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ABSTRACT From state-of-the-art visualization algorithms, we distill six working principles which are,
by hypothesis, sufficient to produce visual projections qualitatively similar to those obtained with these
state-of-the-art algorithms. These working principles are presented through the geometrical reasoning of
the classical Multidimensional Scaling algorithm, and their effectiveness is illustrated through a novel
straightforward algorithm for data visualization. We show, using several datasets originated from various
applications, that our algorithm can produce visual projections qualitatively similar to those obtained with
these state-of-the-art algorithms. Besides, under the same motivation (of simplification), the problem of
visualizing large datasets is tackled through a companion algorithm which is able to embed new input

patterns.

INDEX TERMS Data visualization, LargeVis, multidimensional scaling, t-SNE, UMAP.

I. INTRODUCTION

As simply stated by Kruskal [1], in 1964, Multidimen-
sional Scaling (MDS) “is the problem of representing n
objects geometrically by n points, so that the inter-point
distances correspond in some sense to experimental dissim-
ilarities between objects.” It is frequently assumed that the
current MDS formulation was first proposed in 1952 by
Torgerson [2], although previous works such as the one by
M. W. Richardson, published in the Psychological Bulletin,
in 1938, suggest that MDS principles predate Torgerson’s
paper.

Originally used to determine the dimensionality of the
stimulus space from similarity analysis between stimuli,
MDS quickly became also an important tool for data visu-
alization, for it allows 2D and 3D projection and computa-
tional visualization of high dimensional data. More recently,
the replacement of dissimilarities in MDS with geodesic
distances imposed by weighted graphs, as in the Isometric
Feature Mapping (ISOMAP) [3] and similar approaches,
renewed the public interest in visualization tools, in a turning
point when the flow of high dimensional data was growing
through the Internet, in the form of images, sounds and a
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myriad of behavioral signals easily acquired with hand-held
devices such as mobile phones. In that scenario, ISOMAP
adapted MDS to compare geodesic distance matrices, which
allowed 2D or 3D projection of points lying in possibly
curved nonlinear manifolds. In ISOMAP, as in typical MDS
formulation, once all pairwise distances (e.g. Euclidean,
geodesic, L-metrics, Minkowski, rank-image) are computed,
the choice of a convex stress cost function [1] allows
the application of the Classical MDS efficiently, through
eigenvalue decomposition of a double centered distance
matrix [4].

Alternatively, whenever the cost function associated to the
low dimensional projection problem is not convex, the steep-
est descent (or gradient) method can be used instead, through
computational iterations [1], [5]. That is the same approach
used in the visualization algorithm Stochastic Neighbor
Embedding (SNE) [6], proposed in 2003, which can be
loosely regarded as another steepest descent version of the
MDS. This new method was further improved, a few years
later, becoming the state-of-the-art t-distributed Stochas-
tic Neighbor Embedding (t-SNE, where the “t” comes
from the Student’s t-distribution) [7], which quickly gained
broad notoriety among data analysts, in part because of its
visually attractive results, with many examples of labeled
datasets forming self-organized clusters corresponding to
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known labels. Moreover, t-SNE was made available in many
versions of programming languages, such as Python and
Matlab, which possibly further boosted its popularization.

More recently, new visualization algorithms such as the
LargeVis, an acronym used in the paper entitled Visualizing
Large-scale and High-dimensional Data [8], and the Uni-
form Manifold Approximation and Projection (UMAP) [9]
were proposed with evident inspiration in t-SNE, as they
approximately follow its recipe. Indeed, besides the graph
based reasoning already used in ISOMAP, they also make use
of probabilities instead of distances. UMAP further includes
some elements of fuzzy models in its theoretical background.

It is noteworthy that much older works based on MDS also
included sounding probabilistic background, such as [1], but
possibly the principal aspect shared by SNE, t-SNE, LargeVis
and UMAP is the joint effect of:

(a) a probabilistic perspective where distances between
points are replaced either with conditional probabilities
(in SNE, t-SNE and LargeVis), or with probabilistic
norms (in UMAP),

(b) and an imposed constraint of (almost) uniform density
of projected points.

From this perspective, in this work we claim that these effects
can also be obtained with straightforward MDS, under a
few changes based on six geometrically explainable work-
ing principles shared by t-SNE, LargeVis and UMAP. This
claim is corroborated by experimental results obtained with
an intentionally simple algorithmic implementation of the six
working principles.

To expose these principles and test their effectiveness,
this paper is laid out as follows. In Section II the MDS is
reformulated in a broad perspective that allows it to connect
to state-of-the-art algorithms. In Section III a new algo-
rithm is proposed as a straightforward implementation of six
highlighted working principles found in modern algorithms.
We provide in Section IV an algorithm for estimating the
underlying projection function which allows a straightfor-
ward coding of new points, paving the way to a method able
to deal with a large amount of data. Both algorithms are
tested on various datasets and their results are illustrated in
Section V, which are discussed in Section VI.

Il. FROM MDS TO STATE-OF-THE-ART VISUALIZATION
APPROACHES

As explained in [10], given N objects, A1, Az, ..., AN, such
as “‘variables, categories, people, social groups, ideas, phys-
ical objects, or any other” the MDS analysis of relationships
between these objects starts with the computation of pairwise
similarities/dissimilarities (e.g. Euclidean distances, correla-
tion coefficients, conditional probabilities or even psycho-
logical confusion measures). These pairwise measures, either
metric or non-metric [2], are organized in an N x N matrix
P, where P;; is the numeric comparison between objects
A; and A;. Then a set ) of N real-valued Dy-dimensional
vectors, y; (i = 1,2,...,N) is adjusted in order to
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numerically reduce the discrepancy between Q and P, where
Q is another matrix with elements Q; ; representing similar-
ity/dissimilarity between y; and y; (not necessarily the same
similarity/dissimilarity used to obtain P; ;).

MDS has been used for many years in a myriad of the-
oretical developments and practical works on data analysis,
some of them in data visualization, where the elements of
Y are chosen to be 2D or 3D. In such cases, MDS analysis
allows a visual inspection of the relationship among all N
objects, as a consequence of the correspondence between the
geometrical position of points representing elements of ) and
the measures in matrix P.

Reducing the discrepancy between matrices Q and P is an
optimization problem where Q is adapted through changes
in y;. Under certain constraints, this optimization problem
becomes convex and can be efficiently solved as in classical
MDS, through eigenvalue decomposition of double centered
versions of squared distance matrices. But for the purpose
of this work, we prefer to tackle the optimization problem
through iterative adaptation of vectors y;, where, in gen-
eral, a cost function J (P, Q) guides the optimization process
through its negative gradient, according to (1),

yi <y —aVyJP,0) (D

where « is an arbitrary adaptation step (or learning/adaptation
rate), and V), J stands for the gradient vector of J with respect
to y;. In this work, the iterative formulation of the MDS is
referred to as gradient optimized MDS, as opposed to the
classical MDS, where optimization is derived by eigenvalue
analysis.

In the specific case where objects {A;} are real-valued
vectors x;, in RPX, Dy e N*t, P and Q are filled with
pairwise Euclidean distances between vectors x and vectors
y, respectively, and

N N
J=) ) Pij—0ip)* =P - QI3 )
i=1 j=1
then V,, J(P, Q) is given as in (3).
N
P; ;
VJ(P.Q) =4 Y Pis = 0i) sy O
1,j#i Qij
j=1J
fOI' Qi‘j ;é O

In words, in each iteration vector y; is either pushed away
or attracted by the j-th vector with strength proportional to
Pii~9i)) 'and the modulus of y;—Y; has a multiplicative effect
on th1s strength. Alternatively, one may note that

uij=©0; —¥)/0Qij 4)
is a unit vector, therefore vector y; should move according to
a resultant vector, as in (5),

N
Yiyita Y Wi ®)
J=1j#

—
resultant vector
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where W; ; = P;; — Q;; stands for the weight associated to

the unit vector u; ;.

This vectorial perspective clearly shows that all neighbors
of y; have their influence on the composition of the resultant
vector determined by the difference between P;; and Q; ;.
For large values of Dy, this causes a well-known problem
for visualization (where Dy = 2 or 3), the crowding prob-
lem, where many points tend to be projected in the same
spot because most weights tend to cluster around similar
values. As an illustration, in Fig. 1 we consider Euclidean
distances between image patterns from the emblematic
MNIST dataset [11]. Each image is coded as a 784D vector
(28 x 28 monochromatic pixels), and we randomly selected
3000 images for this illustration. The first image is taken as
x;, and 2999 distances are computed, corresponding to the
first row of P, whose values are represented in the upper plot
in Fig. 1.

Most of the 2999 Euclidean distances are clustered around
the interval from 2000 to 3000, and even their minimum is
greater than 1200. If corresponding entries in Q are expected
to represent distances in 2D or 3D, one should expect the
negative gradient to adapt the set ) towards a configuration
where its elements are apart from each other with similar
distances, around 2500. However, in 2D or 3D, this goal
cannot be satisfied, which eventually induces the crowding of
points as a geometric trade-off between tensions. Similar dis-
tribution of distances are expected whichever x; is considered
instead of x1, therefore, if (5) is applied to adapt projections y;
in 2D or 3D, weights W; ; are not sufficiently discriminating
to yield good visual projections of neighboring influences.

If instead of Euclidean distances, entries in P are replaced
with carefully crafted similarity measures, such as the expo-
nential of properly scaled and squared distances, as illustrated
in the lower plot in Fig. 1, the crowding of weights can
be avoided. For instance, for the MNIST dataset, and again
for the first row of P, the division of all N distances by
200 yields about 36 non-negligible entries. Unfortunately,
because the density of points is rarely the same everywhere,
the same scaling factor may not be suitable for all rows
of P.

The use of Gaussian functions to replace Euclidean dis-
tances suggests a probabilistic reasoning where P;; can be
regarded as a conditional probability of picking x; as the
next sample, given that the current sample is x;. This was
indeed the probabilistic framework used in [6] by Hinton and
Roweis to propose the SNE. Besides, although SNE is not
presented as a case of MDS, the application of the following
three changes on MDS helps palliating the crowding problem,
while it also makes MDS more similar to SNE:

C1 The adaptation of a specific scaling factor for each row
of P, thus yielding a constant effective number of rele-
vant values per row. In [6] this number is referred to as
Perplexity.

C2 The normalization of both P and Q. More precisely, both
constraints |[P||; = 1 and ||@||1 = 1 are imposed, where

1Pl = Y 0 1Pl
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FIGURE 1. Top plot: the concentration of Euclidean distances in high
dimension is illustrated with 3000 images randomly drawn from the
MNIST dataset (784D). A query image of a handwritten digit ‘3’ is
compared to 2999 other images from all classes (‘0" to ‘9"). Images
associated to the highest scores are represented in the bottom plot,
where the replacement of Euclidean distances with the negative
exponential of properly scaled and squared distances avoids the crowding
of values, thus highlighting a few near neighbors of the query image.

C3 Change (C2) allows the use of the Kullback-Leibler
divergence instead of Euclidean distance as an improved
criterion. Indeed,

N N
Tk =YY Pijlog(Pij/Qij), Qij#0. (6)

i=1 j=1

takes into account the restricted matrix manifold where
P and Q are to be found.'

A further fourth change (C4) was added in 2008 [7] to SNE,
when the the Student’s t-distribution replaced the Gaussian
distribution in the construction of Q, whereas the Gaussian
remained unchanged for the construction of P. This last
change yielded the t-SNE, which was shown to reduce even
more the crowding effect.

The remarkable success of t-SNE was followed by the
proposal of similar approaches, such as LargeVis [8] and
UMAP [9]. In LargeVis, the prohibitive practical cost of
dealing with N x N matrices, for large N, was tack-
led through the use of efficient methods for finding near
neighbors, along with the random sampling of far neigh-
bors. As for changes (C1) to (C3), they were also used
in LargeVis, although the Kullback-Leibler divergence was
replaced with a likelihood function with similar effect. Only
C4 was slightly disregarded in LargeVis, as some other
probability density functions (PDF) beside t-Student were
included.

In UMAP, P and Q are not computed with Gaussian
and t-Student distributions, but with a parametrized negative

1 Constraint M|l = 1 defines a manifold in RN*N where M is an
N x N matrix of positive Real numbers.
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exponential of distances, and a double-parametrized gen-
eralization of the t-Student distribution, respectively, in a
fuzzy set theoretic framework. But in spite of their speci-
ficities, most essential elements of t-SNE and LargeVis
can find equivalences in UMAP, as succinctly presented
in Appendix C of [9]. For instance, UMAP makes use of
approximate nearest neighbor search, and stochastic gradi-
ent descent with negative sampling for optimization, as in
LargeVis, and the cardinality of the fuzzy set of 1-simplices,
in fuzzy jargon, plays the same role as the Perplexity param-
eter, in t-SNE.

In summary, t-SNE, LargeVis and UMAP share the follow-
ing working principles (WP):

WP1

WP2

WP3

A limited amount of near neighbors are found for each
x;. This corresponds to an underlying presupposition
that the neighboring points lie in a locally continuous
manifold.

Pairwise distances between x; and x;, i,j €
{1,2,...,N} are computed. UMAP does not require
this distance to be Euclidean but, in most experimen-
tal results from all techniques Euclidean distance is
used. This suggests an underlying presupposition that
the neighboring points lie in a locally (almost) linear
manifold.

Pairwise distances are either shrunk or expanded by
a local scale factor, o;, so that a similarity measure
Sfx(x;, xj) yields negligible values for far neighbors,
where fx(-) is a positive Radial Basis Function with
maximum at fy (0). For instance, in t-SNE fx (x;, x;) =

exp —;1_2 lx; — lelg . Asillustrated in Fig. 1, for the

MNIST dataset, o1 = 200 is a local scale factor for x;
that retains only 36 near neighbors with similarities
above 1% of the maximum, and 14 near neighbors
with similarities above 5%. As expected, according
to (C1), for this same scale factor the corresponding
Perplexity [6] is about 25, thus in the same range.
This local distance scaling yields non-symmetrical
metrics, as illustrated in Fig. 2, where points within
two regions with discrepant densities highlight the
need for a symmetrization strategy. The detail in Fig. 2
shows that the Euclidean distance d;; is differently
scaled around point x; and x; with scale factors o;
and oj, respectively. This induces a density equaliza-
tion effect, also illustrated, where the resulting average
density is controlled by the Perplexity parameter, in t-
SNE.

On the flip side, the symmetry requirement for a
metric to be a distance is violated, as 04,’ £ 04/’,
and consequently p£-|,< # pi|j» where pj; =

dij

and, p;; = e ( % ) . To enforce symmetry, in t-SNE
. . . 1 . L [’iU‘H’in

pairwise similarities are set to p; j = —55—.

The local scaling of distances yields density equal-

ization of uniformly distributed regions of the
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FIGURE 2. lllustration of density-sensitive clustering and density
equalization yielded by the t-SNE application to a set of 2D points with
two-densities of points. The between-density boundary is projected in a
between-cluster gap, whereas cluster densities are equalized. Remark: no
dimension reduction in this illustration, for Dy = Dy = 2.

WP4

space, whereas irregularly distributed regions, such
as between-clusters gaps and between-densities
boundaries cannot be properly handled to yield an
equalized density, as illustrated in Fig. 2.

Therefore, beyond the intended dimension reduc-
tion, when Dx > Dy, two remarkable effects are
observed in t-SNE, namely: density equalization and
density-sensitive clustering, as highlighted in Fig. 2.
Note that, in this illustration there is no dimension
reduction, as Dy = Dy = 2, but although the
original dataset has no remarkable gap, the projected
data-points have a distinguishable one, dp;,;, result-
ing from the projection of cross-densities distances,
whereas most points are packed in almost uniform
density clusters.

These visually attractive effects can be roughly
induced by the flagging of K near neighbors (KNN)
for each data point (as in WP1), followed by the
normalization of the volume occupied by these KNN,
thus inducing local space shrinking or expansion. This
raw simplification of WP3 is used in Section III.
Matrix P = {p;;} is filled with symmetrized simi-
larities between locally scaled pairwise distances in
the input dataset, X', where similarities are obtained
through a given Radial Basis Function (RBF) fy :
RPx — RT, and elements of matrix Q are obtained
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as similarities between instances of the projected
low-dimensional dataset, ), through another RBF fy :
RPY — RT.

WP5 Symmetric matrices P and Q are compared, and pro-
jected points are adjusted according to rules similar
to (5). The specificity of each iteration rule depends on
the choice of functions fx and fy, and the criterion J.

WPG6 For better visual results, the influence of points too far
from each other in the projected space can be damped.
This damping effect is presented as the advantage of
t-SNE over SNE, as a result of the mismatch between a
RBF fyx given by a Gaussian PDF, and another RBF fy
corresponding to the t-Student PDF. More specifically,
Equation 5 in [7] can be rewritten with the notation
used in (5) as:

ly; —¥;ll2

N
y; (_y+a W.’.—u.’,
evite ) YAty —-yidh Y

J=1j#

(N

resultant vector

lyi=y;li2

~ (i) _
for distances |]|yl» — y/||2 either near zero, or much

greater than 1.

where plays the role of a damping factor

In Section III, we test the effectiveness of these WP by
implementing them as simply as possible, so that if they are
indeed the main engines behind state-of-the-art approaches,
similar experimental results are expected from our simplified
alternative.

IIl. PROPOSED STRAIGHTFORWARD VISUALIZATION
ALGORITHM

The Straightforward Visualization Algorithm (SVA), as pre-
sented in Algorithm 1, iteratively adjust the projection of
all N vectors in X into corresponding vectors in )/, thus it
looks for a projection ) = sva(X; K, fy) where parameter
K represents the arbitrary number of near neighbors (e.g.
K = 40) and fy(-) is an arbitrary RBF.

In step 1, N(N — 1)/2 squared Euclidean distances are
computed in RPx, thus requiring D, scalar multiplications per
distance. Likewise, in step 6.1, N(N —1)/2 squared Euclidean
distances are computed in RDy were Dy is setto 2 or 3. There-
fore, for a fixed number of iterations, the SVA is O(N? Dy).
This is also the case for most state-of-the-art algorithms, and
complexity reduction has been addressed since t-SNE was
first proposed [7]. Besides, computational burden reduction
was the main motivation behind Largevis [8], and although
it is beyond the scope of this work, most techniques men-
tioned there and in references therein are also applicable to
SVA.

IV. VISUALIZATION OF NEW DATA

The projection of N given high dimensional data points into
2D or 3D for visualization purposes, through the approaches
considered in this work, is a dimension reduction obtained
through complicated space contraction/expansion around
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Algorithm 1 Visualization Y = sva(X’; K, fy)

1. Compute all N(N — 1)/2 pairwise Euclidean distances
between x; and x;, j # i.

2. Find the subset of K near neighbors (KNN) of each x;,
and set P;j = P;; = 1if j is in this subset. P;; = 0
otherwise. Therefore, each row of P plays the role of a
vector of flags, indicating where the KNN are. Note that
P remains symmetric, thanks to the simultaneous setting
of flags at P; j and P; ;. As a consequence, each row of
P may have a few more hotspots (ones) than K. The
diagonal of P is kept null, since x; in not regarded as a
neighbor of itself.

3. Normalize matrix P as: P « ﬁ. Unlike t-SNE and

.] . . . .
other approaches based on probabilistic reasoning, this
normalization is not mandatory, but it has a suitable
consequence in terms of algorithmic convergence, as the
matrix space is restricted to a unit norm matrix manifold.

4. Randomly initialize a 2D or 3D set (i.e. Dy is either
2 or 3) of N Real valued vectors, YV = {y{,¥2,---,¥n}
typically with very small values.

5. Set a learning rate, « (around N, to compensate for
the matrix normalization), a damping radius, R, and a
damping factor, . We successfully experimented with
values of R, from 1.5 to 3, and a fixed n = 0.1.

6. Iterate the following steps until some stopping criterion
is reached (in our experiments, we used a maximum
number of 2000 iterations as stop criterion, as indicated
in Sec. V).

6.1. Find Q;; = fr(lly; — y;ll2).

6.2. Set the diagonal of Q to zero and project it on the
same matrix space where P is, through the follow-
ing attribution: Q <« HQ%

6.3. For every pair of vectors in ), adapt y; according
to:

N
i<y —« Z BiWi jui (®)
J=1j#
where, asin (5), W; ; = P; j—Q; j is the weight asso-
ciated to the unit vector u; j = (y; — y))/lly; — y;ll2,
and either g; = 1, for ||y; — y;ll2 < Ry, or B; =1,
otherwise.
These iteration steps are similar to (5), apart from
the minus sign before o, which reflects the replace-
ment of distances with similarities measures.
7. Return ).
The SVA has a computational burden dominated by two
steps, namely:
« step 1, outside the iteration loop, and
« step 6.1, inside the loop, which is expected to be the
most relevant in terms of execution time.

each of the N observations. This projection has interesting
properties in terms of density equalization and clustering,
and it can be useful to represent this mapping as a function
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Algorithm 2 Encoder y,,,, = §(Xpew; M, X, Y)
1. Find a single near neighbor of x,,.,,, say x; in X, and take
its corresponding y; in V.
2. Find M near neighbors of y, in )} and project back their
correspondences in X.
3. Compute the M distances, d;, i = 1,2, ..., M, between

Xuew and the M back-projected vectors selected in Step
2.

2
4. Compute M weights as w; = exp <— (m) >,

where d,;, is the minimum among the M distances, and
€ is a small positive Real number which prevents division
by zero.

5. Normalize weights: w; < w;/ Zfi L W)

6. Return the projected vectory,,,, = Zﬂil wjy;, where y;

j
stands for the j-th near neighbor found in step 2.

go : RPx — RPr whose approximation y = g(x) can
be learned from X and ), after SVA reaches its stopping
criterion.

To obtain an approximation g as straightforward as
SVA, a data-driven piecewise-linear approximation is pro-
posed in Algorithm 2. It is important to highlight that this
piecewise-linear projector assumes that, with Euclidean dis-
tance, finding M near-neighbors in ) is more trustful than
in X, for elements of Y are typically represented in much
lower dimension than their counterparts in X. Besides, points
in ) tend to be density-equalized, as illustrated in Fig. 2.
Therefore, in Algorithm 2, except for step 1, even near neigh-
bours of elements in X" are always found through Euclidean
distances between corresponding (projected) elements of ),
which is an originality of this piecewise linear interpolator.
All distances in Algorithm 2 are Euclidean.

The motivation for having an approximation of go is
two-fold: first it allows the visualization of new incom-
ing data without any projection re-adaptation, thus g plays
the role of a data compressor, or an encoder. Besides,
because the current version of the SVA is not adapted to
large datasets (for naive manipulation of N by N matri-
ces P and Q may become prohibitive), Algorithm 2 can
also be used to tackle large datasets, by applying SVA to a
small subsample of it, and then encoding all remaining data
with g.

V. EXPERIMENTAL RESULTS

Most experimental results presented here are visual evi-
dences that, with an adequate choice of the parameters,
the SVA, which is a simple implementation of the WP listed
in Section II, yields results visually similar to those obtained
with t-SNE (which is itself a baseline for LargeVis and
UMAP, as presented in [8] and [9], respectively). We start
by using two publicly available datasets, MNIST [11] com-
prising of of 28 x 28 grayscale 10-class handwritten dig-
its, and Fashion-MNIST [12], a more challenging dataset
than MNIST, in terms of classification, although it is also
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FIGURE 3. Resulting visualization with SVA for N = 3000 randomly drawn
from the test MNIST dataset, for K = 40, R, = 1.5, » = 0.1 and RBF
fumap(r) = m-

composed of 28 x 28 grayscale images split in 10 classes.
In Fashion-MNIST each class corresponds to a fashion prod-
uct category. Both databases have two non-overlapping sub-
sets, one labeled ““training”, with 60,000 images, and another
labeled ““test’, with 10,000 images. All experiments with
MNIST and Fashion-MNIST used a constant step « = N,
over 2000 iteration cycles. Of course, elaborated step adap-
tation strategies would sensibly improve results and avoid
numerical instabilities, and should be considered in practical
applications of SVA. However, these additional adaptation
strategies would mask the similarities between results that we
want to highlight in this work.

We experimented with the negative quadratic exponential,
fe2(r) = exp(—rz), successfully used in the SNE, the inverse
quadratic, fr2(r) = ﬁ, used in t-SNE and LargeVis, and
the parametrized RBF fypap(r) = ﬁ with @ = 1.929
and b = 0.7915, which is used in UMAP, and can be
regarded as a modified version of fro(r). It is noteworthy
that in SVA there is not a probabilistic reasoning behind the
choice of fy, therefore its choice is not limited to a valid
PDE.

As the standard version of t-SNE (see Section 5 of [7]),
the current version of SVA is not adapted to large datasets.
Therefore N = 3000 images were randomly drawn from each
test dataset, and the same set, under the same initialization
of ) was used in all experiments in this section, to yield
better visual comparison of results. Fig. 3 is to be compared
to the 2D t-SNE projection shown in Fig. 4, with perplexity
parameter set to 40, whereas Fig. 5 and Fig. 6 are to be
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FIGURE 4. Resulting visualization with t-SNE for N = 3000 randomly
drawn from the test MNIST dataset, under Perplexity parameter set to 40.
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FIGURE 5. Resulting visualization with SVA for N = 3000 randomly drawn
from the test Fashion-MNIST dataset,, for K = 40, R = 1.5, » = 0.1 and
RBF fg5(r) = exp(—r2).

compared to the 2D t-SNE projection shown in Fig. 7, also
with perplexity parameter set to 40.

Regarding Algorithm 2, Fig. 8 illustrates its use, where
just 3000 images sampled from the “test” MNIST dataset,
along with their projections were used as parameters X and )
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FIGURE 6. Resulting visualization with SVA for N = 3000 randomly drawn
from the test Fashion-MNIST dataset,, for K = 40, R = 1.5, » = 0.1 and
RBF frp(r) = —!
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FIGURE 7. Resulting visualization with t-SNE for N = 3000 randomly
drawn from the test Fashion-MNIST dataset, under Perplexity parameter
set to 40.

of g. Then, all 60,000 new images from the ““training” dataset
were projected (without further adaptation of the visualiza-
tion projection).

VOLUME 9, 2021



J. Montalvao et al.: Straightforward Working Principles Behind Modern Data Visualization Approaches

IEEE Access

Adaptation/learning

3000 datapoints
from MNIST
(from test subset)

60,000 datapoints
from MNIST
(train subset)

1
©oO~NOOUDMWNERERO

FIGURE 8. Visualization of new data after SVA was adapted to

3000 images from the “test” MNIST dataset, with K = 40, R, = 1.5,

1 = 0.1 and RBF f¢,(r) = exp(—r2), yielding X and ). Then the encoder g
is applied to the 60,000 new images from the “train” MNIST dataset, with
M = 40.

The experimental results presented in this paper
were chosen as visually representative of experiments
done so far. Some more results, along with sugges-
tions of implementations of the SVA and the encoder
g in some usual computer languages can be found as
supplemental material posted on IEEE Xplore. https://
ieee-dataport.org/documents/supplementary-material-paper-
straightforward-working-principles-behind-modern-data

Visual evaluation is obviously the most usual approach
for comparisons between visualization algorithms, insofar
as visualization experiments are typically concerned with
subjective (visual) aspects of classes and clusters dispersion,
hardly replaced with any objective index. One may even
conjecture that visualization algorithms are popular because
there is not yet an objective index capable of replacing human
cognition.

Nevertheless, by considering that the goal of all visual-
ization algorithms considered in this work (including the
SVA) is to preserve as much as possible the local neigh-
boring structure of points before and after projection, and
knowing that it can be a very difficult goal for points
lying in manifolds with local dimensions much higher than
2 or 3, we crafted a simple index, namely, the Near-
Neighbors Coincidence Rate (NNCR), which is computed as
in (9).

CX, V) =

N
1
PAEARRA ©)
N xV =

where V is an index parameter representing the number of
near neighbors to be considered, A}, stands for a subset of
X whose elements are the V near neighbors of x,. Like-
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FIGURE 9. One projection per algorithm of the 150 4D vectors of the Iris
dataset. Algorithms are indicated in the subplots.

wise, )V, stands for a subset of ) whose elements are the
V near neighbors of y,, and |X, N V,| is the cardinality
of the intersection set. Thus, if most V near neighbors of
each point are preserved after projection of X into ), C
is expected to yield values close to one. By contrast, near
zero values of C indicate disruption of local neighboring
structures.

To test this new measure, we consider four public datasets
whose points represent very diverse signaling phenomena.
We used the following constant parametrization of methods
across all next experiments, to allow better comparisons of
results:

o t-SNE: Perplexity = 30.

e UMAP: n = 30 (the number of neighbors), min —
dist = 0.1 (desired separation between close points in
the embedding space) and n — epochs = 200 (number of
training epochs to use when optimizing the low dimen-
sional representation).

e SVA(a): K =30,R, = 3,7 =0.1 and fra(r) = rlz

. SViA(b): K =30,R,;, = 3,7 =0.1and RBF fyyap(r) =

I+ar?b-

In all experiments, points were projected into R?, and the
number of iteration for t-SNE, SVA(a) and SVA(b) was set
to 1000.

Fig. 9 illustrates one projection with each algorithm of
the emblematic [Iris dataset used in [13], with 150 4D
vectors numerically representing sepal and petal measure-
ments (length and width) for flowers from 3 species,
namely: Iris setosa, Iris versicolor and Iris virginica. Thus,
data points were labeled here with Setosa, Versicolor or
Virginica.

For the second set of comparative experiments, we took
the recently published dataset explained in [14], here referred
to as Meat volatiles, where an array of 10 sensors (8 Metal
Oxide gas sensors plus temperature and humidity sensors),
i.e. an e-nose was used to acquire multivariate signals through
time from 7 controlled mixtures of beef and pork, (always
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FIGURE 10. One projection per algorithm of the 3000 randomly drawn
10D vectors of the Meat volatiles dataset. Point labels correspond to
proportions of pork in 100 g of mixed meet (pork and beef).
Algorithms are indicated in the subplots.

100 g of fresh ground meat per acquisitions sessions of 120 s).
In this dataset, only 60 instances of each mixture are avail-
able, but each instance corresponds to a sequence of 60 10D
measurements vectors taken every 2 seconds. Thus, from
this dataset we randomly drawn 3000 measurement vec-
tors and projected them from 10D into 2D, as illustrated
in Fig. 10.

A fine analysis of each dataset is beyond the scope of this
paper, where the comparison between 2D projections across
methods is the main concern. However, it is worth noticing
that all projections in Fig. 10 seem to present the same incon-
sistency, namely: that similar proportions of beef and pork are
not projected in near clusters. As for this matter, one should be
aware that, for e-noses based on Metal Oxide sensors, robust
feature extraction from raw signals is yet a relevant research
subject. In any case, in spite of these apparent raw signal
inconsistencies, all four projection in Fig. 10 are in agreement
with each other.

Fig. 11 illustrates one projection per algorithm for
the dataset here referret to as Newsgroups,> where each
of 16242 postings (texts in natural language) is encoded as
a 100D binary vector, where the occurrence for 100 relevant
words (e.g. cancer, baseball, car, children) is flagged with 1.
Thus, each binary vector is labeled with comp.*, rec.*, sci.*
or talk.*, corresponding to the group name in which it was
posted. For the projections presented in Fig. 11, 3000 vec-
tors were randomly drawn along with their corresponding
labels.

Finally, a public dataset of male and female clean-speech
utterances in Brazilian Portuguese [15], was used to yield
19 Mel-Frequency Cepstral Coefficients (MFCC) per short
speech frames of 25 ms, taken from all utterances, from

2Also labeled as 20 Newsgroups,” and publicly available at
https://cs.nyu.edu/foweis/data.html.
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FIGURE 11. One projection per algorithm of the 3000 randomly drawn
100D binary vectors of the Newsgroups dataset. Algorithms are indicated
in the subplots.
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FIGURE 12. One projection per algorithm of the 3000 randomly drawn
18D MFCC vectors of the Speaker gender dataset. Algorithms are
indicated in the subplots, and point labels correspond to the gender of
the speaker who uttered it.

all speakers. The first element of each MFCC vector was
systematically discarded (for it does not carry relevant
acoustic information), thus yielding around 200,000 18D
MFCC vectors, from which only 3000 were randomly
drawn and labeled according to the corresponding speaker
gender. In this paper, this dataset is referred to as
Speaker gender, and its projection in 2D is presented
in Fig. 12.

The NNCR for all 16 projections (4 per dataset) are gath-
ered in Table 1. As compared to the corresponding visual
aspects, the NNCR seems to yield meaningful comparative
values. For instance, for the datasets Iris and Meat volatile,
most clusters concentrate unmixed classes, and NNCR values
above 0.7 confirm that, on average, more than 70 % of the
local structures in the corresponding original datasets were
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TABLE 1. Quantitative comparisons.

Dataset Method | Near-neighbors coincidence rate
Iris specie t-SNE 0.85
SVA(a) 0.82
UMAP 0.82
SVA(b) 0.82
Meat volatiles | t-SNE 0.76
SVA(a) 0.74
UMAP 0.72
SVA(b) 0.72
Newsgroups | t-SNE 0.33
SVA(a) 0.33
UMAP 0.30
SVA(b) 0.32
Speaker gender | t-SNE 0.40
SVA(a) 043
UMAP 0.35
SVA(b) 0.41

preserved. This further suggests that the corresponding under-
lying manifolds in Iris and Meat volatile datasets are more
easily projected into 2D than the ones in the Newsgroup and
the Speaker gender datasets, where only less than 45% of the
local neighboring structures were preserved.

From the standing point proposed in this paper, what is
perhaps more important than measuring the difficulty of
keeping local neighboring structures, is to notice that, for each
dataset, the NNCR also yields an objective index for com-
paring algorithm projections. Indeed, as much as the visual
qualitative comparisons, this quantitative measure seems to
confirm that t-SNE, UMAP and the two versions of SVA
are almost equivalent in projecting high-dimensional data
into 2D.

VI. CONCLUSION

State-of-the-art visualization approaches are based on elab-
orated probabilistic and fuzzy models. By contrast, in this
work we assume that a few simple working principles would
be sufficient to yield similar results, which was corroborated
by experiments done with an algorithm where these princi-
ples were straightforwardly implemented. This algorithm was
applied to several public datasets corresponding to various
application domains.

The proposed reduction to simple principles has a first
useful aspect in terms of potential boosting of new devel-
opments in visualization tools, because the simplicity of the
six listed working principles allows for new contributions and
improvements from researchers with a broad range of differ-
ent backgrounds. For instance, we observed that the choice of
an RBF, fy, is not restrained to probability distributions, and
the knowledge of the exact cost function (and its gradient)
is not imperative for a visualization result qualitatively sim-
ilar to that yielded with t-SNE. These simplifications allow
the experimentation with a virtually unlimited set of RBF,
that can be heuristically selected and easily tested for suit-
able (subjective) visualization effects, without the need for
(potentially laborious) algebraic manipulations of gradient
cost function.
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Besides, the replacement of the Perplexity, in t-SNE, with
a simpler parameter K representing a fixed number of near
neighbors also yielded a simple piecewise linear encoder,
which was used for projection of new incoming observa-
tions, after a visualization projection was adjusted. This is
a useful companion algorithm for SVA, for it allows the
visualization of an unlimited amount of data, whereas SVA
itself is kept simple, in terms of implementation. Indeed,
the usual representation of N by N matrices P and Q is a
limiting aspect that can be tackled, for instance, with efficient
KNN graph construction (see [8] and references therein).
On the other hand, the approach to solve the same problem
implemented in this work was to split the task into two parts,
namely: first a small subsample of N points is projected
with SVA (e.g. N = 3000), then the encoder g takes the N
projected points as parameters and is ready to project any
amount of new incoming data. We believe that this choice
is algorithmically simpler than modifications on the SVA to
cope with large datasets. Moreover it allows for applications
beyond data visualization, in projected dimensions higher
than 3D, where SVA and g can be jointly used to yield
auto-encoding structures, as a matter for the follow-up of this
work.
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