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ABSTRACT Terrain generation aims to automatize the procedure of creating landscapes using a computer
system. The generationmodels must follow different terrains’ topographical features, such as areas with river
deltas and other regions where water bodies affect the natural landscapes. It is possible to generate more
realistic terrains thanks to improvements in computer graphics techniques and deep learning models that
use specific hardware. However, the advance on the generation of terrains that include river deltas, fjords,
and waterfalls has not had the same pace as other more studied landscapes. Therefore, as a contribution
to the advance of the research of terrain generation with water bodies using generative models, this paper
presents the DRCA2020 dataset, which is useful for supervised training. The proposed dataset contains eight
different types of real-world satellite images. These images are grouped by the same geographical location.
There are 13,184 groups; each one has three RGB surface images, a water coverage map, three binarizations
of water coverage, and a digital elevation model (DEM). Additionally, this paper proposes the use of a cGAN
composite model, trained with the DRCA2020 dataset, for generating synthetic DEMs from water coverage
images and therefore, to create realistic surface texture images with promising validation results.

INDEX TERMS cGANs, generative model, river delta, river delta dataset, satellite imagery, terrain
generation.

I. INTRODUCTION
Procedural terrain generation (PTG) is the process to semi- or
automatically create virtual terrains with computer systems.
Terrain generation is employed in several fields, including
virtual reality [1], video game production [2], and inMachine
Learning for augmentation of training sets. Moreover, PTG
has becomemore prominent in the last decade as video games
have raised their production costs [3]. According to its defi-
nition in geomorphology, a terrain consists of different land
features such as mountains, valleys, canyons, rivers, lakes,
fjords, waterfalls, river deltas, coastlines, among others. Nat-
ural processes such as erosion and deposition mold these
features. Erosion is when terrain material is removed and
carried away by wind or water. In counterpart, deposition is
when somematerial is accumulated in another area and forms
new landscape. Additionally, there are faster natural changes
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provoked by avalanches, fires, storms, floods, or earthquakes.
Moreover, human activities generate changes in terrains [4].
Therefore, one of the challenges of the PTG is to recreate
different types of terrain featuresmore realistically, especially
in complex landscapes, such as the ones including features
like river deltas, fjords, and waterfalls.

Emerging approaches, such as the presented in [5] and [6],
generate river deltas using stochastic or Machine Learning
methods respectively, with promising results. In counterpart,
Generative Adversarial Networks (GANs) have more impres-
sive results in creating digital data such as images, audio,
and videos. GANs are a class of Machine Learning tech-
niques that consists of two trained models, a generator and a
discriminator, that simultaneously improve the realistic data
generation [7]. As otherMachine Learning techniques, GANs
require data to train the models to recognize the main features
that describe it. In the case of terrain generation, it is pre-
ferred to use real-world data from satellite imagery. Satellite
imagery includes height maps, land surface images, sunlight

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 2975

https://orcid.org/0000-0002-3163-8862
https://orcid.org/0000-0002-9763-7651
https://orcid.org/0000-0003-0810-1458


L. O. Valencia-Rosado et al.: Generation of Synthetic Elevation Models and Realistic Surface Images

FIGURE 1. The pipeline of the proposed methodology. A Water Coverage Map is required to create a Digital Elevation Model (DEM), which is the
G(x) output from the cGAN module. Then, this DEM is the input for another cGAN module to generate a land surface image according to the
selected climate.

exposition maps, and humidity maps [8]. These are pub-
licly available from institutions such as the National Space
Agency (NASA) through its EarthData portal [9], the United
States Geological Survey (USGS) in its EarthExplorer plat-
form [8], and from the European Space Agency (ESA) in the
portal of the Copernicus Open Access Hub [10].
Additionally, some satellite imagery datasets are available

and ready to be used for adjusting object recognition models
in urban environments, e.g. those presented in [11], [12],
and [13]. Other datasets provide semantic segmentation of
images in cities or towns, as in [14], [15], and [16] for
instance. Some others are used in land coverage classifica-
tion, e.g. [17] and [18]. A further description of these datasets
is found in Section III. However, there is a lack of public
datasets that include processed images for river deltas and
coastal terrain generation, which also delays the contributions
with practical models to create landscapes with water bodies.
Therefore, there is a need for specific datasets for under-
standing and extracting the main features of terrains with
river deltas and coastal areas, for their automatic generation,
as well as approaches that focus on creating those kinds of
landscapes.

Therefore, this paper’s primary purposes are to present
an approach for terrain generation focused on areas with
river deltas and coastal regions and to introduce a specialized
dataset for training and assessment purposes. On the one
hand, this approach uses conditional Generative Adversarial
Networks (cGANs) on a two-stage basis: the first one is to
generate an architecture for creating synthetic Digital Ele-
vation Models (DEMs) and the second one to generate the
terrain textures for the realistic surface images (see Fig. 1).
On the other hand, this paper introduces the Deltas, Rivers,
and Coastal Areas 2020 - DRCA2020 dataset which collects
satellite images with the mentioned water body areas. The
purpose of DRCA2020 is to provide real-world imagery
to improve the naturalness of generated terrains in differ-
ent applications such as in simulation, game design, and
hydrology research. The proposed approach is focused on

the generation of terrains with two opposite and distinctive
climates: tropical and polar. Both climates are included in
the DRCA2020 dataset. Another advantage of the proposed
approach is that it can accept user-drawnwater coveragemaps
to control the delta generation.

The organization of this paper is as follows. Section II
presents a brief analysis of terrain generation tech-
niques, including a review of related works with river
delta generation. Then, Section III describes the proposed
DRCA2020 dataset. Section IV shows the methodology for
the terrain generation and the cGANs architectures. SectionV
presents the setup for the cGANs followed by Section VI with
the presentation and discussion of the experimental results.
Finally, the concluding remarks are in Section VII.

II. RELATED WORK
The pace of automatic and realistic terrain generation focused
on specific water bodies is different from the terrain creation
in general. There are a few approaches with potential but
partial results. For instance, Teoh [5] proposed a method for
generating coastal terrain features. That work introduces a
stochastic approach that generates a river delta with a single
branching point. The generation process of the delta in [5] is
as follows: first, it generates a river that reaches the sea; sec-
ond, it creates a semicircle of new land around the river mouth
and randomly selects points on the updated coast; finally,
the former rivermouth is joint to these points with distributary
channels. The main disadvantage of that generation process
is that it is not generalized to other types of deltas. Another
example of river delta generation, proposed by Nesvold [6],
uses a Wasserstein GAN trained with 20,000 multispectral
satellite images which are subsections of 40 different river
deltas. These subsections have different scales to capture the
changes in geometrical shape features of the deltas. How-
ever, the goal of Nesvold’s work is to learn the depositional
patterns of the river deltas. Similarly, the method presented
by Seybold [19] is a simulation of the water flow and the
erosion and deposition processes. It can generate realistic
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deltas; however, the amount of data and needed processing
renders is unsuitable for being the backbone in a procedural
generation application. In general, geological simulations are
significantly different from the methods that focus on graphic
simulation. For instance, geological simulations require soil
composition, terrain slope, water presence and rainfall vol-
ume. Moreover, geological methods may be restricted to a
mathematical description of the river delta behavior with
no graphical representation [20]. Additionally, other works
can produce river networks but do not generate deltas,
e.g. [21] and [22]. Other works focus in specific features such
as waterfalls, e.g. [23].

Several researchers have used Generative Adversarial Net-
works (GANs) to tackle the terrain generation problem. For
instance, Ping et al. [24] use GANs in conjunction with
classic Convolutional Neural Networks (CNNs) for creating
video game maps represented with height maps. A promi-
nent work that combines the use of sketches and conditional
GANs (cGANs) was presented by Guérin et al. [25]. That
approach uses the Pix2Pix framework [26] to perform a trans-
lation between two images. Guérin et al. train the cGANs to
generate height maps from sketch lines representing moun-
tain ridges, river courses, and altitude cues. Another method
that accept user-drawn inputs is presented by Zhou et al. [27].
In that seminal paper, the mountain ridges are identified from
real-world height maps. Then, some patches are extracted
and use it over user-generated sketches to create new moun-
tain ridges. Other works do not need to have a mountain
ridge to be explicitly drawn; instead, a sketch represents
a low-definition height map as input, as it was proposed
in [28]. Based on altitude differences, each part of the map
is modeled after different terrain features. These methods
generate mountain ranges, plateaus, or canyons, but they
cannot create river deltas or coastal features. The evidence
points that those excellent results for mountain landscapes
can be transferred to the creation of terrains with river deltas
by the use of a specialized training to fit similar models to
this new scenario. Therefore, the proposal in this paper uses
the well-known Pix2Pix framework with a single feature,
the presence of water, to generate river deltas and coastal
lowlands. The Pix2Pix model is fitted to this new scenario
using the proposed DRCA2020 as the training dataset.

A. SPECIALIZED DATASETS
Many datasets use satellite imagery, which is ready for fitting
Machine Learning models, but most of them are focused on
urban areas; consequently, those are not suitable for natural
landscape generation. Some of those datasets provide anno-
tated images that can also be used for object detection tasks.
These could be focused on just one type of object such as
cars [11] or ships [12]; or in multiple types of objects includ-
ing ships, planes, swimming pools, courts, helicopters and
trucks [13]. Drone imagery datasets provide images similar
to those of satellites, and provide annotations on smaller
subjects like pedestrians, cyclists or skateboarders [29].
Other datasets are made up of images with annotations on

areas instead of objects, there are useful for fitting semantic
segmentation models. For example, the RoadNet dataset [14]
is used for urban road identification. On the same prob-
lem, Isola [26] presented a dataset for creating road maps
out of surface images using cGANs. The xBD dataset pre-
sented in [16] focuses on the aftermath of hurricane dis-
asters. Finally, Maggiori presents a dataset for building
detection [15].

In counterpart, there are datasets which are not focused on
inhabited environments, like those used for cloud detection,
e.g. [30] and [31]. Others provide annotations on soil compo-
sition [32] or land coverage [17], [18]. However, those public
datasets do not provide enough images of river deltas and
their coastal plains. For that reason, there is a need to provide
a publicly available dataset which is focused on river deltas
and coastal terrains to facilitate the research on the generation
of these kind of terrains.

III. THE PROPOSED DRCA2020 DATASET
The DRCA2020 dataset contains satellite images from the
principal river deltas of the world, which were selected
based on the list provided by Coleman and Huh [33].
The dataset includes other water bodies for a total
of 75 deltas and six bays, and it is available online
at https://github.com/DRCA2020/Tropical-Rainforest-and-
Monsoon. Hence, this dataset collects real-world imagery
to generate synthetic and natural environments with water
body areas. The water bodies in the DRCA2020 dataset are
distributed worldwide, as it can be seen in the Fig. 2.

The satellite imagery in the DRCA2020 dataset comes
from different public databases. Land surface images are from
ESRImaps [34],Bingmaps [35], andGoogle maps [36]; these
images are RGB pictures of the Earth’s surface. The water
coverage maps are from the Global Surface Water database
provided by the European Space Agency (ESA) [37]. These
maps use blue shades to represent water seasonality. Dark
blue represents permanent water, and the lighter blues are
areas that only have water during some seasons. The lighter
the blue, the less time that area is flooded. The white areas
represent land with no surface water. The Digital Elevation
Models (DEMs) come from the ASTER database, available
through the National Space Agency (NASA) Earthdata plat-
form [9]. The DEMs are matrices where each value repre-
sents the terrain altitude of the point (x, y). The DEM is a
one-channel image, which can be normalized to the range
of 0 to 255 for visualization purposes. In total, there are eight
images for each geographic location (see Fig.3) carefully reg-
istered using the QGIS software [38]. For practical purposes,
the images collected in the dataset were cropped into patches
of 256× 256 pixels and converted into PNG format. In total,
DRCA2020 contains 13, 184 of these locations, with bal-
anced land and water presence, converting this into a ready-
to-use dataset for Machine Learning libraries and algorithms,
such as GANs models.

The DRCA2020 collects satellite imagery with terrains
on a similar scale and perspective. However, the imagery
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FIGURE 2. Distribution of the river deltas and bays around the world in the DRCA2020 dataset.

FIGURE 3. Example of image group from the Yukon river: Google satellite (a), Bing satellite (b), ESRI satellite (c), water cover map (d), permanent
water (e), total water (f), flooded areas (g), DEM (h).

acquisition is from different time lapses introducing some
variability required to avoid overfitting in deep learning
model training. One type of overfitting is when the networks
start learning noise and interpret it as part of the data [39];

therefore, variations need to be introduced to increase the
generalization of the network. In this case, when satellite
images are taken at different moments, the variations such
as the presence of clouds, the erosion of the coast or even
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the evolution of the delta channels introduce noise. There-
fore, the models need to learn how to generalize the terrain
characteristics and avoid repeating the noise.

IV. THE PROPOSED APPROACH FOR TERRAIN
GENERATION
The proposed approach consists of three submodules based
on the cGANs framework. The first one generates the Digital
Elevation Model (DEM) from a water map input. That DEM
is now the input for the next submodules which create a land
surface image with a polar climate or tropical climate. Note
that the user selects either weather or create both land surface
images in parallel, see Fig. 1. The cGANs framework is
adapted from theworks presented in [25] and [26] for this new
scenario. Note that the water map is the user’s input, which
can be in the form of a user-drawn sketch. The surface texture
created from a given DEM is an image in the RGB-color
model.

Each cGAN is composed of a couple of deep convolutional
networks: the generator G and the discriminator D. The gen-
eratorG learns how tomap from an input image x to an output
image, this is: y,G(y) ≈ z. This is different to classic GANs
in which G performs the mapping from random noise [40].
In opposition to the generator, the discriminator D tries to
distinguish the real image pairs (x, y) from those generated
ones (x,G(x)). These networks work as adversaries, as G is
trained to maximize the classification error that D is trying to
minimize. In practice, G will generate images that are closer
to z. The networks converge when D is no longer able to tell
the difference between real images and the generated ones.

The objective function as established by Isola [26] is:

G∗ = argmin
G

max
D

LcGAN (G,D)λLL1. (1)

The first part in (1) shows the adversarial objectives of
the networks as D tries to maximize the differences between
real pairs (x, y) and generated pairs (x,G(x)), at the same
time G tries to minimize that very same difference.

This is more clearly shown in the following equation:

LcGAN (G,D) = Ex,y[logD(x, y)
+ Ex[log(1− D(x,G(x)))]]. (2)

The second part of the equation (1) is a loss function that
relates the generated images G(x) with the expected output y.

LL1(G) = Ex,y[‖y− G(x)‖1]. (3)

This loss function L1 or least absolute deviation is the
sum of the absolute differences between the real image and
the predicted image; this is used to improve the generation
output as the first part of the equation does not include
enough supervision over the generated output. This part of the
objective function has a λ multiplier that serves as a weight,
in the case of the implementation it was set to 100 to improve
the accuracy of the generated images.

On the one hand, the generator’s architecture is a
U-Net [41] meaning that it has the structure of an

encoder-decoder with skip connections. The skip connections
add information of the encoding directly to the decoding
to decrease loss and improving the results. A U-net uses
convolutional layers with 4 × 4 kernels. This kernel size
was implemented by Isola. When combined with symmetric
padding, even-sized kernels show no shifting problems and
yield competitive results in generative networks. The number
of filters grow during the encoding part in the following
fashion: 64, 128, 256, 512, and then four layers of 512 filters.
Each layer uses batch normalization and has a leaky ReLU as
the activation function. The decoding involves an up-scaling
process either by transposed convolution (or deconvolutional
layers) or using up-sampling layers followed by a regular con-
volutional layer [42]. The proposed approach assessed both
up-scaling processes to select the one that reduces artifacts
in the generated images. The results of that assessment are
discussed in section VI.

On the other hand, the architecture of the discriminator
is a PatchGAN [43]. A PatchGan receives patches of the
expected image and the generated one to discern and classify
the real output of the input image. It uses an Adam optimizer
with a mini-batch of one image, and the loss function is
the binary cross-entropy. The discriminator and the generator
alternate their training, once at a time [7]. This described
methodology is an adaptation from the Image-to-Image
framework [26].

The three submodules for generation use a similar cGAN
architecture using the original setup for every generator and
discriminator. That is, the kernel weights were randomly
initialized with a normal distribution of median zero and a
standard deviation of one. The learning rate is of 0.1 and
there is drop out with a probability of 0.1 at each layer in
the discriminator network. Additionally, the three cGAN sub-
modules use different training sets for specific purposes. That
is, the first one uses pairs of water cover maps as input and a
expects a DEM as output. The second and third submodules
are for texture generation both with DEMs as input. In this
case two different training sets were employed: one uses
satellite images of tropical areas whilst the other one uses
images of polar areas to generate the outputs. By using these
submodules trained with two different areas, it is possible to
generate virtual terrains of river deltas and coastal areas and
their corresponding textures for both climates.

V. THE FITTING PROCESS
The cGANs that form the backbone of the submodules were
trained using the DRCA2020 images. The first cGAN takes
water coveragemaps as inputs and their correspondingDEMs
as outputs. An example of this can be seen in Fig. 4. The
following submodules have two different cGANs, one for the
tropical climate and the other for the polar climate. These
climates are the most predominant in real scenarios. Most
of the river deltas worldwide are in tropical climates, while
polar climates contain the most significant deltas regarding
to their size. In these cGANs the DEMs serve as input while
the land surface images are the expected output. An example
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FIGURE 4. Images used for fitting the first submodel, with their
correspoding color key: a water coverage map (a) is the input, and a DEM
(b)is the expected output, which was normalized for visualization
purposes(b).

of both pairs of images is in Fig. 5. For visualization purposes,
the contrast of the DEMs was enhanced.

A. TRAINING SETUP FOR THE DEM SUBMODULE
The training step for the DEM generator employed 400 ran-
domly selected water coverage maps and their corresponding
DEM pairs from the DRCA2020 Dataset. An altitude thresh-
old of 50 meters was established so only DEMs near to the
coast could be selected. The training consisted of 150 epochs
and was run on Google Colab [44] using a Tesla P100-PCIE-
16GB GPU. Note that for visualization purposes the DEMs
were normalized into a range of 0 to 255 and the contrast was
adjusted in the figures presented in this document.

B. THE TEXTURE GENERATION SUBMODULES
The DRCA2020 Dataset provides the corresponding land
surface textures for the water coverage maps and the DEMs
pairs. Thence, the training of the texture generators was using
the corresponding set of 400 land surface images for both
climates polar and tropical. Some different features between
the polar and the tropical climates are that the tropical river
deltas show bright green forest coverage, while polar land-
scapes are splattered with small lakes. Therefore, different
features require different generative models that fit the cor-
responding scenario. An additional experiment increased the
number of images to 1024 trying to improve the quality of
land surface creation. The comparative results are presented
in the following section.

FIGURE 5. Example of a pair of images for the tropical surface generation
(a), and for the polar surface generation (b).

The training of the three generators was done under the
same Google Colab setup. Additionally, data augmentation
was performed to avoid over fitting, specifically random
cropping and flipping, as stated in [45].

VI. EXPERIMENTAL RESULTS
This approach generatesDEMs and land surface images using
a water coverage map as a sole input. The initial train-
ing dataset contained 400 images; then, a second training
employed 1024 images to assess the visual quality improve-
ment of the generated land surface images. Each experiment
took an average of 23 and 71 seconds per epoch respectively
when training.

The DRCA2020 dataset collects images of specific geo-
graphical locations. The submodule for DEM generation uses
the original pairs of water coverage maps and DEMs, th for-
mer as input and the later as the ground truth that will be
imitated by the generation network. The pairs of DEMs and
land surface images are the input and ground truth for the
texture generation submodules. By using real-world imagery
it is possible to create synthetic realistic DEMs and land
texture images. For instance, Fig. 6 shows a pair of DEMs; the
image (a), on the left, is a grayscale visualization of a ground
truth DEM, while on the right image (b) it is its respectively
generated DEM, also visualized as a grayscale image. Fig. 7
shows an example of an user-drawn sketch representing a
water map used as input and its generated DEM. Notice
that the proposed approach allows manually created draw-
ings that simulate water coverage maps as an input, as well
as real-world water coverage maps. The blue color palette
represents the flooding areas; the darker, the more time the

2980 VOLUME 9, 2021



L. O. Valencia-Rosado et al.: Generation of Synthetic Elevation Models and Realistic Surface Images

FIGURE 6. A ground truth DEM (a) and a generated DEM (b).

FIGURE 7. User-made sketch of a water map (a), and its generated
DEM (b).

area remains flooded, the darkest blue is permanent water
bodies. This representation is translated into a difference in
altitudes.

The second and third submodules receive a DEM as input
and generate a land surface image. Different cGANs were
trained to generate either tropical or polar climate surface
images, depending on the used training set. Fig. 8 shows the
results when using 400 or 1024 training sets for both climates:
the input (a) is a real-worldwater coveragemap, which is used
to generate a synthetic DEM (b). The generated DEM is the
input in the following submodules. Fig. 8 (c) is the generated
land surface using the models trained with 400 polar images,
while Fig. 8 (d) is when trained with 1024 images. As it was
expected, using a larger training dataset with more coastal
images results in better preserved details. In counterpart,
Fig. 8 (e) and Fig. 8 (f) present the created tropical images
with the model trained with 400 and 1024 images. Similarly,
using a smaller training dataset generates images with more
artifacts.

It is anticipated that the upsampling phase in the U-Net
architecture generates some artifacts in solid land areas.
In general, two options in the upscaling process are empir-
ically evaluated. The first option is to use a deconvolution
layer while the second is to use a upscaling layer followed by
a convolutional layer. Due to the specific training dataset in
this work, the proposed approach is limited to create images
of areas near water. Some artifacts appear in opposite cases,
this is, when the images required to be generated are far from

FIGURE 8. Original Water Map (a), the generated DEM (b), generated
polar image using a training set of 400 (c) and 1024 images (d), generated
tropical images using a training set of 400 (e) and 1024 images (f).

the water. In those cases, the deconvolution layer creates a
repeating pattern, while the upscaling layer shows vertical
and horizontal stripes. Examples of this are shown in Fig. 9
and Fig. 10. The architectures in the three submodules in the
proposed approach have the same issue during the upsam-
pling process.

The experimental results show that when deconvolution
layers are used in all submodules the checkerboard noise
is increased, this can be observed in Fig. 10 (a). In the
same way, when the architectures employ upscaling layers,
the stripped noise increases, as can be seen in Fig. 10. How-
ever, if the DEM is generated using deconvolution layers and
that DEM is used in a surface cGAN with upsampling layers,
both noises are diminished, this can be seen in Fig. 10 (b).
Conversely, if the order of the architectures is swapped,
as in Fig. 10 (c), both noises are shown at the same time.
Hence, a combination of different upsampling techniques
should improve the visual quality results. Nevertheless, a gen-
eral evaluation of generative models still relies on human
perception [46], [47].
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FIGURE 9. Original Water Map (a), generated DEM using deconvolution
layers (b), generated DEM using upscaling and convolution layers (c).

A. COMPARISON RESULTS
Guérin et al. and Teoh et al. proposed two different but
relevant methods. The former generates height maps from
sketch lines representing mountain ridges, river courses, and
altitude cues [25]; while the later converts a river mouth into
a delta [5]. Until now, there were no methods that create both
the height map and the land surface image from a user-made
sketch.

FIGURE 10. Land Surface Images with different combinations of
architectures for the DEM and the land surface generation. Deconvolution
and deconvolution (a), deconvolution and upsampling (b), upsampling
and deconvolution (c) upsampling and upsampling (d).

On the one hand, the similarity between the method pro-
posed in this document and the approach of Guérin is that
both use cGANs to generate height maps; however, the one
proposed in this document specializes in terrains with water
coverage. An example of the comparison of generated ele-
vation models is shown in Fig. 11. Due to our approach’s
specialization, it can be seen a DEM with a clearer river path
created by the proposed method compared with the height
map of the related work. In that example, a similar sketch was
employed as the input. This qualitative result is generalized
with similar experiments.

FIGURE 11. On the left our approach generates an elevation model with
just a single type of feature, although there is some noise in land areas.
On the right the approach by Guerin which also needs other features
aside from river courses.

On the other hand, the Fig. 12 presents a visual comparison
between a river delta generated by the proposed method and
the method proposed by Teoh et al. Their method focuses

2982 VOLUME 9, 2021



L. O. Valencia-Rosado et al.: Generation of Synthetic Elevation Models and Realistic Surface Images

FIGURE 12. A delta generated by the method of Teoh in [5] (a), a delta
generated by our approach (b).

on the river geometry to convert a river mouth into a delta.
In contrast, our approach can generate an image from an
initial sketch. To this comparison, a water map with a similar
structure to the river delta generated by the Teoh’s method
was the input for our approach. In summary, our approach
generates terrains with a clearer river path in comparison with
other similar method that generates DEMs. Additionally, our
approach can also use user-generated sketches as input, which
means a high level of control over the generated terrains.
Moreover, this approach also generates land surface images
that could serve as textures for the generated DEMs if a
3D model of the terrain is to be created from the DEM.

Still, this model’s limitation is in generating significant
land areas that do not have water bodies or flooding areas.
Nevertheless, these cases are not very common in river delta
terrains, and the user can address this by adding flooding
areas that are translated into lowlands. Mature terrain gen-
eration methods work with different terrain features, which
usually are mountainous areas. To the knowledge of the
authors there are no mature methods that generate river deltas
to perform a direct comparison.

Finally, a comparison with real deltas is presented
in Fig. 13 with the Fly river delta and Fig. 14 with the
Yenisey river delta, neither of these images were used for
the fitting process of the cGANs, as these are the full river
deltas, as opposed to the training sets which use patches of
256×256 pixels. The Fly river is in Papua NewGuinea which
has a tropical climate, while the Yenisey delta is located in
northern Russia and has a polar climate. The original Fly
delta is shown in Fig. 13 (a), and its corresponding water
coverage map in Fig. 13 (b). The generated delta of tropical
climate is shown in Fig. 13 (c) and Fig. 13 (d) shows the delta
when generated using the polar trained cGAN. In both cases
the structure of the delta channels is respected and the water
and land is completely differentiated. As the generation is
based on the water coverage map, the clouds that appear on
the original image are not present in the generation save in
very small spots. In Fig. 14 it can be observed that the delta

FIGURE 13. Fly river delta (a), its corresponding water coverage map (b),
the tropical submodule generation (c), and the polar submodule
generation (d).

FIGURE 14. Yenisey river delta (a), its corresponding water coverage map
(b), the tropical submodule generation (c), and the polar submodule
generation (d).

main channels and islands of the delta are preserved by the
submodules with the exception of the smallest ones.

VII. CONCLUSION
This paper presented a modular approach for generating real-
istic land surface images of river deltas and coastal areas from
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a water coverage map. The water map or a user-drawn sketch
representing a water map is the single required input. The
proposed approach ensembles three cGANs submodules to
create first, a Digital Elevation Model (DEM) from a water
coverage map and then, a group of two cGAN models to
create a realistic land surface image from the generated DEM.
The proposed approach’s training allows creating river deltas
based on a polar or tropical climate, or both, with good visual
results. This paper also introduced the DRCA2020 dataset
with satellite imagery that collects pairs of water maps of
important rivers worldwide distributed with their correspond-
ingDEMs, aswell as their correlated land surfaces in different
climates and time-lapses. The proposed approach contributes
to the research area of the automatic generation of water bod-
ies landscapes, providing an ensemble module fitted to this
scenario and the specialized dataset to improve the generation
process. Particularly, the different land surface textures in the
DRCA2020 dataset and hence those created by the proposed
approach, introduce variations to the generation of terrains
from every single DEM. Moreover, selecting different image
subsets from the DRCA2020 dataset to train a deep learning
model controls the land surface generation for highly specific
scenarios with river deltas in other climates. In counterpart,
a constrain of the proposed approach is that introduces some
artifacts in flat areas with no presence of water. Those arti-
facts are due to a lack of training data that include those spe-
cific characteristics. Therefore, the modules require to learn
flat areas features, which will be addressed in future work.
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