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ABSTRACT Nowadays, Intrusion Detection System (IDS) is an active research topic with machine learning
nature. A single-hidden layer feedforward neural network (SLFN) trained on the approach of extreme
learning machine (ELM) is used for (IDS). The encouraging factors for its usage are its fast learning
and supportability of sequential learning in its online sequential extreme learning machine (OSELM)
variant. An issue with OSELM that has been addressed by researchers is its random weights nature of
the input-hidden layer. Most approaches use the concept of metaheuristic optimisation for determining the
optimal weights of OSELM and resolve the random weight. However, metaheuristic approaches require
many trials to determine the optimal one. Hence, there is concern about the convergence aspect and speed.
This article proposes a novel approach for finding the optimal weights of the input-hidden layer. This article
presents an approach for an integration between OSELM and back-propagation designated as (OSELM-BP).
After integration, BP changes the random weights iteratively and uses an iterated evaluation of the generated
error for feedback correction of the weights. The approach is evaluated based on various scenarios of
activation functions for OSELM on the one hand and the number of iterations for BP on the other.
An extensive evaluation of the approach and comparison with the original OSELM reveal a superiority of
OSELM-BP in reaching optimal accuracy with a small number of iterations.

INDEX TERMS Online sequential extreme learning machine (OSELM), intrusion detection system (IDS),
back-propagation (BP), activation function.

I. INTRODUCTION
Intrusion detection is the task of observing, analysing and
identifying activities aiming to violate a network’s security
policy. The key success factor for identifying such activities
relies on an appropriate monitoring of the network by diag-
nosing its usage chronically [1]. In the past, organisations
used specific authentication policies articulating various lev-
els of accessing. The conventional approach used in the past
to prevent suspicious activities depended on an authentication
framework giving users restricted network access based on
their role. Apparently, such approach does not guarantee
full prevention of unauthorised activities, where violating a
network’s privacy has become more advanced [2].
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Intrusions take various forms, where those intending to
accommodate them have purposes other than damaging a
network to affect its performance. It is worth mentioning the
types of intrusions that might be encountered in a network.
The most common intrusion type is the denial of service
(DoS), which aims to influence a network’s performance by
sending massive amounts of information to such network [3].
Another type is probing, which aims to scan a network by
searching for a valid IP address to gather information [4].
The third type is usually called compromising, in which an
attacker exploits a weakness in a network to get privileged
access to it [5] Additionally, there are types of attacks that rely
on predefinedmalicious software, such as viruses, worms and
Trojan horses [6]. A common feature of the aforementioned
intrusion types is the significant changes that might occur
in the network’s usage [3], [6] Therefore, the information
security community has reacted to such attacks by proposing
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proper methods that can sniff network packets to report
an extensive analysis for what is running on the network.
In the literature, the analysis has been divided into two
main categories: misused-based analysis and anomaly-based
analysis [7].

With the emergence of availably public datasets for
intrusions, such as KDD-CUP99 [8] and NSL-KDD [8],
the research community has tended to use machine learning
techniques (MLTs) for the detection task. Such techniques
significantly rely on historical data to build a model that can
learn the features of both legitimate and intrusion connec-
tions. The model will then be used in future detections. Yet
a great debate has been depicted in the literature regarding
using MLTs, where the aim was to determine best practice
technique. The criteria that have been examined in such
debate were related to the training time for building a model
and its detection accuracy. Recently, deep learning tech-
niques (DLTs) have caught several researchers’ attention due
to their significant classification accuracy [9], [10]. This is
because most DLTs are based on multilayer neural network
architectures that provide better learning and understand-
ing for the intrusion features. However, these architectures
are proved to be time-consuming due to longer training
times. In this regard, some researchers have attempted to
use single-layer neural network (NN) architectures or so-
called shallow NN that have a relatively similar classification
accuracy but with notably less time consumption. Back-
propagation (BP) is one of the most famous approaches for
training neural networks and uses the gradient of the error for
updating the weights of the neural network until reaching the
point of zero gradient, which makes the weights unchanged
and the network fully trained. However, such approach was
criticised for being slow and subject to local minima by
some researchers, which has motivated other competitive
approaches that work for shallow networks, such as ELM,
which uses the concept of Moore-Penrose inverse to apply
the least square error for training in one iteration [11].

The argument for ELM’s superiority over BP in terms of
accuracy for shallow networks is an open research problem.
While many researchers have criticised BP for its low training
speed and possibility of falling in local minima, ELM has
been criticised for its non-optimal weights in the input-hidden
layer because of the random initialisation of the weights
as well as the need to define the network’s optimal struc-
ture [12]. This criticism implies that randomisation obstructs
high classification accuracy. In this regard, this paper aims
to overcome this drawback by modifying the OSELM using
BP to update the input-hidden weights while preserving
the OSELM of inheriting hidden-output weights, which
would theoretically improve classification accuracy in a short
time.

The main contributions of our work are as follows:
1- We propose an integrated OSELM-BP method for IDS

to overcome randomisation in input-hidden weights, from
which OSELM suffers.

2- The proposed method uses the BP to update the
input-hidden weights while preserving the OSELM of
inheriting hidden-output weights.

3- We evaluate the performance of the proposed method
OSELM-BP in terms of five activation functions, with and
without relying on the characterisation model for setting
the number of neurons and based on various numbers of
iterations added to the BP, and we show its superiority in
terms of reaching optimal performance more frequently
than OSELM alone.

4- Three datasets are used for evaluation related to IDS,
namely, CICIDS-2017, KDD 99 and NSL-KDD 99.

II. LITERATURE SURVEY
Although there are many approaches for intrusion detection
in network traffic, such as clustering-based techniques or
support vector machines (SVM), they mostly have the disad-
vantage of long training times. Moreover, they normally need
parameter tuning and [13]–[15] and [16], and do not have a
satisfactory performance in multiclass classification. Hence,
in this section, we focus on machine learning based intrusion
detection techniques. The authors in [17] concentrate on ELM
and OSELM techniques used for the IDSs. These methods
have several attributes that motivate the usage to build IDSs,
including (i) easy assignment of parameters, (ii) perfect
generalisation and (iii) online and fast training. The results
indicate that the methods can be simply used for a great
amount of data without considerable loss of generalisation.
In [18], an OSELM-based technique is provided for intru-
sion detection. The proposed technique uses the profiling
of alpha for reducing time complexity when the irrelevant
attributes are discarded by using correlation, consistency,
filtered ensemble-based techniques for attribute selection.
Instead of sampling, beta profiling is used for reducing the
training dataset size. For the performance evaluation of the
proposed technique, a standard NSL-KDD 2009 dataset is
used. The authors in [19] provide the technique for intrusion
detection based on OSELM. For the performance evaluation,
a KDD-CUP99 dataset is used. In the study, they use three
subset evaluations of attribute selection techniques: filtered
evaluation, CFS subset evaluation, and consistency subset
evaluation for removing redundant attributes. Two techniques
of network traffic profiling are used. Alpha profiling is per-
formed to reduce time complexity, and beta profiling is used
to remove redundant connection records, thus decreasing
dataset size. In [20], the OSELM-based intrusion detection
system appeared and was used to detect attacks in advanced
metering infrastructure (AMI) and perform comparative anal-
yses on other algorithms. The results of the simulation indi-
cate that, comparedwith othermethods of intrusion detection,
the method of OSELM-based intrusion detection is better
in terms of detection speed and accuracy. In [21], the new
DA-ROS-ELM (dual adaptive regularised online sequential
extreme learning machine) is provided for detecting net-
work intrusion. The Tikhonov regularisation-based ridge
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regression factor is defined for solving problems that are
ill-posed and over-fitting. For the arrived data in every step
of updating, as well as the whole recently accessible data,
the mechanism of dual adaptive is planned for, respectively,
the selection of accurate updating of output weight β, as well
as the regularised parameter C. The proposed algorithm
performance is evaluated using the NSL-KDD dataset. The
results indicate that DA-ROS-ELM can achieve greater gen-
eralisation and performance, higher accuracy, lower rates of
false positives and false negatives and faster speeds of training
than other network intrusion detection algorithms. In [22],
as in batch ELM, in OSELM-RLS single-hidden layer feed-
forward neural network (SLFN) input weights are produced
randomly, although output weights are gained by the solution
of recursive least-squares RLS. In [23], they provide the
OSELM using the efficient mechanism of sample updating.
Old and novel samples are considered various weights. The
effect of novel training samples on the algorithm is increased
further, which is able to further promote ELM regression
prediction ability. Simultaneously, the improved algorithm of
the artificial bee colony is provided and used for optimis-
ing an adaptive OSELM parameter. A proposed prediction
method stability and a convergence property are proved.
Real gathered short-term wind-speed time series are used as
objects of research and confirm proposed method prediction
performance. Short-term wind-speed multi-phase prediction
simulation is done. In comparison to the other methods of
prediction, the results of the simulation indicate that the
proposed approach has reliability performance, a higher accu-
racy of prediction and increased indicators of performance.
In the work of [20], a simple OSELM-based IDS system
was applied to detect intrusion attacks in a smart grid. The
authors have not tackled the issue of randomweights between
the input and hidden layer. In the work of [24], an ensem-
ble of OS-ELM machine (EOSELM) feature selection was
proposed to predict the post-fault transient stability status
of power systems in real time. An integration of OSELM
as a weak classifier and an online boosting algorithm as an
ensemble learning algorithm was done. In the work of [25],
a distribution of the existing centralized cloud intelligence
is done to local fog nodes to detect the attack at faster rate
for IoT application where online sequential extreme learning
machine (OS-ELM) was used for this purpose.

Some researchers have focused on the implementation
aspect of ELM for IDS in fog networks. For example, in the
work of [26], a distributed ELM classification for fog net-
works is proposed, in which each node of the fog is trained
on the sample of the entire data considering that this sample
represents accessible data by the node in the fog. The authors
have derived a classical ELMmodel by indexing it according
to the node of the fog, and requesting that the training process
is repeated until reaching a minimum needed performance
of training error, which the authors called a performance
index. This work also suffers from the issue of random
weights of ELM. The use of ELM for IDS was also used with
probabilistic algorithms. This is shown in the work of [1],

where a probability density function is learned based on flow
features for frequent communications. The authors have used
a hierarchical heavy hitters’ algorithm for clustering network
statistics and learning the probability density function of
each feature using ELM. Moreover, this model has not dealt
with the random weights of ELM. Some researchers have
integrated ELM with feature reduction algorithms, namely
principle component analysis (PCA) for boosting perfor-
mance and reducing computational time. This is done in
the work of [27], where an adaptive PCA was used with
ELM. However, this is regarded as a direct implementation
of ELM without any handling of the random weights issue of
ELM. Other proposed methods of using ELM for IDS were
by proposing various architectures of classification. In the
work of [28], a cascade architecture based on a set of ELM
individual classifiers was proposed to counter the issue of
imbalance of an IDS dataset due to the majority being normal
samples and the minority being attack samples.

Meta-heuristic based ELM optimization was also used
extensively. The work of [29], where a particle swarm opti-
misation (PSO) was used to maximise an objective function
representing the training accuracy of the network based on
a solution space. The solution space contains the candidate
weights of the connections between the input and hidden
layers and the biases of the hidden neurons. This approach
provides better accuracy than an arbitrary weight of NN in
the input-hidden layer. However, there is a concern about
computational complexity due to the need of considerable
searching based on an adequate number of particles and
iterations before reaching a convergence state. The literature
contains numerous attempts of optimising the weights of
the neural network in ELM using metaheuristic optimisation
algorithms, such as differential evolution [30], [31], cuckoo
search [32], the firefly algorithm [33], dolphin swarm opti-
misation [34], genetic optimisation [35], and ameliorated
teaching-learning-based optimization [36]. Additionally,
an attempt to optimise the number of hidden neurons in ELM
is the work of [37], where a greedy approach was proposed
between a candidate minimum number and maximum num-
ber, and the training error was used as a metric to select the
number with the best performance. Obviously, such work is
subject to local minima, as the performance is not necessarily
a convex function with respect to the number of hidden
neurons. Hence, another attempt to optimise the number of
hidden neurons was done based on a metaheuristic approach
instead of greedy searching, as in the work of [38].

Overall, ELM has been used for IDS in both its offline
and online learning mode. The lightweight nature of this
model makes it appealing to be deployed in IDS. However,
researchers aim at improving the accuracy of both ELM and
OSELMwhen it is used for IDS to reduce the number of false
alarms. This hasmotivated researchers to focus on the issue of
random weights in the input hidden layer in the model. Most
studies have concentrated on using metaheuristic searching
for this purpose, which leads to optimal weight. However,
there is concern about the convergence performance of the
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TABLE 1. The symbols that are used in the article.

searching when using metaheuristic searching. Observing
the essence in the difference between ELM training and BP
training is in the gradient of error usage that gives BP the abil-
ity to converge gradually towards the minimum error point.
However, the ELM approach lacks this behavior due to the
one-shot calculation using the concept of least square error.
It would be interesting if a novel approach was proposed with
leveraging the advantages of each of them. The lightweight,
over-fitting and local optimal avoidance nature of ELM and
the gradual convergence to the optimal point of BP are the
goals of the article.

III. METHODOLOGY
This section presents the methodology of the integrated
OSELM-BP learning. It starts with an overview of the clas-
sical OSELM model in sub-section III.A. Next, we present
an overview of back-propagation in sub-section III.B. Next,
we present our integrated OSELM-BP in sub-section III.C.
The computational complexity is discussed in Section III.D.
The datasets that are used for evaluation are provided in
sub-section III.E, and the evaluation metrics are presented in
sub-section III.F. Table 1 demonstrates the notations used.

A. MODEL FORMULATION
Assuming that we have N arbitrary distinct samples (xj, tj) ∈
Rd
×Rm where d denotes the number of features (attributes)

and m denotes the number of outputs (targets). In addition,
we assume that we have single layer feed-forward neural net-
work (SLFN) combined of L hidden neurons then, we approx-
imate the weights using the model in (1):∑L

i=1
βig

(
ai, bi, xj

)
= tj (1)

where
i denotes the index of number of neuron number i = 1, ..L

j denotes the index of sample j = 1, 2 . . .N
Another compact way to write the previous equation is (2):

Hβ = T (2)

where

H =

 h(x1)
...

h(xN )

 =
 g(a1, b1, x1) . . . g(aL , bL , x1)

...

g(a1, b1, xN ) . . . g(aL , bL , xN )


H is combined of N rows and L columns

β =

 β1...
βL


T =

 t1
...

tN


The constraint of number of columns of H (or L) being equal
to the number of rows of β is applied which makes the
equation valid. The way of training that Huang has suggested
in his article of ELM starts with random initialization of
(ai, bi) ∈ [−1, 1] and then finding the value of β based on (3):

β = H−1T (3)

Unfortunately, H is not guaranteed to be square because
N�L. Hence, we perform the Moore-Penrose generalized
inverse of matrix H†

= (HTH )−1HT . Hence, the total
equation of β = (HTH )−1HTT . Some researchers have
suggested adding a positive value 1

C in the equation in order
to make the solution more stable and to have more general-
ization according to ridge regression theory. It is named as
regularization factor, as shown in (4):

β = (
1
C
+ HTH )−1HTT (4)
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TABLE 2. Pseudocode of integrated BP-ELM training.

After training, the prediction of any new sample will be based
on (5):

y = f (x) = h(x)(
1
C
+ HTH )−1HTT

= h(x)HT (
1
C
+ HHT )−1T (5)

More generalization of the equation is done by using kernel
variant in the form of (6):

y =

 k (x, x1)
...

k (x, xN )

 (
1
C
+�ELM )−1T (6)

�ELM denotes the kernel matrix
k denotes the kernel of the new sample with respect to the

training data.
Regardless of the variant that is used for ELM, there is an

issue in the weights of the input hidden layer wij=(aij, bij)
which is the random generation. Such random generation
causes non-stable performance as well as sub-optimal solu-
tions. For solving this, the concept of back-propagation is
adopted. Assuming that the C is a loss function (or cost
function) which measures the number of mis-classifications
in the neural network after being trained with traditional
ELM. In addition, we assume that the overall network is given
as y(tj) = h(xj)HT ( 1C + HH

T )
−1
T for training set combined

of pairs j, (xj, tj). Hence, the loss of the model on that pair
(xnew, ynew) is the cost of the difference between the output
y
(
xj
)
and the target tj is C(y

(
xj
)
,tj). We consider that the

cost is represented by error or misclassification E . We cal-
culate the derivative of the error with respect to the weights,
we change the weights using (7):

1wi = −η∂
E
wi

(7)

where
η denotes the learning rate

wi=(ai, bi)

We conduct set of iterationsMaxIt where is each one the value
wi is updated using (8):

wnewi = woldi +1wi (8)

B. ONLINE SEQUENTIAL EXTREME LEARNING MACHINE
OSELM
In our algorithm, we adopt an online variant of extreme learn-
ingmachine called single hidden layer feed-forward [39]. The
online variant enables the updating of the knowledge of the
NN according to the provided chunks. Given an activation
function g and L hidden neurons, the learning procedure
consists of two phases described below.

1) BOOSTING PHASE USING THE INITIAL CHUNKS
Given a small initial training set {X0,Y0} to boost the learning
algorithm first through the following boosting procedure.
1) initialize arbitrary input weight wi and bias bi based on

a random variable with center ui and standard deviation
σi, i = 1, . . . , .L.

2) Calculate the initially hidden layer output matrix in (9).

H0 = [h1, . . . ,HL]T (9)

where, hi = [g (wi · xi + bi) , . . . ,g (wL · xi + bL)]T

and, i = 1, . . . ,L.
3) Estimate the initial output weight (10).

β(0) = M0HT
0Y0 (10)

where, M0=(HT
0Y0)−1 and Y0=[y1,...,yL]T Set K = 0.
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TABLE 3. Pseudocode of integrated OSELM-BP training.

2) SEQUENTIAL LEARNING PHASE
For each further coming observation (Xi,Yi) ,where,
Xi ∈ i = L + 1,L + 2,L + 3, . . . ,

1) Calculate the hidden layer output vector by using (11).

h(k+1) = [g (w1 · xi + b1) , . . . , g (wL · xi + bL)]T (11)

2) Calculate the latest output weight β(k+1) based on
Recursive Least Square (RLS) algorithm shown in (8)
to (12).

Mk+1 = Mk −
Mkhk+1hTk+1Mk

1+ hTk+1Mkhk+1
(12)

β(k+1) = β(k) +Mk+1hk+1(yTi − hTk+1β
(k)) (13)

Set k = k + 1

C. INTEGRATED BACK-PROPAGATION ONLINE
SEQUENTIAL EXTREME LEARNING MACHINE- OSELM-BP
This section presents the integrated back-propagation
OSELM (OSELM-BP). It is combined of both boosting phase
and iterative phase similar to OSELM. A general flowchart
for the algorithm is presented in Fig. 1. As it is depicted in the
pseudocode, the algorithm uses the boosting data {X0,Y0},
the chunks

(
xj, tj

)
, the activation function g, the number

of iterations MaxIt , and the learning rate η. The algorithm
basically performs boosting for the neural network in the
initial stage, and then it updates the weights iteratively with
new chunk by calling both OSELM for initial update of the
weights and calling back-propagation for iterative update of
the weights using the factor η for MaxIt .

D. COMPUTATIONAL COMPLEXITY
The computational complexity of OSELM-BP spends more
time on back-propagation training after the phase of ELM.
The extra time is only O (mLMaxIt) where m denotes the
number of output neurons, L denotes the number of hidden
neurons andMaxIt denotes the number of iterations. Consid-
ering that MaxIt was set to not exceed 200 this makes and
the number of output neurons equals to the number of classes
which is still low number in IDS problems, the added compu-
tational complexity does not affect the practical applications

E. DATASETS
This section presents example of the most famous datasets in
IDS. We present each one with providing its statistical infor-
mation from the perspective of number of records, classes and
their decomposition.

1) CICIDS-2017
CICIDS-2017 dataset [40]. The details of the dataset are
provided in Table 4. It shows the name of the used file, the day
of activity and the found attack.

In our experiments, we merge all the traffic data within the
five days (as shown in Table 4) in a single dataset. Table 5
depicts the details of the merged dataset.

2) KDD 99
Since 1999, KDD’99 has been the most wildly used data set
for the evaluation of anomaly detection methods [41]. This
data set is built based on the data captured in DARPA’98 IDS
evaluation program DARPA’98 is about 4 gigabytes of com-
pressed raw (binary) TCP dump data of 7 weeks of net-
work traffic, which can be processed into about 5 million
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FIGURE 1. Flowchart of integrated online sequential extreme learning machine and back propagation OSELM-BP.

connection records, each with about 100 bytes. The two
weeks of test data have around 2 million connection
records. KDD 99 training dataset consists of approximately
4,900,000 single connection vectors each of which contains
41 features and is labeled as either normal or an attack, with
exactly one specific attack type. The simulated attacks fall in
one of the following four categories:

Denial of Service Attack (DoS): is an attack in which the
attacker makes some computing or memory resource too busy
or too full to handle legitimate requests, or denies legitimate
users’ access to a machine.

User to Root Attack (U2R): is a class of exploit inwhich the
attacker starts out with access to a normal user account on the
system (perhaps gained by sniffing passwords, a dictionary
attack, or social engineering) and is able to exploit some
vulnerability to gain root access to the system.

Remote to Local Attack (R2L): occurs when an attacker
who has the ability to send packets to a machine over a
network but who do not have an account on that machine

exploits some vulnerability to gain local access as a user of
that machine.

Probing Attack: is an attempt to gather information about
a network of computers for the apparent purpose of circum-
venting its security controls.

The distribution of the classes according to the sample’s
sizes are provided in pie graph in Fig. 2. As we observe,
there is an unbalance in the dataset. This un-balance makes
the problem of classification or clustering very challenging.

3) NSL-KDD
The statistical analysis showed that there are important issues
in the data set which highly affects the performance of the
systems, and results in very poor estimation of anomaly
detection approaches. To solve these issues, a new data set as,
NSL-KDD is proposed, which consists of selected records of
the complete KDD 99 data set [42], [43]. The advantage of
NSL KDD dataset is.
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TABLE 4. Dataset description.

TABLE 5. General description of CICIDS-2017 dataset.

No redundant records in the train set, so the classifier will
not produce any biased result.

No duplicate record in the test set which has better reduc-
tion rates.

The number of selected records from each difficult level
group is inversely proportional to the percentage of records
in the original KDD 99 data set.

The training dataset is made up of 21 different attacks out
of the 37 presents in the test dataset. The known attack types
are those present in the training dataset while the novel attacks
are the additional attacks in the test dataset i.e. not available
in the training datasets.

F. EVALUATION METRICS
This section presents the evaluation measures used for quan-
tifying the performance of the proposed OSELM-BP and
the comparison with OSELM. TP denotes true positive,

TN denotes true negative, FP denotes false positive, and FN
denotes false negative.

1) ACCURACY
Accuracy represents the number of true predictions divided
by all cases of prediction [24], The formula is calculated
in (14).

ACC =
TP+ TN

TP+ TN + FP+ FN
(14)

2) PRECISION (PPV)
Positive predictive value (PPV) represents the number of true
positive predicted by the classifier divided by the number of
all predicted positive records [25], The formula is calculated
in (15).

PPV =
TP

TP+ FP
(15)

3) RECALL (TPR)
TPR represents the number of TP predicted by the classifier
divided by the number of all tested positive records [26], The
formula is calculated in (16).

TPR =
TP

TP+ FN
(16)
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4) G-MEAN
This measure is calculated based on precision and recall. [25],
The formula is calculated in (17).

G_mean =
TP

√
(TP+ FP) (TP+ FN)

(17)

5) F-MEASURE
This measure is the harmonic mean of the precision and
recall [25]. It is calculated based on the equation; the formula
is calculated (18).

F_measure =
2×precision× recall
precision+ recall

(18)

IV. EXPERIMENTAL DESIGN AND RESULTS
The simulations for OSELM and OSELM-BP algorithms are
carried out in the MATLAB 2019b environment running in
Intel Core i5 CPU with the speed of 1.4 GHz.

The experimental design starts with building the character-
ization model which creates the relation between the testing
accuracy and the number of neurons in the hidden layer. For
each of the three datasets we generate the characterization
model that is used for finding the best number of neurons to
operate OSELM and OSELM-BP. We find that each charac-
terization model has accomplished a peak at different number
of neurons as it is presented in Fig. 2.

The main parameter is the number of neurons and it
was determined based on characterization model given
in Fig. 2 for each of the three datasets (a) CICIDS2017 dataset
(b) KDD99, (c) NSL. The number of neurons is selected
from the characterization model given in Fig. 2, which is 100,
300 and 100 for CICIDS2017, KDD99 and NSL, respectively

For evaluation, the data was partitioned into 60 vs. 40 per-
centages for training and testing respectively. The proposed
OSELM-BPwill be compared with the original OSELMwith
respect to six evaluation metrics, namely, accuracy, preci-
sion, recall, F-measure, G-mean and the time. The first fifth
evaluation metrics are to be maximized while the last one is
to be minimized. Thus, we show the reciprocal of the time
and we normalize it to one. Each of the two models will be
considered for one possible type of five type of activation
functions: sigmoid, hardlim, rbf, tensing and sin. In addition,
we consider for OSELM-BP one case of four cases of iter-
ations: 9, 24, 99 and 199. The experiments were repeated
for two separated sets: the first one is when the number of
neurons was taken to be the same of the characterization
model while the second set when the number of neurons
was as two third of the number of features. Also, each set
is repeated for the three datasets: CICIDS-2017, KDD99 and
NSL-KDD. We show the testing results of characterization
model based selection of number of neurons in Figures 3,17a.
Observing the figures, we see that OSELM has behaved
better for two activation functions sin and sigmoid while
OSELM-BP was better RBF, tansig and hardlim. The poor
performance of OSELM-BP in the case of sin and sigmoid
is interpreted by over-fitting because the optimal number

FIGURE 2. Characterization model for validation accuracy and number of
neurons -a- CICIDS2017 dataset -b- KDD99 -c-NSL.

of neurons is determined using the characterization model.
Thus, adding more iterations of training from BP results in
over-fitting and poor performance. Another observation is
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FIGURE 3. The comparison between OSELM and OSELM- BP with respect to iterations 9, 24, 99 and 199 for CICIDS-2017 data set and RBF
activation function -a- with characterization model -b-without characterization model.

FIGURE 4. The comparison between OSELM and OSELM-BP with respect to iterations 9, 24, 99 and 199 for CICIDS-2017 data set and sig
activation function -a- with characterization model -b-without characterization model.

FIGURE 5. The comparison between OSELM and OSELM-BP with respect to iterations 9, 24, 99 and 199 for CICIDS-2017 data set and sin activation
function -a- with characterization model -b-without characterization model.

that OSELM-BP has accomplished better accuracy, preci-
sion, recall, F-measure and G-mean for RBF activation func-
tion in CICIDS-2017 dataset which indicates to the role of

BP iterations for improving the performance of classifi-
cation even if the number of neurons was selected based
on characterization model. Furthermore, we observe that
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FIGURE 6. The comparison between OSELM and OSELM-BP with respect to iterations 9, 24, 99 and 199 for CICIDS-2017 data set and tansig
activation function -a- with characterization model -b-without characterization model.

FIGURE 7. The comparison between OSELM and OSELM-BP with respect to iterations 9, 24, 99 and 199 for CICIDS-2017 data set and hardlim
activation function -a- with characterization model -b-without characterization model.

FIGURE 8. The comparison between OSELM and OSELM-BP with respect to iterations 9, 24, 99 and 199 for KDD99 data set and RBF
activation function -a- with characterization model -b-without characterization model.

in Fig. 16a, 10 iterations for OSELM-BP were adequate to
bring the model to the highest performance while when the
number of iterations increases the performance has declined,

however, in all cases OSELM-BPwas superior over OSELM.
Another observation is that the model of OSELM-BP is
dependent on the number of iterations for reaching the
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FIGURE 9. The comparison between OSELM and OSELM-BP with respect to iterations 9, 24, 99 and 199 for KDD99 data set and sig activation function
-a- with characterization model -b-without characterization model.

FIGURE 10. The comparison between OSELM and OSELM-BP with respect to iterations 9, 24, 99 and 199 for KDD99 data set and sin activation function
-a- with characterization model -b-without characterization model.

FIGURE 11. The comparison between OSELM and OSELM-BP with respect to iterations 9, 24, 99 and 199 for KDD99 data set and tansig activation
function -a- with characterization model -b-without characterization model.

optimal performance. For example, the optimal performance
was reached at number of iterations 9 for NSL-KDD data
set and hardlim activation function in Fig. 16.a while it has

reached it at number of iterations 199 for NSL-KDD data set
and tansig activation function in Fig. 15.a. Also, we observe
from figures that in all datasets when activation functions
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FIGURE 12. The comparison between OSELM and OSELM-BP with respect to iterations 9, 24, 99 and 199 for KDD99 data set and hardlim
activation function -a- with characterization model -b-without characterization model.

FIGURE 13. The comparison between OSELM and OSELM-BP with respect to iterations 9, 24, 99 and 199 for NSL-KDD data set and rbf
activation function -a- with characterization model -b-without characterization model.

FIGURE 14. The comparison between OSELM and OSELM-BP with respect to iterations 9, 24, 99 and 199 for NSL-KDD data set
and sig activation function -a- with characterization model -b-without characterization model.

RBF, sin and tansig were used, OSELM-BP has outperformed
OSELM when the number of neurons was selected as two
third of the number features. Hence, OSELM-BP is capable

of brining the model to highest classification performance
with the least possible number of neurons. Contrary to
OSELM which has generated less performance when the
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FIGURE 15. The comparison between OSELM and OSELM-BP with respect to iterations 9, 24, 99 and 199 for NSL-KDD data set and sin activation
function -a- with characterization model -b-without characterization model.

FIGURE 16. The comparison between OSELM and OSELM-BP with respect to iterations 9, 24, 99 and 199 for NSL-KDD data set and tansig
activation function -a- with characterization model -b-without characterization model.

FIGURE 17. The comparison between OSELM and OSELM-BP with respect to iterations 9, 24, 99 and 199 for NSL-KDD data set and hardlim activation
function -a- with characterization model -b-without characterization model.

number of neurons was selectedminimumwithout depending
on the characterization model.

In order to summarize the superiority between OSELM
and OSELM-BP, we present Tables 6 and 7. The results

in the tables reveals that when the characterization model
OSELM-BP was superior over OSELM in 8 cases out
of 15 while the latter was superior in 7 only. On the
other side, when the characterization model was not used in
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TABLE 6. Summary of superiority between OSELM and OSELM-BP for different datasets and activation function without using characterization model.

TABLE 7. Summary of superiority between OSELM and OSELM-BP for different datasets and activation function when using characterization model.

TABLE 8. Numeric representation of best achieved accuracy for the models.

selecting the number of neurons in the hidden layer,
OSELM-BP was superior in 11 cases and equivalent in
one case while OSELM was only superior in 3 cases.
Such results support the hypothesis of the effectiveness in
using back-propagation with OSLEM for fine tuning of the
model after OSELM is performed. The interpretation of
lacking the superiority in some cases arises because of the
over-fitting that occurs in some cases. Obviously, the number
of over-fitting is more when the characterization model is
used because the suitable number of neurons in the hidden
layer was determined prior to the training.

Based on the above analysis, it can be stated that
OSELM-BP has high scalability. The evaluation reveals the
superiority of OSELM-BP in reaching optimal accuracy
with a small number of iterations even with large data like
KDD 99 which makes it high scalable approach. For overall
summary of the performance differences between OSLEM
and OSELM-BP, we show the numerical values of the var-
ious performance metrics in Table 8. Obviously, the best

accomplished value was attained for OSELM-BP. After per-
forming statistical differences, the overall t-test value was
found to be less 0.05 which indicates statistical significance.

V. CONCLUSION
This article has presented a novel variant of extreme learning
machine to solve the problem of random weights in the input
and hidden layer. The variant uses the gradient of error as
feed-back to correct the weights in the input hidden layer
and in the hidden output layer for pre-defined number of
iterations. Hence, it is designated as back-propagation online
sequential extreme learning machine OSELM-BP. The vari-
ant was developed for IDS because it is one type of critical
classification systems due to its security aspect. Hence, coun-
tering the random behaviour of input-hidden layer is crucial
to prevent many types of false classifications.

The evaluation of the developed OSELM-BP was con-
ducted on three datasets CICIDS-2017, KDD-99 and
NSL-KDD. The configurations were based on changing the
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activation function and the number of hidden neurons of
OSELM and the number of iterations of BP. Two set of results
were used: the first one with using number of hidden neu-
rons generated from characterization model and the second
one based on lowest possible number of hidden neurons
defined as two third of the number of features in the model.
The finding is that OSELM-BP outperforms OSELM when
the number of neurons is minimum, however, a degradation
in the performance happens when the number of neurons is
higher due to over-fitting. Future work of the article is to
incorporate adaptive algorithm for selecting the appropriate
number of hidden neurons to accomplish best possible per-
formance and to enable automatic selection of number of
iterations of OSELM-BP.
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