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ABSTRACT The phenomenon of phase transition is an important property of the satisfiability (SAT)
problem. It not only determines the difficulty of solving the problem, but also plays an important role in
designing fast solving algorithms. The structural entropy is an effective method to measure the complexity
of graph structure. It maps the proposition formula to the graph structure, and then gives the structural entropy
of it. A newmethod of 3-SAT phase transitionmeasurement based on structural entropy is proposed. Through
numerical experiments on the random3-SAT instance set, the results show that the satisfiability of the random
3-SAT problem has phase transition with the change of structural entropy. At the same time, it is very difficult
to solve the problem in the region near the phase transition point.

INDEX TERMS Phase transition, satisfiability problem, structural entropy.

I. INTRODUCTION
The satisfiability problem is a special kind of constraint
satisfaction problem (CSP), which is the core problem in
theoretical computer research [1]–[3]. It refers to a given
conjunctive normal form (CNF), determining whether there
is a set of assignments to make the formula true. Many
difficult combinatorial optimization problems can be solved
as SAT problems by using polynomial reduction conversion
technology [4]. This means that if an effective algorithm can
be found to solve the SAT problems, then other problems will
be easily solved. Therefore, the research of SAT problem has
always been the focus in the field of computer science.

Among the SAT problems, the most studied is the ran-
dom K-SAT problems. It refers to the SAT problems in
which all clauses contain k literals. When k ≥ 3, the
K-SAT problem is the first proven NP complete problem [5].
At present, the research of SAT problem mainly focuses on
the aspects of constructing instance generation model, phase
transition phenomenon, difficulty of solving the problem, and
designing effective algorithms. The phenomenon of phase
transition was originally a critical theory in physics, which
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is the transformation of matter between different physical
states. In 1991, Cheeseman and others introduced the theory
into the field of computer research, and proved that many
NP-complete problems have phase transition phenomena
such as hamilton circuit, graph coloring problems, K-SAT
problems, traveling salesman problems, etc [6]. Among these
problems, the study of the phase transition phenomenon of the
randomK-SAT problem is still an active research focus in the
field of artificial intelligence [7], [8].

In the research of the phase transition in the randomK-SAT
problem, a critical phenomenon appears between satisfiable
and unsatisfiable. In this phenomenon, the clause constraint
density α of the CNF formula is a very important structural
parameter [9], [10]. α is defined as the ratio of clauses to vari-
ables, and αd is defined as the phase transition point. When
α < αd , almost all clauses are satisfying; when α > αd ,
almost all clauses are unsatisfying. The sudden change clause
from satisfiable to unsatisfiable is called the phase transition
phenomenon of the random SAT problem. Another property
related to the phase transition is the difficulty of solving the
problem. Because the solution space of the SAT problem is
divided into many smaller solution clusters and these solu-
tion clusters are separated from each other, there are a large
number of frozen variables in each solution cluster near the
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phase transition point. It is impossible to transform it into a
satisfiable assignment in another solution cluster by reversing
the assignment of a small number of variables in this solution
cluster that satisfies the assignment [11]–[13]. Therefore, it is
very difficult to determine the satisfiability of the random
SAT problem near the phase transition point, and almost
all algorithms for solving the SAT problem cannot exhibit
performance well. In the region far from both sides of the
phase transition point, most of the instances become easy to
solve.However, it is very difficult to find the exact phase tran-
sition point. The specific value has not been known so far, and
only the upper and lower boundaries of the region where the
phase transition point occurs can be estimated. Studies have
shown that the phase transition point αd of random 3-SAT
is at least 3.53 [14] and at most 4.506 [15]. When 3.52 <
α < 4.506, the 3-SAT problem is more difficult to solve.
Mertens et al. [16] and others have used the cavity fields
method of statistical physics to obtain an approximate value
of αd ≈ 4.267. The parameter αd controls the satisfiability
and difficulty of the SAT problem, and most of the algorithms
for solving the SAT problem are closely related to α. There
are many excellent metaheuristic algorithms [17]–[20] that
can be used to solve combinatorial optimization problems.
Message propagation algorithm is currently themost effective
algorithm for solving 3-SAT problems. Among them, Belief
Propagation (BP) is effective for solving the random 3-SAT
instances when α < 3.95, and the Survey Propagation (SP)
for solving the random 3-SAT regional inα < 4.26 [21]–[23].
It can be seen that the phenomenon of phase transition is
particularly important in the research of random SAT prob-
lems. Studying the phase transition phenomena of random
SAT problems helps to understand the intractable nature of
the problem, so as to propose a faster and more effective
solution algorithm.

At present, the research on SAT problem is slower and
more complexing. Therefore, this paper proposes a new
method to measure the phase transition phenomenon of ran-
dom 3-SAT problems. In the SAT problem, each CNF for-
mula can be represented by a factor graph. For instances
where the factor graph is a tree structure, the informa-
tion propagation algorithm can effectively converge; but
for instances where the factor graph contains multiple
loops, the information propagation algorithm often shows
un-convergence [24]. It can be seen that the factor graph
structure affects the performance of the algorithm. Structural
entropy can measure the structural information embedded in
the graph, reflecting the dynamic complexity of the factor
graph. Therefore, it is proposed to use structural entropy to
measure the phase transition phenomenon and the degree of
difficulty in random 3-SAT problems. The random 3-SAT
problem is mapped into a factor graph, and the factor graph is
divided into independent nodes by the minimum cut method.
Calculating the structural entropy of the factor graph through
the encoding tree. Finally, the phase transition of the 3-SAT
problem is analyzed by the structural entropy of the factor
graph. The relationship between the structural entropy of

the formula factor graph and the satisfiability and difficulty
of the 3-SAT problem was observed experimentally. The
experimental results show that the satisfiability of the 3-SAT
problem undergoes a phase transition with the change of
structural entropy, and near the phase transition point, the
problem is very difficult to solve.

In real life, there are many important and difficult to solve
verification and combinatorial optimization problems that
can be transformed into SAT problems to solve, such as the
traveling salesman problem and the 0-1 knapsack problem.
The phase transition phenomenon of the 3-SAT problem
is measured by structural entropy, and the phase transition
measurement method is transformed from the property of
the formula to the structural property of the factor graph.
The original problem can be directly calculated without
converting the original problem into a CNF formula with
a specific structure. With the graph model, we can know
the satisfiability of the SAT problem after conversion. This
method has simple judgment conditions and a wide range
of applications. It provides an experimental basis for the
next step to explore the features of difficult examples, and
also provides new ideas and directions for designing fast and
effective solving algorithms. Moreover, the method can also
be extended to other research directions, such as Pythagorean
fuzzy uncertain environment [25] and other issues.

II. BASIC KNOWLEDGE
A. FACTOR GRAPH
Set F = {C1,C2, · · · ,Cm} as a CNF formula which con-
tains n boolean variables {xi ∈ {0, 1}} (where 0 is false,
1 is true with i ∈ {1, 2, · · · , n}). The variable node set
is x = {x1, x2, · · · , xn}, the clause node set is C =

{C1,C2, · · · ,Cm},and the edges in graph G are divided into
two categories: solid line and dotted line [26].

Every SAT problem can be represented by a factor graph
G = (C ∪ X ,E), which is composed of function nodes,
variable nodes and connected edges. Every clause has a
corresponding function node (represented by a square in the
figure), and every variable has a corresponding variable node
(represented by a circle in the figure). When a positive literal
xj appears in the clause Ci, the function node Ci and the
variable node xj are connected by a solid line; when a negative
literal¬xj appears in the clause Ci, the clause node Ci and the
argument node xj Connect with dotted lines. Among them, the
weight of the edge is represented by w (i, j). The value of the
weight of the edge in this paper is as follows:

w (i, j) =
{
1− δ xi ∈ Cj
δ ¬xi ∈ Cj

(
0 < δ ≤ 2−3

)
(1)

The factor graph corresponding to the formula F =

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) is shown in
Figure 1.

B. STRUCTURAL ENTROPY
Shannon information theory is the theoretical basis of data
analysis and information processing. However, Shannon
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entropy can only measure the amount of unstructured proba-
bility distribution information, and cannot measure the infor-
mation embedded in the structure. Li and Pan [27] proposed
a method of measuring system information with structural
entropy, which solved the information measurement prob-
lem proposed by Brooks [28] and Shannon [29]. Structural
entropy is a natural extension of shannon entropy, which
is a dynamic measurement method. Shannon entropy can
only be used to measure the single information between
points. Structural entropy makes up for the defect that shan-
non entropy cannot accurately reflect the complexity of the
network structure. It can be used to measure the dynamical
complexity of networks and the complexity of internal struc-
ture. Clause nodes and variable nodes in a factor graph can
be directly connected through edges, while clause nodes can
only be indirectly connected through other nodes. Similarly,
variable nodes can only be connected indirectly. The special
relationship between the nodes makes the factor graph pro-
duce a multi-level complex structure. Therefore, this paper
introduces structural entropy to measure factor graphs. For a
given undirected connected graph G = (V ,E), V is the set
of all nodes in G, and E is the set of all edges in G. T is an
encoding tree of G, ε is the node in the encoding tree, ε− is
the parent node of ε, and the structural entropy is defined as:

HT (G, ε) = −
gε
2m

log2
Vε
Vε−

(2)

HT (G) =
∑

ε∈T ,ε 6=λ

HT (G, ε) (3)

Among them, m = |E|; gε is the number of edges sent
from nodes in Tε to nodes outside Tε (for a weighted graph
G, gε is the sum of the weights of the edges sent from nodes
in Tε to nodes outside Tε); Vβ is the volume of the set Tβ
is the sum of the degrees of all nodes in Tβ . Research [22]
has shown that minimizing the entropy of the k-dimensional
structure is the principle of detecting the true structure in the
natural network. The k-dimensional structural entropy of G
is defined as follows:

HK (G) = minT :h(T )≤K
{
HT (G)

}
(4)

According to the definition of k-dimensional struc-
tural entropy, we can find an optimal encoding tree
T ∗ (h (T ∗) ≤ K ) such that HK+1 (G) ≤ HT∗ (G). Therefore,
the k-dimensional structural entropy of G can also be defined
as: HK (G) = HT∗ (G).

III. STRUCTURAL ENTROPY MEASURES THE PHASE
TRANSITION OF 3-SAT PROBLEM
According to the definition of structural entropy, in order
to obtain the k-dimensional structural entropy of the factor
graph, the main task is to find an optimal segmentation
method to obtain the encoding tree T ∗, which minimizes
the value of the k-dimensional structural entropy. In recent
years, typical segmentation methods based on graph cut the-
ory include minimum cut, standard graph cut, minimum and

FIGURE 1. Factor graph.

maximum graph cut, etc. The minimum cut problem has been
studied and applied by mathematicians from the past to the
present. Sixty years ago, the minimum cut and maximum
flow algorithm based on graph theory was first proposed,
until now a complete set of theory and application system has
been formed. More and more fields can get solutions from
the minimum cut and maximum flow model. The minimum
cut algorithm is very suitable for solving combinatorial opti-
mization problems. At present, there are many researches on
community discovery using theminimum cut algorithm in the
academic field [30]. The minimum cut is defined as: among
all the cuts in the graph, the cut with the smallest sum of edge
weight is the minimum cuts. Therefore, the cyclic use of the
minimum cut for the factor graph can reduce the structural
information loss of the structural entropy in the calculation
process, obtain the desired encoding tree T ∗, and obtain the
smallest k-dimensional structural entropy.

This paper focuses on observing the phase transition phe-
nomenon and the degree of difficulty of the random 3-SAT
problem. Generate random 3-SAT instances by using the
G (n, 3,m) model to construct factor graphs of the instances.
After a large number of experiments, it is shown that when
the problem scale is small, the change of δ value does not
havemuch influence on the result of structural entropy. As the
problem scale increases, the larger the value of δ, the smaller
the value of structural entropy. Therefore, this paper sets δ to
0.125. According to formula (1), when the clause i contains a
positive literal j,w (i, j) = 0.875; when the clause i contains a
negative literal j, w (i, j) = 0.125. After determining the edge
weights, the factor graph is converted to an undirected graph.

This section proposes an algorithm to obtain the structural
entropy value of the random 3-SAT instance. As shown in
algorithm 1, Generating a random 3-SAT instance, and using
a factor graph to represent the instance, then converting the
factor graph into an undirected graph G, and further con-
structing the encoding tree of graph G to obtain the structural
entropy value HK (G).

Convert the factor graph shown in Figure 1 into an undi-
rected connected graph according to the algorithm1, the
undirected graph is tree segmented by the minimum cut,
and the structural entropy of the random 3-SAT problem
is solved by the undirected graph and the encoding tree.
The specific implementation process is as follows. The pro-
cess of converting the factor graph corresponding to formula
F = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) into a
weighted undirected graph is shown in Figure 2.
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Algorithm 1 Random 3-Sat Instance Solving Structural
Entropy Algorithm
Input: random 3-sat instance
Output: structural entropy
1: X ← {x1, x2, · · · xn}
2: C ← {c1, c2, · · · cm}
3: E .SolidLine← 1− δ
4: E .DottedLine← δ

5: G← (C ∪ X ,E)
6: encoding tree← ∅
7: if G connect then
8: divide G into subgaphs with minimum cut
9: if all subgraphs are single node then

10: go to step 14
11: else
12: G← subgraph
13: go to step 8
14: construct the encoding tree
15: HT (G, ε) = − gε

2m log2
Vε
Vε−

16: HT (G) =
∑
ε∈T ,ε 6=λ H

T (G, ε)
17: return HT (G)

FIGURE 2. The process of factor graph conversion to undirected graph.

The graphs in this paper are all undirected connected
graphs. According to the minimum cut algorithm to segment
the weighted undirected graph in Figure 2. Dividing the
undirected graph into two parts T1 and T2, and then dividing
the T1 and T2 parts respectively until all the divided parts
contain only a single node. The specific segmentation process
is shown in Figure 3 (for the picture to be concise and clear,
please refer to the edge weights in Figure 2).

In order to calculate the k-dimensional structural entropy of
the factor graph, it is necessary to generate the corresponding
decomposition tree T according to the segmentation process
of the undirected graph as the encoding tree ofG. The encod-
ing tree has the following attributes [27]:

(1) For the root node denoted λ, defifining the set Tλ = V .
(2) For every ε ∈ T , the immediate successors of ε are εj

for j from 1 to a natural numberN ordered from left to right as
j increases. Therefore, εi is to the left of εj written as εi < Lεj,
if and only if i < j.

(3) For every ε ∈ T , there is a subset Tε ⊂ V that is
associated with ε. For ε and λ, we use ε ⊂ β to denote that ε
is an initial segment of λ. For every node ε 6= λ, we use ε− to
denote the longest initial segment of ε, or the longest β such
that β ⊂ ε.

FIGURE 3. Undirected graph segmentation process.

FIGURE 4. Encoding tree for undirected graph.

(4) For every i, {Tε|h (ε) = i} is a partition of V , where
h (ε) is the height of ε (note that the height of the root node λ
is 0, and for every node ε = λ, h (ε) = h

(
ε−
)
+ 1.

(5) For every ε, Tε is the union of Tβ for all β ′s such that
β− = ε; thus, Tε = ∪β−=εT β .

(6) For every leaf node ε of T , Tε is a singleton; thus, Tε
contains a single node of V .
Combining the segmentation process of the undirected

graph in Figure 3 and the nature of the encoding tree,
the encoding tree corresponding to the undirected graph in
Figure 2 is shown in Figure 4.

After the encoding tree is constructed, the entropy value
HT (G, ε) of each node in the segmentation tree can be
obtained by formula (2). According to formula (3), the sum of
HT (G, ε) of all nodes is HT (G). From formula (4), it can be
seen that the structural entropy is ultimately to find an optimal
segmentation method to minimize the value. In the above,
the minimum cut has been selected as a tool for segmenting
undirected graphs to obtain the best encoding tree T ∗. There-
fore, the structural entropy of the weighted undirected graph
in Figure 2 can be obtained as H = 2.335.

IV. EXPERIMENTAL ANALYSIS
The hardware environment for the experiment is Intel Core i7
2 600k+GTX 1 080 8 GHg+16 GB RAM, and the software
environment is Windows 10 ×64 + ubuntu18.04 + xshell +
Python3.7+Matlab. In the following numerical experiments,
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FIGURE 5. The change of K-dimensional structural entropy with α.

every data point is composed of themean value of 100 random
instances generated by the G (n, 3,m) model, where n is the
number of variables and m is the number of clauses. Since
the clauses increases exponentially with the increase of the
variables, the larger the variables is, the more complex the
structure of the corresponding factor graph. Therefore, this
paper set n = 10, n = 15 and n = 20 to research the phase
transition phenomenon of the random 3-SAT problem.

When the value of n is fixed, as α increases, the structural
change of the factor graph will directly affect the value of
structural entropy. First, observing the relationship between
α and structural entropy under different problem scales,
as shown in the Figure 5. It can be seen that when the value
of n is fixed, as α increases, the slope of the curve gradually
decreases, and the increase of entropy value becomes more
and more slowly; when the value of α is fixed, the entropy
value increases with the increase of n. This is because in
the simple factor graph structure, any changes, such as the
increase of loops and the change of graph scale, will have a
greater impact on the factor graph structure. When the scale
of the factor graph increases to a certain extent, the increase
of the loop and the size of the factor graph within a certain
range will significantly reduce the impact on the dynamic
complexity of the graph, the state of the factor graph is more
stable. Besides, an interesting phenomenon is that when α ≥
2, the value of the distance between any two curves seems
to be fixed within a certain range. For example, the distance
between the two curves of n = 10 and n = 15 is 0.56±0.07.
This is because when the scale of the factor graph is increased
to a certain degree under different scales, the change in
the distribution of variables and clauses has a very limited
impact on the overall structure of the factor graph. And each
group selected a large number of instances for experiments,
the structure entropy of the instances changed relatively sta-
ble, under the same control parameters, the difference value
between the structure entropy of different scale examples was
very close. The difference can reflect the stable difference of
the structural complexity of the instances of different scales.

FIGURE 6. The satisfiable probability changes with α.

FIGURE 7. The satisfiable probability changes with k-dimensional
structural entropy.

As the size of the instance increases, the change in structural
complexity will become smaller and smaller, so the difference
value in structural entropy will also become smaller.

This paper have done a comparative experiment on the
variation of the satisfiable probability curve with different
control parameters, as shown in Figure 6 and Figure 7. Defin-
ing the transition position of the random 3-SAT problem that
satisfies the probability as the control parameter when the
probability is 0.5, and the transition width is the difference
of the parameter value corresponding to the satisfiability
probability from 1 to 0. As shown in Figure 6, with the
increase of the ratio α, the satisfiable probability curve of
the random 3-SAT problem transitions from probability 1 to
0. As n increases, the transition width of the probability
curve becomes narrower, and the transition point moves from
right to left. Different curves have a common intersection
point, and they rotate around this intersection point. The
usual assumption is that in the limit state, the curve passes
through this point and is close to the step function, the
ratio is the critical phase transition value of random 3-SAT.
For different control parameters, a novel phase transition
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FIGURE 8. Satisfying probability and difficulty change with k-dimensional
structural entropy (n=10).

FIGURE 9. Satisfying probability and difficulty change with k-dimensional
structural entropy (n=15).

mode appears in random 3-SAT. As shown in Figure 7, with
the increase of structural entropy, the satisfiable probability
curve still has a sharp transition from satisfiable to unsatis-
fiable. As n increases, the transition width of the probability
curve becomes narrower, and more problem instances can be
satisfied. The difference with α is that with the increase of
n, the transition point moves from left to right, but there is
no common intersection point between the curves, and the
precise position of the transition cannot be determined intu-
itively. This is similar to the exact phase transition point of the
αmetric random 3-SAT problem. It is still an interesting open
problem to determine the transition position of the structural
entropy metric random 3-SAT.

In order to facilitate the observation of the relationship
between the satisfiable probability of the random 3-SAT
problem and the difficulty of its solution, the following nor-
malization preprocessing is performed on the experimental
data. When n = 10, the maximum solution time of zchaff
is 163 seconds, so the ratio of the time to solve each instance
to the maximum solution time is taken as the average dif-

FIGURE 10. Satisfying probability and difficulty change with
k-dimensional structural entropy (n=20).

ficulty of solving the problem. Similarly, when n = 15,
the maximum solution time of zchaff is 209 seconds; when
n = 20, the maximum solution time of zchaff is 255 seconds.
Figures 8-10 respectively depict the satisfiable probability
and the solving difficulty curve with structural entropy for
n = 10, n = 15, n = 20. In these figures, we can see that
with the increase of n, the random 3-SAT problem becomes
more difficult to solve, and the curve measuring difficulty
with H also shows the same easy-hard-easy pattern as the
curve measuring difficulty with α, and the transition position
of the peak of the difficulty curve of solving the difficulty
moves from left to right. All three groups of experimental
show that the problem is the most difficult to solve near the
transition point.When the probability of the random 3-SAT
problem is 1, the difficulty of solving linearly increases.
When the probability of the random 3-SAT problem is within
the interval of [0.5,1), the difficulty of solving increases expo-
nentially. Experiments show that the relationship between the
satisfiability of the structural entropy measurement formula
and the difficulty of solving is consistent with the problem
of α measurement. When n = 10, the transition point of
the phase transition curve of the random 3-SAT problem is
4.68. When the value of the structural entropy is lower than
the critical value, the random 3-SAT has a high probability
of being satisfied, and when the entropy exceeds the critical
value, it is almost always unsatisfiable. In addition, it is the
most difficult to solve near the transition point. Similarly,
when n = 15, the transition point of the random 3-SAT
problem is 5.23; when n = 20, the transition point of the
random 3-SAT problem is 5.56.

V. CONCLUSION
Experiments show that the satisfiability of a random 3-SAT
instance undergoes a phase transition with the change of
structural entropy. When the structural entropy H crosses
the critical point Hd , the instance suddenly changes from
satisfiable to unsatisfiable. And near the critical point Hd ,
the problem is more difficult to solve. Structural entropy is
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a parameter that measures the structure information of the
graph, and represents the complexity of the factor graph. The
more complex the structure of the factor graph is, the larger
the value of the structural entropy. Therefore, when n is fixed,
the value of structural entropy increases with the increase of
α, and when a certain critical point is reached, the value of
structural entropy increases relatively slowly. The research
in this paper shows that in addition to the ratio of clauses
to variables, the random SAT problem also has other control
parameters that make it appear phase transition, and there is
a close relationship between the structural entropy and the
ratio of clauses to variables. Analyzing the phase transition
phenomenon of SAT problems from different perspectives
can enable us to better understand the essence of difficult
problems, and providing an experimental basis for the next
step to explore the features of difficult cases. In the next
step, we intend to embed the structure information of the
proposition formula into the message propagation algorithm
to improve the performance of the algorithm, and hope to
obtain some specific research results.
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