 9. ST retrieval for the real GF5 observations for (a) SST retrieval,
imaging time: 20190815. (b) LST retrieval, imaging time: 20190517.

Fig. 9 shows the SST and LST retrieval results for different
underlying surfaces. It is obvious that for the same day, the
temperature of water is lower than that of soil and rock.
The temperature of the soil is higher than that of vegetation.
A possible reason is the specific heat capacity of water is
higher than those of vegetation and soil. Water can absorb
or release a large quantity of heat energy with little change
in temperature. Thus, under the same radiation conditions,
the temperature of the water body is lower than the other two
kinds of underlying surface temperatures.

Because of the lack of in situ measurements, MODIS LST
products (short name: MYD11A1) are used to cross-validate
the STs retrieved fromGF5TIR data. TheMYD11A1Version
6 product provides daily per-pixel land surface temperature
and emissivity (LST&E) with 1 kilometer (km) spatial reso-
lution in a 1,200 by 1,200 km grid [37], [40]. The MODIS
reprojection tool (MRT) was used to transform the sinusoidal
projection (which is used in the LST products) onto a geo-
graphic projection (which is used in the GF5 images). For
the MYD11A1 product, the scientific data sets of the daytime
LSTs and quality control (QC) are selected.

Due to the spatial resolution difference between the
retrieved STs and MODIS LST products, equation (13) is
used to make them to the same resolution.

ST =
N∑
j=1

ωjSTj

/
N∑
j=1

ωj with ωj = Sj,p
/
Sj (13)

where ST is the aggregated target pixel value, N is the total
pixel number in the target pixel, ωj is the weight of pixel j,
Sj,p is the partial area of pixel j overlapping with the target
pixel, Sj is the total area of pixel j, and STj is the temperature
information of the pixel j.

Additionally, the QC value of MODIS LST product is used
to decide whether the aggregated retrieved ST is selected. The
aggregated pixel is recognized as useful when QC equals 0 in
this study.

Fig. 10 and 11 show the RMSEs of MODIS STs minus
retrieved STs. FromFig. 10, it can be found that the RMSE for

FIGURE 10. Results of cross-validation for SST retrieval (Qinghai Lake).
Imaging time: (a) 20190308. (b) 20190625. (c) 20190815.

FIGURE 11. Results of cross-validation for LST retrieval. Imaging time:
(a) 20190314, Dalat. (b) 20190504, Dalat. (c) 20190517, Dunhuang.
(d) 20190811, Geermu.

SST retrieval ranges from 1.2 K to 1.45 K with a mean value
of 1.33 K. The figures in Fig. 11 demonstrate that the RMSE
for LST retrieval ranges from 1.57 K to 3.3 K with a mean
value of 2.41 K. We can see that there are some differences
between MODIS STs and the retrieved STs, which may be
due to the following: 1) the difference on imaging times
of MODIS and GF5 is approximately 30 minutes, which
can lead to different radiation for the two TIR images; or
2) there is a large difference in spatial resolution for the two
datasets, which may produce some errors during the process
of upscaling. Furthermore, it is obvious that the accuracy
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of SST retrieval is better than that of LST retrieval. The
possible reason for this result is that water emissivity is higher
than the emissivity of soil and rock, and the SST can also
be retrieved by assuming the water emissivity as a constant
value, while the LSE must be known in advance for LST
retrieval. Therefore, the effect of emissivity uncertainty for
SST retrieval is less than that for LST retrieval.

IV. CONCLUSION
In this study, the nonlinear SW algorithm and the refined
GSWmethod are used to retrieve SST and LST, respectively,
for real GF5 TIR images. The coefficients of the two algo-
rithms are calculated using a statistical regression method
from the numerical values simulated with the atmospheric
radiative transfer model MODTRAN 5.0 under different
atmospheric and surface conditions. From the simulation
results, it can be seen that the RMSEs for SST (LST) retrieval
range from 0.09 K(0.19 K) to 0.46 K (0.69 K) as the WVC
increases. In addition, the sensitivity analysis is performed
in terms of NE1T, the uncertainty of the LSE and WVC.
The results show that when WVC ranges from 0 g/cm2 to
1.5 g/cm2, an NE1T of 0.1 K, 0.2 K, and 0.5 K can produce
0.32 K (0.21 K), 0.41 K (0.29 K), and 0.57 K (0.48 K) for
LST (SST) retrieval; an uncertainty of 10% in the WVCs
will result in an error of 0.20 K and 0.09 K for LST retrieval
and SST retrieval, respectively; an uncertainty of 1% in the
LSEs carries an error ranging from 0.37 K to 0.73 K for LST
retrieval.

Finally, the two algorithms are applied to the real GF5 TIR
images covered by water and soil. Due to the unservice-
able official calibration coefficients for GF5 TIR images,
GF5 images are cross-calibrated byVIIRS TIR images. Addi-
tionally, the TIR LSE is obtained with the help of GF5 visible
images. Unfortunately, in situmeasurements are unavailable,
and the MODIS LST product MYD11A1 is used for cross-
validation. From the cross-validation results, it can be seen
that both RMSEs of LST and SST are less than 3.3 K, which
are caused by the difference on imaging times of MODIS
and GF5, and the difference in spatial resolution for the two
datasets. The RMSE for SST retrieval varies from 1.2 K to
1.45 K with a mean value of 1.33 K, and the RMSE for
LST retrieval is from 1.57 K to 3.3 K with a mean value
of 2.41 K. The results indicate that the two ST retrieval
methods can be applied to real GF5 TIR observations, and the
retrieval accuracy is less than 3.3 K. Notably, the calibration
coefficients are unstable for the TIR images of different days;
therefore, the radiometric calibration should be carried out for
each GF5 image.

In the future, more GF5/MSI images would be used
for LST retrieval using the Temperature Emissivity Sepa-
ration (TES) algorithm, and the corresponding in situ mea-
surements will be collected for validating the retrieved LST.
Meanwhile, these factors related to RMSE for LST retrieval
in each site would be quantitatively analyzed.
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