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ABSTRACT Convolutional neural networks (CNNs), as a typical deep learning technique, have been widely
used in image segmentation, but they often require a large amount of annotated data. However, the number of
available pixel-wise labeled medical images is extremely small, and this prevents the application of CNNs in
manymedical image segmentation tasks.We proposed a self-paced learningwith diversity SPLD) framework
to boost the performances of medical image segmentation models with a limited amount of annotated data.
Self-paced learning (SPL) is a learning regime that selects training samples in order from the easiest to
the most difficult for model training. In addition, we took the diversity of the data into consideration. The
proposed self-paced learning with diversity by query-by-committee (SPLD-QBC) algorithm dynamically
and diversely selects the appropriate training data to boost the performance of an image segmentation
model. SPLD-QBC incorporates the query-by-committee (QBC) technique for data selection and affinity
propagation for optimizing the data diversity. By dynamically selecting the optimal sequence of training
samples from different probability distributions, the segmentation models achieved improved performances.
To verify the effectiveness of the proposed SPLD-QBC framework, we conducted experiments on three
medical image segmentation tasks with five different datasets. The experimental results indicated that the
proposed SPLD-QBC algorithm significantly improved upon the segmentation performances of the baseline
models and resulted in a higher Dice score, surface distance and mean intersection over union (mIoU). The
proposed SPLD significantly boosts the segmentation performances of models and is easily embedded into
CNN-based image segmentation models.

INDEX TERMS Self-paced learning, image segmentation, deep learning.

I. INTRODUCTION
The precision of medical image segmentation is crucial for
obtaining accurate diagnoses. In recent years, deep learning-
based techniques have become the most popular approaches
in the various subfields of medical image semantic segmen-
tation, such as retinal vessel segmentation [1], organ seg-
mentation [2], and cell segmentation [3]. To the best of our
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knowledge, training convolutional neural networks (CNNs)
requires a large amount of labeled training data. Furthermore,
deep learning often requires strenuous annotation by clinical
experts since a large amount of image data are required for
training and validating deep neural networks. Under such
circumstances, it is necessary to fully use the information
behind themedical data to generate reliable results for clinical
usage.

Most of the optimization functions used in deep learning
are nonconvex functions [4], which increase the difficulty
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FIGURE 1. Overview of proposed SPLD approach for medical image segmentation with an application on retina vessel segmentation.

of finding global minima. Self-paced learning (SPL) [5] is
a popular training strategy for enhancing model performance
by first feeding easy samples to the model to further exploit
the information behind the training data. SPL imitates the
learning process of human beings, which also starts with
easy samples and then gradually uses some complex data
for model training. In SPL, an additional regularization term
is added to the optimization function so that the loss and
curriculum are trained jointly. However, the ease of a train-
ing sample is hard to determine, and what is intuitively
‘‘easy’’ for a human may not be as easy for the computer to
comprehend.

According to [6], the probability distribution behind a
dataset is difficult to capture. In addition, the distribution of
the training data is independently and identically distributed.
When directly applying the SPL learning framework to image
segmentation tasks, the SPL model selects images that reside
in the same cluster of the probability distribution so that the
weights of the model are optimized according to a local min-
imum [7]. Hence, employing data from diverse distributions
is important.

Self-paced learning with diversity (SPLD) was proposed
in [7] by incorporating data diversity into the SPL learning
strategy. The original SPLD algorithm demonstrated that
the intuitive approach for SPLD is to select samples from
different groups, i.e., data from different classes. However,
in semantic image segmentation tasks, categorical labels are
often missing, thereby limiting the application of SPL with
diversity.

In this paper, a versatile self-paced learning with diversity
by query-by-committee (SPLD-QBC) framework formedical
image segmentation is presented. The proposed SPLD-QBC
segmentation framework integrates a regularization term into
the SPL loss function. Instead of using image-level accuracy,
i.e., the total Dice score and pixel-level metrics, we incorpo-
rate the query-by-committee (QBC) [9] technique to deter-
mine the simplicity of the data in SPL regimes. A member in
the committee is a deep CNN-based segmentation network,
and each member is trained with the same dataset. Under
the SPLD-QBC learning framework, the data simplicity and
diversity are determined by the latent features of each mem-
ber. The next query is chosen according to the principle
of maximal similarity, which is calculated by the cosine
distances between the extracted features among all mem-
bers. An overview of the proposed SPLD-QBC framework is
shown in Figure 1.

As depicted in Figure 1, the SPLD-QBC framework con-
tains several members in the committee. Each member is
a deep CNN for medical image segmentation. The feature
maps with the smallest sizes, located in the deepest layer
of the image encoder, are extracted to represent the fea-
ture of an image patch. All of the members work coop-
eratively to determine the learning pace: easy samples are
utilized to train the model first, and then hard samples
are iteratively added to the training set for model fine-
tuning. Furthermore, we use the extracted feature vectors to
group the training data and thus guarantee the diversity of
the data.
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The main contribution of this paper is that we propose a
versatile medical image semantic segmentation framework
that combines SPLD and the QBC technique. To the best of
our knowledge, this paper is the first work that uses self-paced
learning to perform medical image semantic segmentation.
The proposed SPLD-QBC framework is a supervised learn-
ing regime that aims at improving the performance of an
image segmentation model. Instead of determining the dif-
ficulty level of the training samples, the features extracted
from the deep neural network are used as surrogates to
measure the simplicity of the data and thus determine the
training sequence. More impressively, quantitative and theo-
retical proofs of the effectiveness of the proposed SPLD-QBC
framework are illustrated.

II. RELATED WORK
A. SELF-PACED LEARNING
Curriculum learning (CL) indicates that learning first from
the easiest aspects of a task and gradually increasing the dif-
ficulty level can benefit model training. CL helps the model
find improved local minima and speeds up the convergence
of the training process towards the global minimum. SPL and
CL share a similar learning regime concept but differ in their
designs of the learning pace. In comparison to human edu-
cation, CL is guided by instructors, while SPL is advised by
students [8]. In CL, the syllabus or the data learning sequence
is determined by prior knowledge; however, the learning
sequence is dynamically updated during successive training
iterations in SPL. An application using a neural network to
determine an appropriate syllabus was presented in [9], and
the learning progress was determined using reinforcement
learning rewards to maximize learning efficiency.

In detail, SPL embeds curriculum learning and assigns a
regularization term into the learning objective function [8].
During the training periods, the loss function and the SPL
regularization term are optimized jointly. The goal of a typical
SPL model is to jointly learn the model parameter w and the
data weight variable v = [v1, v2, . . . , vn]T by minimizing the
objective function in Eq. 1:

E (w, v; λ)

=

n∑
i=1

viL (yi, f (xi,w))− λ
n∑
i=1

vi, s.t. vε[0, 1]n (1)

where λ is the hyperparameter for controlling the learning
pace, f is the machine learning model, L is the loss function,
and xi and yi are the training data and corresponding label,
respectively.

From an extendibility perspective, SPL has been extended
into self-paced curriculum learning [8], self-paced learning
with reinforcement learning [10], and self-paced boosted
learning [11]. In the extensions of SPL, several regularization
terms are added to Eq. 1 for the optimization of specific tasks.
From an applicability perspective, SPL has been applied to
classification [11], matrix factorization [12], and mixtures
of regressions [13]. Zhang et al. [14] proposed a self-paced

fine-tuning network for localizing and segmenting objects in
weakly-labeled videos. A joint SPL regularizer was employed
to compute the data priority values according to the localiza-
tion task and segmentation task. Moreover, SPL is utilized in
multi-instance learning for object detection [15]. In addition,
CL and SPL are jointly utilized to perform weak object
detection tasks, where the prior knowledge of the learning
sequence is integrated by the corresponding regularization
term [16]. For image segmentation tasks, Tong et al. [17]
proposed a self-paced DenseNet that dynamically adjusts the
weights of each target class to train the easiest classes first
and then train the hard object classes.

However, most SPL applications are implemented on
sparsely labeled classification data and for object detection
tasks, where the label often exists as a scalar or a bounding
box. However, studies related to dense label classification,
such as image segmentation using SPL, are limited.

B. SELF-PACED LEARNING WITH DIVERSITY
SPLD was first proposed by Jiang et al. [7], who embed-
ded a regularization term independent of the specific model
objectives to determine the diversity of the training data.
SPLD integrates both diversity and the ease of generating
a curriculum to sequentially feed reasonable data into the
model for training and aims to guarantee improved model
performance. The modification of SPLD involves adding a
regularization term into Eq. 1 to form the diversity constraint.
The proposed objective function is shown in Eq. 2.

min
w,v∈[0,1]n

E (w, v; λ) =
n∑
i=1

viL (yi, f (xi,w))

− λ

n∑
i=1

vi − γ ‖v‖2,1 (2)

where γ is the newly added hyperparameter for the diversifi-
cation pace. SPLD was first performed on an action recog-
nition task and a multimedia event detection task with a
random forest [18] and support vector machine (SVM). The
datasets used in both tasks were sparsely labeled datasets in
which the class of each data point was known by the SPLD
model. However, in medical image semantic segmentation
tasks, the image-level labels, i.e., the categorical labels, are
unknown. Therefore, controlling data diversity by using pre-
viously obtained class labels is impossible.

C. QUERY-BY-COMMITTEE
QBC is an active learning algorithm. The key technique of
QBC is that it actively decides which data are critical for the
model training process. In QBC, a set of active learners is
trained, and the learners vote on the data to decide which data
points need to be added to the training set. To some extent,
the active learning of QBC can effectively evaluate the infor-
mativeness of the training data. In QBC, the cross-entropy
method is often used to calculate the data similarity [19].
However, the entropy is always based on sparse label predic-
tion, so it is not suitable for dense label classification tasks.
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D. MEDICAL IMAGE SEGMENTATION
Deep neural networks have been widely used in medical
image segmentation tasks. For a long time, various algo-
rithms in the research field of computer vision have been
proposed and developed for the automatic segmentation of
retinal vessels in fundus images [20]. Jung et al. proposed
an iterative deep learning model for medical image seg-
mentation by iteratively inputting the network output as the
shape prior for model fine-tuning [21]. A curvilinear structure
extraction algorithm was presented in [22], and it trained the
model from a single patch to the entire image sequentially.
Different from natural images with RGB channels, medical
image data are always grayscale and contain multimodal
data. A cross-modality feature representation method was
proposed in [23]; the features from multimodal MR images
were extracted, and a precise brain tumor segmentationmodel
was trained. In medical image segmentation, incorporating
a shape prior and clinical knowledge is important. Zhang
et al. [24] proposed a task-structured brain tumor segmen-
tation network that models the task-modality structure as a
weighted combination structure and mimics clinical prac-
tices to extract brain tumors. For cell segmentation, splitting
clumps of convex objects has many practical applications
in biomedical and industrial fields. The splitting framework
proposed in [25] successfully solved the overlapping and
touching problem in cell segmentation and improved the
robustness of the cell-splitting model.

III. APPROACH
In this paper, we propose a new framework for medical
image semantic segmentation using the SPLD strategy, which
dynamically selects the samples in order from the easiest to
the hardest oneswhile guaranteeing the diversity of the data to
facilitate model convergence and to improve the performance
of the image segmentation model.

A. QBC BASED SPL REGULARIZATION TERM
Before illustrating the algorithm, we firstly give the def-
inition of the variables. Let L = Labeled Data =

{{x1, y1} , {x2, y2} , . . . , {xn, yn}} be a collection of labeled
image patches cropped from medical images with ground
truth. Let C = {θ1, θ2, . . . , θC } be a committee with |C|
members, each member θ i is a deep CNN for medical image
semantic segmentation.

Our approach utilizes the QBC framework. In each itera-
tion, each committee predicts the features of all data points.
A CNN-based image segmentation network contains an
encoder and a decoder. The convolutional layer in the deep
network provides the same receptive field as those of the
large filters in the initial layers. When the network goes
deeper, most of the existing CNNs employ the pooling layer
to increase the receptive field. By deepening the network
with small filters and pooling layers, the performance is
enhanced [26]. In the encoder part of most image segmen-
tation networks, the number of feature maps increases with

decreasing resolution. The shallowest layers of the CNN learn
low-level image features, such as shapes and edges, while
the highest layers learn high-level features, which are most
important to the specific application [27]. In our approach,
we extract the feature maps from the last layer of the encoder
and use the global average pooling (GAP) layer to convert
the feature maps into feature vectors. Each member in the
committee generates a feature vector representing the features
of the input image. The feature vector generated from θ i is
defined as vectori. The similarity between two members is
measured by the cosine distance between them, as illustrated
in Eq. 3:

simij =
vectori · vectorj
|vectori| × |vectorj|

(3)

where |vectori| represents the length of the high-level feature
vector extracted by member θ i in committee C, ‘·’ represents
the dot product operation and ‘×’ indicates the cross-product
operation. All the members in the committee have the same
CNN architecture, indicating that the meaning of the ele-
ments in the feature vector is the same. According to Eq. 3,
the cosine function is used to calculate the global similarity
using the two extracted feature vectors. Each pair of elements
from the two vectors contributes to the cosine similarity.
The similarity between each member can be formulated as
a matrix:

simM(xk)

=


0 sim12 (xk)

sim21 (xk) 0
· · ·

sim1C (xk)
sim2C (xk)

...
. . .

...

simC1 (xk) simC2 (xk) · · · 0

 (4)

In our approach, we define the similarity of an input data
xk as:

sim(xk) =
n∑

i>j>0

simij (xk) (5)

The hypothesis behind our framework is that a set of
extracted SPLD-QBC feature vectors with a high similarity
indicates that all of the members in the committee have effec-
tively learned the input datum, xk . Thus, a higher similarity
indicates that the data are an easier sample and are thus first
selected in the SPL training process. In contrast, a sample
with a small similarity means that the features generated
from eachmember possess large discrepancies between them,
indicating a difficult sample.

After obtaining the similarities of all the training samples,
we normalize them into [0, 1] to form the SPL regularization
term in Eq. 1 by Eq. 6.

vk =
sim(xk )− min

i∈[1,n]
sim(xi)

max
i∈[1,n]

sim(xi)− min
i∈[1,n]

sim(xi)
(6)

To successfully apply the SPL strategy during the training
process, we need to tackle the following three problems:
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(1) How many data should be selected during the initial
training epochs? The SPL strategy has to first exploit the
information provided with a small number of data and then
add more labeled data to the training set to control the learn-
ing pace. However, during the first several training epochs,
the parameters in the CNNs have not yet been well opti-
mized. If the data selection rule is directly applied to the SPL
strategy, the model may collapse, and the SPL framework
will not work. To handle this problem, we randomly select
a small number of training samples to train the model. For
example, we can train the committee with 10% randomly
selected samples. The initial ratio of training data is defined as
a hyperparameter named ITDR in our algorithm. If the model
converges, we use Eq. 6 to control the pace of learning:

(2) Another problem for QBC-based learning is that all
the members have the same CNN architecture, indicating
that they would generate the same sample feature vector for
an input image if their parameters are the same. To over-
come this shortcoming, we randomly initialize the model
variables in each CNN with different seeds. With different
seeds, the parameters and layers in each member possess
different meanings, and they could effectively determine the
data similarity. In addition, during the training process, the
parameters are optimized according to different solutions.
The experimental evaluation section shows that our method
is effective.

(3) How can we control the learning pace? In practice,
we need to prevent SPL learners from greedily adding data.
If the SPL learner adds a fixed number of training data
after each training epoch, all the data will be added to the
training set, and the proposed method will become a fully
supervised one. This is not our original intention with regard
to controlling the learning pace. To tackle this problem,
we impose a restriction on the query rule by setting an
uncertainty threshold, which is inspired by the uncertainty
sampling strategy [28]. The threshold is named UT in our
algorithm. If and only if the vk of the data evaluated by all
the members in the committee is larger than the threshold,
the SPL learner defines the sample as an ‘‘easy’’ sample and
adds the data to the training set.

In addition, the UT is dynamically changed during the
training process. At the first training epoch, UT equal to 0.9
times of the largest vk in v. With the increment of training
iterations, UT dynamically changes according to the Eq. 7.

UT =
0.9e
m

( max
i∈[1,n]

vi) (7)

where m is the number of training epochs and e is the current
epoch during the training process.

B. CLUSTERING BASED DATA DIVERSITY
Intuitively, selecting data from different classes is an easy
method to maintain data diversity during model training.
However, as demonstrated in section 1, the medical images
used in segmentation often lack categorical labels. To address
this circumstance, a cluster algorithm is employed to deter-

mine the groupings of the data. In section 3.A, the extracted
features from each member determine the ease of the training
data because the features contain the representations of the
data. In the grouping stage, the extracted features are reuti-
lized for clustering.

In a committee, for each training data, the model will
generate |C| feature vectors. We use the average of the |C|
features as the feature vector of the sample, as shown in Eq. 8.

u (xk) =
1
|C|

|C|∑
i=1

vectori (8)

where vectori is pre-defined in Eq. 3.
However, even if we can use a clustering algorithm to

classify all the data into several groups, the optimal number of
groups is still unknown. If the number of groups is too large,
all of the data will be separately grouped into cluster centers
with small numbers of samples; in contrast, if the number of
groups is too small, the diversity of the data is not effectively
represented. To handle this problem, affinity propagation [29]
is employed to cluster the generated feature vectors. In affin-
ity propagation, three matrixes are calculated: (1) a similarity
matrix that indicates the data similarity between the training
samples; (2) a responsibility matrix that measures how well
the sample serves as the exemplar relative to other candidates;
and (3) an availability matrix that represents the appropri-
ateness of a sample picked from the exemplar. During the
training iterations, the three matrixes are updated until the
cluster boundaries remain unchanged. The exemplars are
extracted as the cluster centers for classification. The affinity
propagation algorithm is not needed to determine or estimate
the number of clusters before clustering because the number
of groups in the diversity process is automatically calculated
according to the extracted feature vectors.

During each training epoch, the affinity propagation algo-
rithm is applied to extract features and cluster data into
different groups. Then, the SPL approach demonstrated
in section 3.A is employed to select several easy sam-
ples from each clustered group. Formally, by applying the
cluster algorithm, the dataset is grouped into g groups as
Lg = {{X1,Y 1

}, {X2,Y 2
}, . . . , {Xg,Y g}}, where X i =

{x i1, x
i
2, . . . , x

i
g(i)}, Y

i
= {yi1, y

i
2, . . . , y

i
g(i)} s.t. i ∈ [1, g],

and g(i) represents the number of samples in the correspond-
ing group. Obviously,

∑g
j=1 g(j) = n. To guarantee the

diversity of the training sample, the SPL learner selects the
easiest samples from each group, and the corresponding data
weight variables become v = [v1, v2, . . . , vg], where vi =[
vi1, v

i
2, . . . , v

i
g(i)

]
s.t.iε[1, g].

By applying the grouping strategy, the loss function for
SPLD changes from Eq. 2 into Eq. 9, as shown below.

E (w, v, λ) =
g∑
j=1

g(j)∑
i=1

vjiL
(
yji, f

(
x ji ,w

))

− λ

g∑
j=1

g(j)∑
i=1

vji − γ ‖v‖2,1 (9)
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C. ALOGIRITHM
In summary, the proposed SPLD-QBC algorithm for medical
image segmentation contains two parts: one is SPL data
selection, and another is data diversity calculation by using
affinity propagation. Combining both parts, the algorithm can
be summarized in Algorithm 1.

Algorithm 1 Proposed SPLD-QBC Algorithm
Input:
L = Labeled Data = {{x1, y1} , {x2, y2} , . . . , {xn, yn}}:
training data, composed of n samples;
C = {θ1, θ2, . . . , θC }: |C| members initialized by different
seeds;
m: number of training epochs;
ITDR: the ratio of the number of data randomly chosen for
training to the number at initial epochs;
Output:
C = {θ1, θ2, . . . , θC }: trained committee of medical image
semantic segmentation networks;
1. randomly select ITDR of the training data.
While model not converges:

2. Train C = {θ1, θ2, . . . , θC } with Loss function defined
in Eq. 2 on randomly selected data;

For e in 1 to m:
3. Extract features u defined in Eq. 8 for all the data in L;
4. Group data with the extracted features by affine
propagation into g groups;

For j in 1 to g:
5. Calculate the vj for each data in the j-th group by
Eq. 6;
6. Select the easy samples in j-th group whose v > UT;

7. Train C = {θ1, θ2, . . . , θC } with Loss function defined
in Eq. 9 on selected data from each group;

8. Update UT by Eq. 7

According to the description of Algorithm 1, there are four
inputs, including the label dataset, the initialized committee
with |C| members, and two hyperparameters. The outputs
of our algorithm are the trained members. Line 1 represents
the random data selection process. The while loop and line
2 indicate the first initial training epochs. The first ‘for’
loop demonstrates the process of the SPLD algorithm. Lines
4 to 6 represent the cluster-based data diversity algorithm in
section 3.B. Without the group operation listed in lines 4 to
6, the proposed SPLD algorithm would degrade into the SPL
algorithm. In our experiments, the SPL strategy is used as a
baseline.

We summarize our algorithm as below:
(1) During the initial training epochs, the proposed algo-

rithm is an SPL-based algorithm.
(2) The presented algorithm uses λ, γ and a dynamically

changed UT to control the learning pace and to prevent the
algorithm from degrading into a fully supervised learning
(FSL) algorithm.

(3) The segmentation results are generated by the member
with the best performance. Like students in a class, the best
student can produce the best results for a given task.

D. PROOF OF CONVERGENCE
To guarantee the feasibility of the proposed SPLD-QBC algo-
rithm, it is necessary to prove the convergence of the SPLD
approach. The proposed algorithm aims at finding a global
optimum to minimize E(w, v; λ), as defined in Eq. 9 for any
given w and v.
Optimize w with fixed v. Firstly, if we fix v, then the second

and the third terms in Eq. 9 are constants and our algorithm
degrades into a SPL algorithm. It is proved that the SPL will
converge after several training epochs [34]. And the author
mentioned that the learning process of traditional SPL regime
can be guaranteed to converge to rational critical points.
Optimize v with fixed w. Then, we need to prove v com-

puted in algorithm 1 attains the global optimization with a
fixed w. The loss function defined in Eq. 9 can be rewritten
as Eq. 10.

E (w, v, λ)

=

g∑
j=1

g(j)∑
i=1

vjiL
(
yji, f

(
x ji ,w

))
− λ

g∑
j=1

g(j)∑
i=1

vji − γ ‖v‖2,1

=

g∑
j=1

 g(j)∑
i=1

(
vjiL

(
yji, f

(
x ji ,w

))
− λvji

)
−
γ g (j)
n
‖v‖2,1


(10)

Eq. 10 indicates that the loss function in the proposed
SPLD-QBC algorithm is decomposed into g groups of tradi-
tional SPLD loss functions, as defined in Eq. 2. Our proposed
SPLD-QBC algorithm is viewed as a linear combination of
several traditional SPLD algorithms. Since the traditional
SPLD algorithm can converge [7], the proposed SPLD-QBC
converges after several training iterations.

By the two proofs, we can conclude that our algorithm
could converge. Through minimizing the loss function in
Eq. 9, the optimal parameters are obtained.

IV. RESULTS AND DISCUSSION
In this section, we introduce medical image segmentation
experiments. Three types of medical image semantic seg-
mentation tasks, including retina vessel segmentation, lung
organ semantic segmentation and nuclear image segmenta-
tion, were performed on five different datasets to demonstrate
the effectiveness of the proposed SPLD-QBC learning frame-
work.

A. IMPLEMENTATION DETAILS
Our implementationwas based on the TensorFlow deep learn-
ing library. To apply the SPL framework, we used image
patches cropped from the original medical images, each with
a resolution of 128 × 128, for model training. During the
testing stage, the CNN model of each member inferred the
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whole segmentation results rather than the patched images.
Due to hardware limitations, the number of members was
set to 2, 3 and 4 for the SPLD-QBC environment. Inspired
by [31], we used a poly learning strategy, and the learning
rate equaled the base learning rate multiplied by (1− e

m )
0.9,

where e indicates the current training epoch and m represents
the total number of training iterations. Typically, we set m =
1000 for retinal vessel segmentation,m = 500 for lung organ
segmentation and m = 300 for nuclear cell segmentation.
The ITDR was set to 10 %. In addition, the hyperparameters
γ and λ were both set as 1 in our experiments.
Furthermore, the architectural design of each member in

the committee was different so that the proposed model could
be capable of fitting the specific tasks. In the following sec-
tions, we discuss the features of these tasks and then illustrate
the network for each member.

For each experiment, we compared the proposed
SPLD-QBC algorithm with the SPL strategy and fully
supervised learning (FSL) strategy. For the SPL baseline,
the diversity module implemented by affinity propagation
was removed, and the number of committee members was set
as 4 (|C| = 4) and was fixed. For the FSL, all training patches
were selected from the model during the entire training
period. In the SPL and FSL experiments, we trained themodel
with the same number of epochs as that of SPLD-QBC. For
SPL, the hyperparameter ITDR was the same as the setting
in SPLD-QBC.

B. RETINA VESSEL SEGMENTATION
Retinal vessel segmentation plays an important role in the
automatic detection of retinal diseases with funduscopic
images. Retinal blood vessel image analyses provide impor-
tant information for the detection of several diseases, such
as diabetes, retinopathy and glaucoma. The segmentation
and localization of retinal blood vessels serve as important
cues for the diagnosis of ophthalmological diseases, such as
hypertension, microaneurysms and arteriosclerosis [32].

The DRIVE dataset is a public dataset consisting of 40 fun-
dus images of size 565×584 [33]. The images were manually
divided into a training set and a test set, both containing
20 images. The STARE dataset is another public dataset
consisting of 20 fundus images of size 605 × 700 [34]. The
images were manually divided into a training set and a test
set, both containing 10 images.

Because the vessels in fundus images vary in shape, thick-
ness and contrast, the model for retina vessel segmentation
was designed accordingly. For the vessel segmentation tasks,
we employed a full-resolution residual network (FRRN) [35]
as the architecture for each member. The FRRN incorporates
inputs of different sizes to successfully capture the segment
boundaries and enhance the multiscale ability of the model.
The last full-resolution residual unit defined in the FRRNwas
extracted as the latent feature of each member, and we used
the feature to compute vk for SPLD-QBC training.

The retina vessel segmentation task is a binary classifi-
cation task because each pixel belongs to the vessel or the

TABLE 1. Evaluation results on STARE and DRIVE datasets.

background. To evaluate the model performances, we calcu-
lated the Dice score (DSC) and Hausodorff distance (HD)
between the segmentation results and the ground truths. The
DSC considers the overlap between the segmented results
and ground truths. A higher DSC indicates that the model
performance is more powerful. TheHDmeasures how far two
subsets of a metric space are from each other. In addition,
the lower the HD is, the better the model. The comparison
results are as shown in Table 1.

Several examples are shown in Figure 2. We juxtaposed
the original vessel image, the segmentation results obtained
by the FSL, SPL, and SPLD approaches and the correspond-
ing ground truths. It is observed that the proposed SPLD-
SPLD-QBC algorithm extracted more capillaries than the
SPL and FSL algorithms, thereby demonstrating that the
model trained by the SPLD-QBC strategy has the strongest
ability to capture both small and large objects because of
diversity learning. The results also indicate that by using the
SPLD training algorithm developed in Algorithm 1, the fea-
ture representation ability of the model was improved.

C. ORGAN SEMANTIC SEGMENTATION IN CHEST X-RAYS
Scanning patient organs using chest X-rays is one of the most
important procedures, and it creates significant diagnostic
workloads [2]. Accurate segmentation of the lung and heart
boundaries provides valuable information for developing a
computer-aided diagnosis (CAD) system for inspecting lung
and heart function. However, due to the high variations in the
shapes, sizes and contrasts of chest X-rays, organ segmenta-
tion in the lungs remains a challenging task.

Different from retina vessel segmentation tasks, the lung
organ segmentation task is semantic because the model pre-
dicts each pixel as belonging to the left lung, right lung,
heart or background. In this application, the experiments
were performed on the JSRT dataset [36] and Montgomery
dataset [37]. The JSRT dataset contains 247 chest X-rays, and
the annotations include left lung, right lung and heart. The
number of total pixel classes is 4. The Montgomery dataset
contains 138 chest X-rays, and the total number of classes
is three, including left lung, right lung and background.
We scaled all images to 256∗256 pixels while guaranteeing
that the details of organ structures remained clear. In the
experiments, 80 % of the samples were randomly selected
for training, and the remaining 20 % were selected for
testing.

The organ segmentation task is a semantic segmentation
task because the number of pixel categories is more than
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FIGURE 2. Segmentation results on DRIVE (Top) and STARE (Bottom) dataset.

TABLE 2. Evaluation results on Montgomery and JSRT datasets.

2. For this task, we employed AdapNet, which combines
the convolutional mixture of deep experts (CMoDE) fusion
scheme for learning robust kernels and enlarges the receptive
field as the model of each member [38]. We extracted the
feature maps of the layer directly before the first deconvo-
lution layer as the latent features of each member. The mean
intersection over union (mIoU) and HD between the segmen-
tation results and the ground truths were used to measure the
model performances. A higher mIoU indicates that the model
performance is more powerful. The comparison results are as
shown in Table 2.

As shown in Table 2, the SPLD training strategy outper-
formed the SPL and FSL methods. A further comparison
showed that even though the mIoU was enhanced by limited
amount, the HD measures were significantly improved. The
proposed method achieved the best performance in terms of
the HD metric, at approximately half the value achieved by
the FSL strategy on theMontgomery dataset (from 40.5771 to
22.7487). For the JSRT dataset, the HD was significantly

reduced by a 5-pixel length using the proposed SPLD-QBC
compared to the FSL baseline. Segmentation examples are
shown in Figure 3. For the Montgomery dataset, as the num-
ber of members in the committee increased, the amount of
noise in the segmentation maps was reduced significantly.
For the JSRT dataset, our proposed SPLD model generated
impressive results on heart RoIs, even though they are dif-
ficult for humans to determine. In addition, with the use of
SPLD, the shapes of the organs in segmented images were
more complete than those obtained with the use of FSL for
both datasets.

D. NUCLEAR IMAGE SEGMENTATION
Nuclei segmentation is one of the most important tasks
for whole slide image analysis in digital pathology [39].
One of the most important steps in clinical practices is to
extract information components from the whole slide images
(WSIs) [40]. However, thousands of cells exist in a single
WSI, and thus manual segmentation is tedious and time-
consuming. To automatically segment the cells, we applied
our model to H&E-stained multiorgan nuclei segmentation
datasets [40] with 30 WSIs and 22,000 corresponding cell
boundaries. Each pixel in the WSIs was classified into two
categories: one is the cell, and the other is the background.
We set each member as a fully convolutional DenseNet (FC-
DenseNet) [41]. In this task, we randomly selected 20 sam-
ples for training and the remaining 10 for testing. Each image
was resized to a resolution of 1024× 1024; thus, we cropped
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FIGURE 3. Segmentation results on Montgomery (Top) and JSRT (Bottom) datasets.

FIGURE 4. Segmentation results on WSI dataset.

64 patch images with a resolution of 128 × 128 from
one WSI.

Similar to the retina vessel segmentation task, we used the
DSC and HD to evaluate the model performances, as shown
in Table 3.

As shown in Table 3, our model achieved the best mIoU
and HD performance. Figure 4 shows several examples of the
model outputs. The improved areas are annotated by yellow
circles. Detailed improvements are circled in yellow circles.
For example, in the first row of Figure 4, the cells segmented
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TABLE 3. Evaluation results on WSI dataset.

by SPLDwith 4members are fully connected regions without
holes. However, holes exist in the segmented cells gener-
ated by the other four models. In addition, the number of
false positive pixels is smaller in results obtained by the
SPLD method than in the SPL- and FSL-generated results.
This phenomenon indicates that learning in order from the
easiest scenario to the hardest scenario facilitated model
training, and the segmentation performance of the model
was improved by adding a large number of members to the
committee.

V. CONCLUSION
In this paper, we proposed a versatile medical image semantic
segmentation framework for medical image segmentation.
The proposed approach can enhance the performances of
medical image semantic segmentation models. By applying
the query-by-committee (QBC) technique, we dynamically
selected the optimal sequence of training samples from differ-
ent probability distributions so that the models could achieve
improved performances. To prevent the model from reach-
ing local minima, we employed a clustering algorithm to
guarantee data diversity and thus force the model to pursue
global minima. The experimental results indicated that the
proposed SPLD could significantly boost the segmentation
performance of the model and that it is easy to embed into a
CNN-based segmentation model.
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