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ABSTRACT In this paper the problem of distributing resources among a collection of users (or players)
is explored. These players have independent preferences to get these resources and can be dishonest about
their preferences in order to increase their utility (their preference for the resources they are allocated). The
objective is design a mechanism to allocate resources to players so that all of them get the same amount of
resources (fair), the total utility is maximized (optimal), and no player has incentive to be dishonest (strategy
proof). Santos et al. proposed the Quid Pro Quo (QPQ) mechanism to solve this problem. In this paper a
generalization of the QPQ mechanism is proposed that, in addition to the above properties, has a very high
degree of scalability. The proposed multilevel QPQ mechanism divides the players into disjoint clusters
and runs a mechanism similar to QPQ inside each cluster and across selected players in each cluster. As a
consequence the amount of communication required is drastically reduced. Similarly, the storage used by the
mechanism by each player is also significantly reduced, which in a practical setting can be used to improve
the ability to detect dishonest players.

INDEX TERMS Resource allocation, mechanism design, fairness, scalability.

I. INTRODUCTION
A. MOTIVATION
Resources need to be assigned to users in many situations.
A resource could be, for instance, the processing capacity
of a computer system, the power of wireless transmitters or
the bandwidth of communication paths. The way in which
these resources are allocated to users determines the perfor-
mance of the system. Therefore, a lot of research has been
performed to propose mechanisms to achieve an efficient and
fair resource allocation [1]–[5].

Resources could be assigned under the consideration of
the existence of a central agent that establishes optimal allo-
cation policies that the users follow (this can be also seen
as a situation where users coordinate). However, current
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telecommunication networks are decentralized, and users that
are present in the system very often take self-interested deci-
sions [6]–[8]. Therefore, from the practical point of view, it is
crucial to design mechanisms that assign resources to selfish
users or players in an efficient manner.

The Quid Pro Quo (QPQ) mechanism [9] is a distributed
resource allocation algorithm without payments with which
a set of resources is allocated to a set of users. Players
declare their preferences for the resources and each resource
is assigned to the user with the largest value. The main
particularity of that model is that each player can misreport
its preferences, e.g., users can cheat to get more resources.
To prevent that, the mechanism checks that the preferences
declared by a player follow a uniform distribution. If this test
fails, the declared preference is replaced with a random value.
One of the main results of [9] states that this mechanism
is fair in the sense that the expected utility of a player that
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declares true preferences is larger than the expected utility
of a player that declares false preferences. This implies that,
even though users can cheat on the declared values, they
do not have benefit by doing so. The main disadvantage
of the QPQ mechanism is that the exchange of information
is very large when the number of players is large. This is
because the implementation of this mechanism requires that
each user sends its preference for each resource to the rest of
the players, and these messages have to be processed. As a
result, the QPQ mechanism [9] presents a clear scalability
problem, i.e., its implementation is very expensive in com-
munication and computation when the number of players is
large.

To overcome the aforementioned problem, a multilevel
approach of the QPQ mechanism is studied in this article.
The idea behind this model is presented now. The players
are divided into clusters and, in each cluster, the QPQ mech-
anism of [9] is implemented to determine the winner inde-
pendently, i.e., the player with the largest declared value for
each resource. Then, it is applied again the QPQ mechanism
to the set of players formed by the winners of the clusters
to determine who gets the resource. The mechanism used
among winners has to be adapted, because all the players of
the same cluster operate as a single player whose declared
preferences follow a Beta distribution. Using this approach,
the preferences need to be exchanged only among the players
that belong to the same cluster and with the winners of the
rest of the clusters. This is a clear advantage with respect to
the mechanism of [9] since the amount of information to be
shared by the users is much smaller.

B. CONTRIBUTIONS
In this work, the goal is to show that the nice properties of
QPQ mechanism of [9] are complemented in the multilevel
QPQ approach with some additional new features. Specifi-
cally, the main contributions of this article are the following:

• First, the features of the multilevel QPQ are studied
when the cheating detection is perfect. It is shown that
multilevel QPQ is optimal in the sense that, when players
are honest (i.e., they declare their true preferences), no
mechanism achieves larger total utility.

• Second, it is also shown that the multilevel QPQ mech-
anism is strategy proof, i.e., any cheating strategy leads
to an expected utility that is not larger than being hon-
est. Finally, it guarantees fairness in the assignment of
resources and in their expected value.

• The benefits in the multilevel QPQ approach with
respect to QPQ are also studied when all the players
are honest. First, the communication cost is analyzed,
and it is shown that the reduction on the volume of
communication is largest when the number of clusters
equals the square root of the number of players. It is also
shown that, providing the same memory to multilevel
QPQ and QPQ leads to a significant improvement in
the number of values that are used to detect a dishonest
behaviour and in the expected utility.

• In the numerical experiments, a system with honest and
dishonest players is considered (i.e., players that do not
declare their real preferences) in which the detection of
cheating behavior is not perfect, and evaluate its per-
formance. The goal is to compare the utilities achieved
by the multilevel QPQ approach with the utilities of the
QPQ mechanism of [9]. The main conclusion from this
analysis is that, for the honest players, the expected util-
ity of both mechanisms is very similar, whereas for the
dishonest players the expected utility of the multilevel
approach is smaller than that of the QPQ mechanism
of [9]. This means that the multilevel QPQ approach
penalizes more the dishonest players.

C. STRUCTURE
The rest of the article is organized as follows. First, the QPQ
mechanism is described in Section II and in Section III the
multilevel QPQ. Then, the main results of our work are
presented: In Section IV, it is shown that multilevel QPQ is
strategy proof and obtain analytically the utility of honest and
dishonest players under different assumptions. In Section V,
an analytical study of the benefits of multilevel QPQ with
respect to QPQ [9] is presented. In SectionVI, the simulations
that have been carried out are presented. Finally, the related
work is explained in Section VII and the main conclusions of
this work in Section VIII.

II. THE QPQ MECHANISM
We define the following resource allocation problem:
Definition 1 [9]: The resource allocation problem is a

tuple 〈R,N ,2〉 where,
1) R = {r1, r2, . . .} is a (potentially ∞) ordered list of

resources.
2) N = {1, 2, . . . , n} is a set nodes or players, where n >

1 is assumed to be finite. We assume that players are
well identified.

3) 2 = (θj)j∈N is a vector of continuous random vari-
ables where θj represents the preferences of player j
for the different resources. This information is private,
i.e., it is only known by player j. The preference of j for
a resource r is denoted as θj(r).1

A solution of a resource allocation problem 〈R,N ,2〉
assigns each resource to a single player. The utility of a player
j is then the sum of the preferences θj(r) of the resources
it gets, and the utility of the resource allocation system is
the sum of the utility of all players. The objective is to find
solutions that maximize the system utility.

We assume that the player’s preferences are indepen-
dent. This means that (1) for a resource r the preferences
θ1(r), . . . , θn(r) are mutually independent, and (2) the pref-
erences θj(rs) and θj(rt ) for different resources rs and rt by
the same player j are also independent. Moreover, it may not
be possible to compare these preferences among each other,

1Throughout the document, we write θj for the preference of player jwhen
the resource r is clear from the context.
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as each player couldmeasure this parameter in her ownmetric
and units. This may imply that the system utility could not
be computed or its value be meaningless. (There could be
many factors than can influence a player’s preference, and
they can affect in a different way depending on her person-
ality.) To solve this problem, we apply the Probability Inte-
gral Transformation (PIT) function to the random variables
θ1, . . . , θn [9].
Definition 2 [10]: (Probability Integral Transformation)

Let X be a continuous random variable with a Cumulative
Distribution Function (CDF) F; that is, X ∼ F. Then,
the Probability Integral Transformation (PIT) defines a new
random variable Y as Y = F(X ).

An interesting property of the PIT is that it follows a
uniform distribution in [0, 1], independently of the distribu-
tion of X . Let us define the normalized preference of player
j ∈ N as θ̄j = PIT j(θj). Then, by construction, θ̄j follows a
uniform distribution in [0,1], and this fact makes possible the
comparison among θ̄1, . . . , θ̄n.

Moreover, the normalized preferences are independent,
because the original players’ preferences θj are independent
and the normalized ones are obtained by applying to each θj
its respective PIT, which is continuous (therefore, it is mea-
surable). This is an immediate consequence of the following
result, related to independent variables.
Proposition 1 [11]: Let

X1,1, . . . ,X1,η1 ,

X2,1, . . . ,X2,η2 ,

...

Xκ,1 . . . ,Xκ,ηκ
be a set of

∑κ
i=1 ηi independent random variables over a

probability space (�,F ,P). Then, the random variables

f1(X1,1, . . . ,X1,η1 )

f2(X2,1, . . . ,X2,η2 )
...

fκ (Xκ,1 . . . ,Xκ,ηκ )

where fi : R→ R aremeasurable functions, are independent.
From the properties of the PIT and Proposition 1, we have

the following facts.
Proposition 2: The normalized preferences θ̄1, . . . , θ̄n of

the players
• follow a uniform distribution in [0, 1], and
• are independent; i.e., (1) for a resource r the preferences
θ̄1(r), . . . , θ̄n(r) are mutually independent, and (2) the
preferences θ̄j(rs) and θ̄j(rt ) for different resources rs and
rt by the same player j are also independent.

Given these properties, in the rest of the paper we will use
only normalized preferences. Using the theory of Mechanism
Design [12], note that the Resource Allocation Problem could
be reformulated as a mechanism whose message space is the
space of normalized preferences θ̄j(r) and whose decision

function D is defined as D : 2̄ → N . That is, for each
resource r themechanismwill ask to each player j her normal-
ized preference, and assigns this resource to the player that
the decision function returns from the preferences declared
by the players.

Since the normalized preference is private information
of a player j, she may choose (strategically) to declare a
value different from θ̄j. We denote the value declared by
player j for resource r as θ̇j(r). For each resource r the
values θ̇1(r), . . . , θ̇n(r) are common knowledge once they are
declared. If player j is honest, θ̇j(r) will coincide with the real
normalized preference θ̄j(r). Otherwise, if the player is not
honest, the value θ̇j(r) declared by jmay not represent the real
normalized preference. Moreover, the set of declared values
θ̇j may not even follow a uniform distribution in [0, 1].
We assume that the mechanism used to declare the θ̇j(r)

values for a given resource r will guarantee that players do
not have access to the declared values of other players before
they declare their own value. Hence, for every resource r ,
the preferences θ̇1(r), . . . , θ̇n(r) are mutually independent.
Moreover, we assume that the players’ strategies and declared
values cannot change the belief of other players. Intuitively,
this means that the declared values of a player j are indepen-
dent with respect to the previous preferences of j and previous
declared values of the other players. Formally, a strategy for
the player j is any map σj : 2j → 1(2j), where σj(θ̄j, θ̇j)
is the conditional probability that the player reports θ̇j when
her true type is θ̄ . Observe that this formulation assumes that
dishonest players do not collude.

Using the normalized preferences θ̄ (r), the declared prefer-
ences θ̇ (r), and the decision function D(·), we can define the
normalized utility of a mechanism (for player j with respect
to resource r).

u̇j(r) =


θ̄j(r), if j gets resource r ,

0, otherwise.

(1)

Hence, we want to find mechanisms that maximize the utility
of all players. When the player j is honest we denote this
utility as ūj.
The authors in [9] present the QPQ mechanism that solve

this resource allocation problem.QPQ is based on the Linking
Mechanism Design proposed by [13]. This solution has some
nice properties like approximate truthfulness, expected utili-
ties that converge to an efficient allocation, and no-payments.
In Table 1, we present the QPQ mechanism applied to our
family of resource allocation problems.

As can be seen in Line 6 of Table 1, the basic QPQ algo-
rithm executed by player i applies a Goodness of Fit (GoF)
test2 to each of the declared value θ̇j(r) (with the aid of a
repository Historyj in which the values previously used for
player j are stored). This test evaluates whether the declared
value θ̇j(r) matches the appropriate probability distribution

2We can use any Goodness-of-Fit test, as for example Kolmogorov-
Smirnov or χ2 test.
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TABLE 1. The QPQ mechanism for distributions of resources.

of values (a uniform distribution in [0, 1]). In the analytical
sections of this paper we will assume that this GoF test is
perfect, i.e., θ̇j(r) passes the test if and only if it has been
extracted from the appropriate probability distribution.

The outcome of the GoF evaluation (Lines 6-10) is the
value θ̈j(r) for each player j. If a value θ̇j(r) passes the test,
then simply θ̈j(r) = θ̇j(r). Otherwise, θ̈j(r) = θ̂j(r), where
θ̂j(r) is a pseudo-random value generated from the rest of
declared values [TODO: give a practical example of how this
would be done, eg, using a cryptographically secure random
generator], so that it follows the appropriate probability dis-
tribution. Since all players use the sameGoF test and the same
pseudo-random function, the values θ̈j(r) are all the same in
all players.

Finally, the values θ̈j(r) are used to select the player that
receives the resource r (Lines 13-16). The player d with the
largest such value gets the resource. Since all players have the
same set of values θ̈j(r), they all agree on the decision. Hence,
the decision function used is D(θ̈j(r)) = argmaxj∈N {θ̈j(r)}.

III. THE MULTILEVEL QPQ APPROACH
We observe that the QPQ mechanism of Table 1 presents
issues when the number of players is large because all the
players must know the declared values of the rest. First,
the number of communications that must be established for
each resource is of the order of n2. Secondly, each player
must store in Historyj all the values declared by player j, for
every j ∈ N . This requires an overall amount of memory of
n2 times the number of resources. This clearly indicates that
this mechanism does not scale properly and we deal with this
issue by splitting the set of players into clusters organized
hierarchically.

In the multilevel QPQ mechanism, we consider that the set
of players N is partitioned into k > 1 subsets, or clusters,
N1, . . . ,Nk . The size of cluster c is nc = |Nc|, and the
membership isNc = {(c, 1), . . . , (c, nc)}. Hence,N = N1 ∪

· · ·∪Nk ,Ni∩Nj = ∅ for i 6= j, and n =
∑k

j=1 nj. Each of the
clusters N1, . . . ,Nk behave as one player of a supercluster.

We consider that the clusters are fixed, that is, each player
belongs to the same cluster in all the rounds. In addition
to this, we assume that the size and membership of all the
clusters are known by all the players.

We now explain how we adapt the notation of the previous
section to the multilevel QPQmechanism.We denote by (c, i)
the player i of cluster c. The preference of player (c, i) for a
given resource r is denoted by θc,i(r). Besides, (c, i) applies
the PIT function to the preferences and, thus, its normalized
preference for a resource r is denoted by θ̄c,i(r) and the
declared preference by θ̇c,i(r).

The multilevel QPQ mechanism for player (c, i) and
resource r is presented in Table 2 and we describe it briefly
here. First, from Line 5 to Line 13, the QPQ algorithm of [9]
is applied to the players of cluster c. Hence, for each player
in cluster c, if the declared value passes the test, θ̈c,i(r) equals
the declared value, that is, θ̈c,i(r) = θ̇c,i(r), and θ̈c,i(r) gets
a uniform random value otherwise. We denote by N (1) the
set of winners of each cluster. Then, from Line 19 to Line
27, the QPQ algorithm of [9] is applied to the set of winners,
that is, toN (1). Hence, for each player (w, bw) ofN (1), if the
declared value passes the test, then

...
θ w,bw (r) = θ̈w,bw (r),

and
...
θ w,bw (r) gets a pseudorandom value that follows an

appropriate distribution otherwise. Finally, the resource is
allocated to player (c, i) ∈ N (1) if

...
θ c,i(r) is the maximum

value.
We define for each player (c, i) the following random vari-

able to quantify her normalized utility associated to resource
r ∈ R.

u̇c,i(r) =

{
θ̄c,i(r), if D(

...
θ (r)) = (c, i),

0, otherwise.
(2)

Note that the above value depends on the real normalized
preference θ̄c,i(r) of the player.3

The authors in [9] showed that the QPQ mechanism is
optimal in the sense that, if all the players are honest,
the total utility generated is maximized. In the following
result, we generalize this result to a systemwith clusters. That
is, we show that, when the player are honest, the total utility
of any mechanism that assigns a set of resources to players
(divided in clusters or not) is smaller or equal than the total
utility of the QPQ multilevel mechanism.
Proposition 3: Assume that all players are honest. For any

resource r ∈ R and any normalized preferences θ̄ (r), every
mechanism M (which may be probabilistic) verifies that∑

j∈N
ūMj (r) ≤

∑
j∈N

ūj(r),

where ūMj is any realization of the normalized utility of player
j with respect to resource r and normalized preferences θ̄ (r)
when mechanism M is applied.

Proof: Let us assume by way of contradiction that there
exists a resource r and a mechanism M such that the above

3If it is clear from the context, we refer to the real normalized preferences
as normalized preferences.
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TABLE 2. The multilevel QPQ mechanism for distributions of resources.

inequality is not satisfied. Therefore, it holds that

∑
j∈N

ūMj (r) >
∑
j∈N

ūj(r).

When the multilevel QPQ mechanism of Table 2 is used,
the following holds. Since all players (c, i) are honest,
θ̇c,i(r) = θ̄c,i(r). Since the GoF test is perfect, θ̈c,i(r) =
θ̄c,i(r). Hence, the winner of each cluster is the player in
the cluster with largest normalized utility. Similarly, for each
winner it holds that

...
θ w,bw (r) = θ̄w,bw (r). This implies that

resource r is assigned in Lines 27-30 to the player w∗ =
argmaxj∈N {θ̄j(r)}. Let us assume that, when we apply mech-
anismM , the resource r is assigned to player wM . With both
mechanisms, resource r is assigned to a single player, and
hence all players have a zero normalized utility except for that
player (w∗ and wM , for Multilevel QPQ andM , respectively).
Thus, it results that

ūMwM (r) = θ̄wM (r) > ūw∗ (r) = argmax
j∈N
{θ̄j(r)},

and we have found a contradiction. �
The following proposition follows from the definition of

normalized utility and the fact that a resource r is assigned to
only one player.

Proposition 4: For any resource r ∈ R, any normalized
preferences θ̄ (r), and any declared preferences θ̇ (r),∑

j∈N
u̇j(r) ≤

∑
j∈N

ūj(r) ≤ max
j∈N
{θ̄j(r)},

where u̇j(r) is the real utility of player j when the declared
preferences are θ̇ (r).

IV. THE BENEFITS OF BEING HONEST
In this section, we prove that, for any player, being honest
is the strategy that maximizes its utility. Prior to presenting
the analysis we have done to prove this result, we give the
following result:
Proposition 5: The preferences of players (c, i) that the

multilevel QPQ mechanism uses to assign the resource r,
θ̈c,i(r), are drawn from independent and uniform distributions
in [0, 1].

Proof: We distinguish the following three cases,
depending on the behavior of the players:

• The player (c, i) is honest. In this case, we have that
the preferences are θ̈c,i(r) = θ̄c,i(r) and, therefore,
they follow a uniform normalized distribution, from
Proposition 2. Besides, they are independent since play-
ers declare their preferences before receiving values of
the others.
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• The player declares values that do not follow a uni-
form distribution. In this case, the declared value θ̇c,i(r)
does not pass the GoF test and the algorithm assigns
a random value θ̂c,i(r) to the player (c, i), which is
uniformly distributed in [0, 1] and independent from the
preferences of the others.

• Aplayer is dishonest and she passes theGoF test.This
occurs when the declared values θ̇c,i(r) follow a uniform
distribution in [0, 1], but they are different from θ̄c,i(r).
Besides, the declared values are independent from other
player’s preferences, since the value is sent before the
others are received.

Since, in all the cases, the values are independent and uni-
formly distributed in [0, 1], the desired result follows. �
The authors in [9] use the notion of aggregated player

to compute the expected utility of a player. The idea is the
following: they consider the rest of the players as a single
fictitious player whose preference is the maximum of all of
them. As a result, the computation of the expected utility
of a player gets simplified since it is reduced to calculate
the probability that its preference is larger than that of the
aggregated player. In the following section, we show how we
adapt the concept of aggregated player to the multilevel QPQ
mechanism.

A. AGGREGATED PLAYER
In the multilevel QPQ mechanism, we consider three aggre-
gated players. The first one is inside the clusters, i.e., we
consider that each player (c, i) is competing against a ficti-
tious aggregated player, denoted (c,−i), whose preference is
the maximum of the preferences of the rest of the players in
cluster c. We denote by θ̈c,−i the preference of this aggregated
player in the cluster level, i.e.,

θ̈c,−i = max{θ̈c,j : j ∈ Nc\{i}}. (3)

Hence, player (c, i) is the winner of cluster c when
θ̈c,i > θ̈c,−i.
When player (c, i) is the winner of cluster c (i.e., bc = i)

its preference
...
θ c,i is compared with that of the winners of

the other clusters. Therefore, the second aggregated player we
consider, denoted (−c), is for the cluster winners, i.e., when
the player (c, i) is the winner of the cluster c, it is in compe-
tition against the aggregated player that is formed by the rest
of the winners, whose preference of the aggregated player of
the winner is denoted by

...
θ −c, and defined as

...
θ −c = max{

...
θ w,bw : (w, bw) ∈ N (1)

\{(c, i)}}. (4)

We also define the aggregated player of (c, i) of the entire
system, denoted by−(c, i), as the player whose preference is
the maximum between

...
θ −c and θ̈c,−i, i.e.,

...
θ −(c,i) = max{

...
θ −c, θ̈c,−i}. (5)

The objective of this section is to calculate the distribution
of preferences θ̈c,−i,

...
θ −c and

...
θ −(c,i). The next result is the

key to quantify them.

Proposition 6: Let X1, . . . ,Xκ , κ > 1, be independent
continuous random variables such that they follow, respec-
tively, a Beta(pj, 1) distribution, pj ∈ N ∀j ∈ {1, . . . , κ}.
Then, the random variable

X = max{Xj|1 ≤ j ≤ κ}

follows a Beta(
∑κ

j=1 pj, 1) distribution.
Proof: First, from Proposition 1, it follows that X

is a continuous random variable, since the maximum is a
measurable function. As a result, we consider FX the CDF
of X and we calculate its value for any y ∈ R as follows:

FX (y) = P[X ≤ y]
= P[

(
max{Xj|1 ≤ j ≤ κ}

)
≤ y]

= P[X1 ≤ y, . . . ,Xκ ≤ y].

Since the random variables X1, . . . ,Xκ are independent
and Xj follows a Beta(pj, 1) distribution, it results that

P[X1 ≤ y, . . . ,Xκ ≤ y] =
κ∏
j=1

P[Xj ≤ y]

=

κ∏
j=1

(∫ y

−∞

fj(x)dx
)
,

where fj(x) is the density function associated to a Beta(pj, 1)
distribution. That is,

fj(x) =

{
pj · xpj−1 if x ∈ [0, 1]
0 otherwise

Depending on the value of y, we differentiate three cases:
• If y ≤ 0, then

FX (y) =
κ∏
j=1

(∫ y

−∞

0 dx
)
= 0.

• If y ∈ [0, 1], then

FX (y) =
κ∏
j=1

(∫ 0

−∞

0 dx +
∫ y

0
pj · xpj−1dx

)

= y

(∑κ
j=1 pj

)
.

• If y ≥ 1, then

FX (y) =
κ∏
j=1

(∫ 0

−∞

0 dx +
∫ 1

0
pj · xpj−1dx +

∫ y

1
0 dx

)
= 1.

If we derive FX with respect to y, we obtain the density
function of X :

fX (y) =


 κ∑
j=1

pj

 · y(∑κ
j=1 pj

)
−1

if y ∈ [0, 1]

0 otherwise
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Let’s recall that the density function associated to a
Beta(p, q) distribution is:

fβ (y) =


1

β(p, q)
· yp−1· (1− y)q−1 if y ∈ [0, 1]

0 otherwise

When p =
∑κ

j=1 pj and q = 1, it results that, if y ∈ [0, 1],

fβ (y) =
1

β
(∑κ

j=1 pj, 1
)y(∑κ

j=1 pj
)
−1

=
0(1+

∑κ
j=1 pj)

0(1)0(
∑κ

j=1 pj)
y

(∑κ
j=1 pj

)
−1

=

 κ∑
j=1

pj

 y

(∑κ
j=1 pj

)
−1

and, otherwise, fβ (y) = 0. Therefore, the desired result
follows since fX is equal to fβ when p =

∑κ
j=1 pj and q = 1.

�
From Proposition 5, we know that the preferences θ̈c,i of

the players follow independent uniform distributions in [0, 1].
A uniform distributions in [0, 1] coincides with the Beta(1, 1)
distribution. Therefore, from Proposition 6, we derive the
preferences’ distribution of the first aggregated player in the
following result.
Corollary 1: The preferences θ̈c,−i of the aggregated

player (c,−i) follow a Beta(nc−1, 1) distribution. Moreover,
this distribution in independent from the distribution of θ̈c,i,
which follows a uniform distribution in [0, 1].
Using the same arguments as in the above result, one can

easily provide the distribution that the preferences of the
winner of cluster c follow.
Corollary 2: The preferences θ̈c,bc of the winner bc of

cluster c follow a Beta(nc, 1) distribution. Moreover, this
distribution is independent from the distribution of θ̈c′,bc′ , for
all cluster c′ 6= c.
As a result of this corollary and Proposition 6, the next

result follows.
Corollary 3: The preferences

...
θ −c of the aggregated

player (−c) follow a Beta(n− nc, 1) distribution. This distri-
bution is independent of the distribution of preferences θ̈c,bc
of the winner bc of cluster c.
As a result of Corollary 3 and Corollary 1, we have the

following result.
Corollary 4: The preferences

...
θ −(c,i) of the aggregated

player −(c, i) follow a Beta(n− 1, 1) distribution. Moreover,
this distribution is independent from the distribution of θ̈c,i,
which follows a uniform distribution in [0, 1].

B. HONEST STRATEGY
When a player (c, i) declares its real preference for a resource
r , since we assume that the GoF test is perfect, we have
that θ̈c,i = θ̄c,i and, if it is the winner of cluster c, we also
have that

...
θ c,i = θ̄c,i. Hence, the obtained utility of player

(c, i) for resource r ∈ R (omitted from now on) can be

written as follows (combining Eq. 2, 3, and 4, and the decision
function D(·)),

ūc,i =

{
θ̄c,i, if (θ̈c,−i < θ̄c,i) ∧ (

...
θ −c < θ̄c,i),

0, otherwise.
(6)

Observe that, from the definition of
...
θ −(c,i) (Eq. 5), this is

equivalent to

ūc,i =

{
θ̄c,i, if

...
θ −(c,i) < θ̄c,i,

0, otherwise.
(7)

We use the above expression to compute the expected profit
of an honest player in the following result.
Proposition 7: The expected normalized utility of an hon-

est player (c, i) is E[ūc,i] = 1
1+n .

Proof: As explained before, a player (c, i) gets resource
r ∈ R if and only if (θ̈−(c,−i) < θ̄c,i) ∧ (

...
θ −c < θ̄c,i)

holds. This is equivalent to
...
θ −(c,i) < θ̄c,i. Therefore, from

Corollary 4, the expected normalized utility of player (c, i) is

E[ūc,i] =
∫ 1

0
x·P[(θ̈c,−i < x) ∧ (

...
θ −c < x)]dx

=

∫ 1

0
x·P[

...
θ −(c,i) < x]dx

=

∫ 1

0
x
∫ x

0
(n− 1)yn−2dydx

=

∫ 1

0
x
[
xn−1

]
dx

=

∫ 1

0
xndx

=
1

1+ n
.

�

C. ARBITRARY RATIONAL STRATEGIES
In this section we show that if all players are rational, no
strategywill allow a player to have a expected real normalized
utility higher than being honest. From Proposition 7 and 4 we
have the following corollary, which gives an upper bound on
the sum of the real normalized utilities of all players.
Corollary 5: For any set of strategies σ̇ used by the play-

ers, where θ̇ are the declared preferences of the players
with σ̇ ,

E[
∑
j

u̇j] ≤ E[
∑
j

ūj] =
n

n+ 1

The following result shows that no rational player will ever
have less expected utility than the obtained being honest.
Corollary 6: Let σ̇c,i be a strategy used by a rational

player (c, i). Let θ̇c,i be the preferences declared by (c, i) with
σ̇c,i, and u̇c,i the corresponding utility. Then,

E[u̇c,i] ≥ E[ūc,i] =
1

n+ 1
Proof: Since player (c, i) is rational, it is going to

use the strategy that maximizes its expected utility. Since
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one possible such strategy is being honest, E[u̇c,i] cannot be
smaller than E[ūc,i]. The equality follows from Proposition 7.

�
With this, we can show the following theorem.
Theorem 1: Assume all players are rational. Let σ̇c,i be a

strategy used by a rational player (c, i). Player (c, i) never
obtains more expected normalized utility with σ̇c,i than by
being honest,

E[ūc,i] ≥ E[u̇c,i].
Proof: Let us assume player (c, i) uses a strategy σ̇c,i that

allows it to have a expected normalized utility E[u̇c,i] that is
larger than the expected utility E[ūc,i] it gets being honest.
I.e., E[u̇c,i] > E[ūc,i] = 1

n+1 . From Corollary 6, the sum of
the expected utilities for the other rational players satisfies,

E[
∑
j6=(c,i)

u̇j] =
∑
j6=(c,i)

E[u̇j] ≥
∑
j6=(c,i)

E[ūj] =
n− 1
n+ 1

.

Hence,

E[
∑
j

u̇j] = E[u̇c,i]+ E[
∑
j6=(c,i)

u̇j]

>
1

n+ 1
+
n− 1
n+ 1

=
n

n+ 1
,

which violates Corollary 5. �

D. DISHONEST STRATEGIES THAT DO NOT
PASS THE GOF TEST
In this section, we prove that the utility of a player when it
declares the real preferences is larger than when the declared
preferences do not pass the GoF test.

We study the utility of a dishonest player whose the
declared value does not pass the GoF test. This occurs
when the player declares non uniform values. For this case,
the player is assigned a new random preference, i.e., θ̈c,i =
θ̂c,i. We assume that the generator of the random values is
perfect and, hence, as shown in Proposition 5, the preferences
θ̈c,i are independent and follow a uniform distribution in
[0, 1]. As a result, the GoF test which is applied to the winners
of the clusters (see Line 06 of Table 2) never fails. Hence, if
(c, i) is the winner of cluster c, it holds that

...
θ c,i = θ̈c,i and...

θ −c = θ̈−c.
The normalized utility, ûc,i, of player (c, i) when it declares

values that do not pass the GoF test is given by

ûc,i =

{
θ̄c,i, if (θ̈c,−i < θ̂c,i) ∧ (

...
θ −c < θ̂c,i),

0, otherwise.
(8)

Notice that, from the definition of
...
θ −(c,i) (Eq. 5), this is

equivalent to

ûc,i =

{
θ̄c,i, if

...
θ −(c,i) < θ̂c,i,

0, otherwise.
(9)

In the next proposition, we compute the expected utility of
a player when its declared values do not pass the GoF test.

Proposition 8: The expected normalized utility of a player
(c, i) whose declared values do not pass the GoF test is

E[ûc,i] =
1
2n

Proof: When the value declared by the player (c, i) does
not pass theGoF , from (9), it follows that the expected utility
of a player (c, i) associated to the resource r is given by

E[ûc,i] =
∫ 1

0

∫ 1

0
x · P[

...
θ −(c,i) < z]dzdx,

where z represents the value θ̂c,i assigned to player (c, i).
From Corollary 4, we know that the distribution of

...
θ −(c,i)

is the Beta(n− 1, 1) and therefore

E[ûc,i] =
∫ 1

0

∫ 1

0
x · P[

...
θ −(c,i) < z]dzdx

=

∫ 1

0
x
∫ 1

0

(∫ z

0
(n− 1)yn−2dy

)
dzdx

=

∫ 1

0
x
∫ 1

0
zn−1dzdx

=

∫ 1

0

x
n
dx

=
1
2n
.

And the desired result follows. �
From Proposition 7, the utility of a player when it declares

real values is 1
n+1 and from Proposition 8, the utility of a

player when it declares values that do not pass the GoF test is
1
2n . Hence, using that for all n > 1

1
2n
<

1
n+ 1

,

the next result follows.
Corollary 7: Let (c, i) ∈ N an arbitrary player. The

expected utility of player (c, i) when it is honest is greater
than when it declares values that do not pass the GoF test,
i.e.,

E[ūc,i] > E[ûc,i].

E. DISHONEST STRATEGIES THAT PASS THE GOF TEST
In Section IV-D we have shown that it is preferable for a
player to be honest than to declare values that do not pass
the GoF test. However, players can declare values that pass
the GoF test but are different from the real preferences. This
occurs, for instance, if the declared values follow a uniform
distribution different from the real uniform distribution of the
player. Therefore, in this section, we generalize the result of
Corollary 7 to any dishonest strategy.

In the remainder of this section we use the following con-
cepts. The strategy of player (c, i) is realized by its declared
values θ̇c,i. Since these values pass the GoF test and therefore
θ̇c,i = θ̈c,i = z, they follow a uniform distribution in
[0, 1]. We assume that they are defined by a bi-variate density
function σj(x, z) = σj(θ̄j, θ̇j) that relates the real preferences
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x and the declared values z. I.e., θ̇c,i(r) is chosen randomly
from a distribution with density function σj(θ̄c,i(r), z) on z.

Since these declared values θ̇c,i pass the GoF test, it holds
that the marginal distribution fz(z) of σj(x, z) on z satisfies

fz(z) =
∫ 1

0
σj(x, z)dx = 1.

Lemma 1: For any player (c, i) and any y ∈ [0, 1],

P[θ̄c,i < y] = P[θ̇c,i < y] = y.
Proof: Since the real preferences of player (c, i) follow

a uniform distribution, it follows that

P[θ̄c,i < y] =
∫ y

0
1 dx = y.

For the declared values we have that

P[θ̇c,i < y] =
∫ 1

0

(∫ y

0
σj(x, z) dz

)
dx

=

∫ y

0

(∫ 1

0
σj(x, z) dx

)
dz

=

∫ y

0
fz(z) dz,

where fz(z) is the marginal distribution of σj(x, z) on z,
as defined above. Since fz(z) = 1, therefore,

P[θ̇c,i < y] =
∫ y

0
1 dz = y.

�
A similar result could be obtained for the aggregated player
−(c, i). From Corollary 4, given that z is the maximum of
n − 1 independent uniform random variables, we conclude
that z ∼ Beta(n− 1, 1). Hence, we have the following result.
Lemma 2: For any strategy of the players in the set of the

aggregated player −(c, i) and for any y ∈ [0, 1],

P[
...
θ −(c,i) < y] = (n− 1) yn−1.

The expected utility of the aggregated player −(c, i) when
all its players declare their real preferences is defined as
follows:

ū−(c,i) =

{
θ̄−(c,i) if

...
θ −(c,i) > θ̈c,i

0 otherwise

where θ̄−(c,i) = max{θ̄j : j ∈ N \ {(c, i)}}.
We now provide an interesting result of the expected utility

ū−(c,i) of the aggregated player −(c, i) as defined.
Proposition 9: The expected utility ū−(c,i) of the aggre-

gated player −(c, i) when all its players declare their
real preferences does not depend on the strategy of the
player (c, i).

Proof: We know from Corollary 4 that
...
θ −(c,i) follows

the Beta(n − 1, 1) distribution. Let f (y) = (n − 1)yn−2 be
the density function of the Beta(n − 1, 1) distribution. From
Lemma 1 and the fact that θ̈(c,i) = θ̇(c,i) (since θ̇(c,i) passed
the GoF test), we have that

E[ū−(c,i)] =
∫ 1

0
y f (y) P[θ̈(c,i) < y] dy

=

∫ 1

0
y f (y) P[θ̇(c,i) < y] dy

=

∫ 1

0
y f (y) y dy

=

∫ 1

0
y (n− 1)yn−2 y dy

=

∫ 1

0
(n− 1)yn dy

=
n− 1
n+ 1

.

�
We also show an equivalent result for the player (c, i).
Proposition 10: The expected utility u̇(c,i) of the player

(c, i) does not depend on the strategy of the aggregated
player −(c, i).

Proof: The expected utility can be computed as

E[u̇(c,i)] =
∫ 1

0
x
∫ 1

0
σ (x, z)P[

...
θ −(c,i) < z]dz dx

=

∫ 1

0
x
∫ 1

0
σ (x, z)(n− 1)zn−2dz dx,

where the equality follows from Lemma 2 and the indepen-
dence between the values θ̇(c,i) (i.e., z) declared by (c, i) and...
θ −(c,i). Since this expression does not depend on the strate-
gies of the players in the aggregated player −(c, i), the claim
follows. �
Finally, using the above results, we prove the main result

of this section now.
Theorem 2: A player (c, i) never obtains less normalized

utility (in expectation) by being honest, i.e.,

E[ūc,i] ≥ E[ũc,i],

where ũc,i is the utility obtained with the declared values θ̃c,i
(which can be different from θ̄c,i). Moreover, this is true for
any number of clusters and any number of players in each
cluster.

Proof: Let us assume that the values θ̃c,i declared by
(c, i) do not pass the GoF test. Then, from Corollary 7,
the desired result follows.

We now consider that the values θ̃c,i declared by (c, i) pass
theGoF test. Let us suppose that there exists a set of declared
values θ̃c,i (different from the true preferences θ̄c,i) such that
player (c, i) gets less utility by being honest than by declaring
values θ̃c,i, i.e.

E[ūc,i] < E[ũc,i].

The intuition of the rest of the proof is as follows. In this
scenario, since θ̃c,i is a uniform distribution independent from
the other players, this strategy used by (c, i) does not affect
the utility of the other players. Let us assume the other players
are all honest. Then, the total utility is higher than when all
players are honest. The next step is to create a mechanism
M that reproduces the allocation of multilevel QPQ with
(c, i) using θ̃c,i and all other players honest when also (c, i)
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is honest. The existence of this mechanism would lead to a
contradiction with completes the proof that the strategy θ̃c,i
does not exist.

More formally, let us assume values θ̃c,i follow strategy
σ (θ̄ , θ̃), which is the density probability function of announc-
ing θ̃ when the real preference is θ̄ . From Proposition 10,
this inequality holds for any strategy of the aggregated player
−(c, i) (i.e., any strategy of the rest of players). For that rea-
son, we consider in the rest of the proof that, except for player
(c, i), all the players behave honestly. Moreover, by Proposi-
tion 9, we know that the aggregated player −(c, i) (i.e., each
of the other players) obtains the same expected utility inde-
pendently of whether the player (c, i) is honest or dishonest.
As a result, total utility in a system in which all players are
honest is smaller than the total utility in a system in which
player (c, i) declares preferences θ̃c,i and the rest of players
are honest, i.e.,

E[ūc,i]+ E[ū−(c,i)] < E[ũc,i]+ E[ū−(c,i)]. (10)

Now, we define a mechanism M that behaves exactly like
Multilevel QPQ but assigning to player (c, i) a preference θ̇ ′c,i
chosen with a density σ (θ̇ , θ̇ ′) when it declares θ̇c,i in Line 3.
With this transformation, the probability that the resource r is
assigned to player (c, i) when it is honest coincides with the
probability that our mechanism allocates the resource to the
player when declares the values θ̃c,i. Observe that this new
mechanism M does not alter the assignment to other players
and the values θ̇ ′c,i are still independent from the preferences
of the other players. Therefore,

• E[ũc,i] = E[ūMc,i]
• E[ū−(c,i)] = E[ūM

−(c,i)].

Replacing these values in (10), we obtain that

E[ūc,i]+ E[ū−(c,i)] < E[ūMc,i]+ E[ū
M
−(c,i)].

However, the above expression contradicts Proposition 3,
that shows that our algorithm is optimal for honest players.
Therefore, the strategy that maximizes the expected profit of
the player (c, i) player is to be honest. �
Remark 1: Observe that this theorem generalizes the

result of Thm 10 of [9] since the model of QPQ is a particular
case of the multilevel QPQ.

V. THE BENEFITS OF CLUSTERING IN PRACTICE
In this section we compare multilevel QPQ with QPQ in
several dimensions: communication cost, memory used, and
the expected utility of honest players. For simplicity, unless
otherwise stated, we will assume in this section that all clus-
ters have the same size n/k .

A. BENEFITS IN COMMUNICATION COST
The first dimension in whichmultilevel QPQ improves versus
QPQ is in the total communication volume per resource
assignment that are required. Let us assume, for instance, that
the declared values are sent to a central relay R, which then

sends them to the players. QPQ has the following sequence
of actions:
• Each player i sends its declared value to R.
• Relay R sends the set of values declared by all players to
every player.

The total volume of communication is VQPQ = n+ n2 values
in 2n messages.

In multilevel QPQ the sequence is as follows.
• Each player (c, i) sends its declared value to R.
• Relay R send the values declared by all the players in
cluster c to all the players in cluster c, for each cluster.

• The winners (c, bc) from all clusters send their declared
values in Line 15 of Table 2 to R.

• Relay R sends the set of values declared by all winners
to all the players.

The total volume is VmQPQ = n +
∑k

j=1 n
2
j + k + nk , in a

total of 3n + k messages. Let us consider the case in which
all cluster have the same size nj = n/k,∀j. Then,

VmQPQ = n+ k(n/k)2 + k + nk = n+ n2/k + k + nk.

Let us obtain the value of k that minimizes VmQPQ. The
derivative of the above expression with respect to k is

∂VmQPQ
∂k

= −
n2

k2
+ 1+ n

and this is zero when

−n2 + k2 + nk2 = 0

which, when n is large enough, the optimal number of clusters
k∗ is approximately

k∗ ≈
√
n.

This leads to an asymptotic improvement in the complexity
of the volume of communication as follows.
Proposition 11: Multilevel QPQ with k clusters of the

same size n/k reduces the volume of data communication with
respect to QPQ by

VQPQ
VmQPQ

= �(
n

n/k + k
),

which becomes �(n1/2) for k = n1/2.

B. BENEFITS DUE TO IMPROVED MEMORY USE
In the analysis of Section IV, we have assumed that the GoF
test is perfect. However, in practice, the GoF test is not per-
fect. This means that it can accept values that do not follow an
adequate distribution (i.e., there are false positives), and can
reject values that follow the distribution (i.e., there are false
negatives). We claim that the performance of the GoF test
improves with the length of the available history. This means
that the GoF test has fewer false positives and negatives.
Ideally, all players would maintain the full history of values
used in all prior resource assignment rounds. However, this
may not be possible since the required memory would grow
without bound.
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1) INCREASE OF THE HISTORY LENGTH
Let us first assume that the available memory to store the
history is fixed, and compare the length of the history used
in a GoF test with multilevel QPQ versus the original single-
level QPQ.

Let S1 be thememory available to store the history values at
each player in the single-level QPQ. Thus, if H1 is the length
of the history used for each GoF test, it follows that

S1 = H1n,

since in the one level model, a player performs the GoF test
to n players.

In the multilevel QPQ, let the memory available to store
history values be S2. Then, when the history length used per
player at the cluster level is Hc and at the upper level is Hu,
we have that

S2 =
n
k
Hc + kHu.

Let us assume that Hu = αHc, for a constant value α > 0.
Then, we have that

S2 =
(n
k
+ αk

)
Hc.

We are interested in studying the relationship between H1,
Hu, and Hc when S1 = S2. If we equalize the memories,
we have that

Hc =
nH1

αk + n
k
=

nk
αk2 + n

H1. (11)

Hu = αHc =
nk

k2 + n/α
H1. (12)

In the following result, we present the relation betweenH1,
Hu and Hc for α = 1.
Proposition 12: Consider α = 1. Then, Hc and Hu are,

at most, k times larger than H1. Moreover,

• When n/k = 1, Hc and Hu are smaller than H1.
• For all k such that n/k ≥ 2, Hc and Hu are always larger
than H1.

Proof: For a fixed value of k , we consider the func-
tion g(n) = n

n
k+k

. Since g(n) is increasing with n and
limn→∞ g(n) = k , we have that Hc is, at most, k times larger
than H1. For the lower bound, we observe that g(k) < 1,
whereas g(mk) > 1, for all m = 2, 3, . . . . �
We now fix k =

√
n, which we proved in the previous

section is the choice of k that minimizes the communication
volume. For this case, (11) and (12) give respectively

Hc =
n3/2

n(α + 1)
H1 =

n1/2

α + 1
H1

and

Hu =
n3/2

n(1+ 1/α)
H1 =

n1/2

1+ 1/α
H1.

Hence, we have the following result.

Proposition 13: Consider k =
√
n. Then, Hu and Hc are

larger than H1 when

k > min{α + 1, 1+
1
α
}.

Moreover, since α is a constant, Hu = �(
√
nH1) and Hc =

�(
√
nH1).

2) INCREASE OF EXPECTED UTILITY OF HONEST PLAYERS
We now focus on a system with only honest players. As we
just showed, it is possible to have a longer history using mul-
tilevel QPQ than with QPQ [9]. This means that, in practice,
honest players will suffer of less false negatives in the GoF
test (by definition a honest player can never have a false
positive) using multilevel QPQ. We show here that this leads
to a higher practical expected utility of honest players with
multilevel QPQ than with QPQ.

Let us first provide the expression of the expected utility
of QPQ [9]. We denote by q that probability of false negative.
Hence, the expect utility for a given honest player j is given
by

E[ūQPQj ] =
1− q
n+ 1

+
q
2n
. (13)

The computation of the above expression is available in the
Appendix.

For the multilevel QPQ, the test of GoF is carried out in
the cluster level and in the upper level. We denote by pc and
pu, respectively, the probability of false negative in the cluster
level and in the upper level.

We now introduce the following notation: UH is the
expected utility when a player is honest and both GoF test
do not fail; Uu the expected utility when the declared value
passes the test of the cluster level, but not in the upper level;
Uc the expected utility when the declared value does not pass
the test of the cluster level, but it does in the upper level
test; Uu,c the expected utility when the declared value does
not pass the test in the cluster level and in the upper level.
Therefore, for the multilevel QPQ, since the GoF is done in
the cluster and in the upper level, the utility of a player is
given by

E[ūmQPQj ] = (1− pc)(1− pu)UH + (1− pc)puUu
+ pc(1− pu)Uc + pcpuUu,c.

The values of UH , Uu, Uc and Uu,c are given in the
Appendix.

When all the clusters are of the same size, it results

E[ūmQPQj ] =
(1− pc)(1− pu)

n+ 1
+
pc(1− pu)

2n
+

+
(1− pc)pu nk
n( nk + 1)

+
pcpu
2n

=
(1− pc)(1− pu)

n+ 1
+
pc
2n
+

(1− pc)pu
n+ k

. (14)

We now show that (14) is, at most, two times (13). There-
fore, we study the ratio of the utility of the two levels model
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over the utility of the

E[ūmQPQj ]

E[ūQPQj ]
=

(1−pc)(1−pu)
n+1 +

pc
2n +

(1−pc)pu
n+k

1−q
n+1 +

q
2n

. (15)

We note that (14) decreases with pu and pc and (13)
decreases with q. Therefore, the maximum over pu, pc and
q of (15) is given when pu = pc = 0 and q = 1.
When pu = 0, pc = 0 and q = 1, (15) gives

1
n+1
1
2n

=
2n

n+ 1
.

We observe that the above ratio increases with n and it is
equal to one when n = 1 and equal to 2 when n→∞. As a
consequence, we have the following result:
Proposition 14: The utility of the two level system is,

at most, two times higher than the utility of the one level
system.

Let us now show that in fact multilevel QPQ can achieve
higher expected utility thanQPQ.We show a relation between
pc, pu, and q that guarantees this property
Proposition 15: If n > k and (1 − pc)(1 − pu) ≥ 1 − q

then an honest player achieves higher expected utility with
multilevel QPQ than with QPQ, i.e.,

E[ūmQPQj ]

E[ūQPQj ]
> 1.

Proof: From the assumption that (1−pc)(1−pu) ≥ 1−q
we have that

(1− pc)(1− pu)
n+ 1

≥
1− q
n+ 1

.

Then, to have
E[ūmQPQj ]

E[ūQPQj ]
> 1 it is enough to have (see Eq. (15))

pc
2n
+

(1− pc)pu
n+ k

>
q
2n
.

Since 1
n+k >

1
2n when n > k , then

pc
2n
+

(1− pc)pu
n+ k

>
pc
2n
+

(1− pc)pu
2n

.

Hence,
E[ūmQPQj ]

E[ūQPQj ]
> 1 holds if

pc
2n
+

(1− pc)pu
2n

≥
q
2n
,

i.e., pc+(1−pc)pu ≥ q. This is always true from (1−pc)(1−
pu) ≥ 1− q, which implies

q ≤ 1− (1− pc)(1− pu)

= 1− 1+ pc + (1− pc)pu
= pc + (1− pc)pu.

�

FIGURE 1. False negative probability when the history length changes
from 100 to 1000.

VI. SIMULATION RESULTS
We now focus on the simulations we have carried out in this
work.4 The goal of this study is to compare the performance
of multilevel QPQ with QPQ for several parameters and its
impact on the utility of honest and dishonest players. While
there are other mechanisms without payments that could be
used to solve the problem [15], [16], they are designed for
system models more general than the one considered here,
and are equivalent to QPQ when deployed under the model
and assumptions used in this paper.

In the experiments that we have conducted, we have used
Kolmogorov-Smirnov as the GoF test. The Kolmogorov-
Smirnov GoF test is given a history of values with a new
value θ to test, and the reference distribution with which to
compare. Then, it returns a p-value. This value p is compared
with a threshold τ to determine whether θ passes the GoF
test or not. If the p-value is smaller that the threshold τ ,
the value θ is considered to fail the GoF test.
When the history provided is in fact extracted from the

reference distribution, the p-values returned are drawn from
a [0, 1] uniform distribution. By construction, when the θ
values provided are the preferences of an honest player,
the probability of the GoF test failing (i.e., a false negative)
is τ , independently of the history length (see Figure 1).
If τq is the threshold of QPQ, and τc and τu are the thresh-

olds respectively in the cluster level and in the upper level of
multilevel QPQ, by definition τq = q, τc = pc, and τu = pu.
In our experiments, we have set these thresholds of the GoF
test of multilevel QPQ and QPQ such that the impact on the
utility due to the false negatives in both systems is the same.
Then, following Proposition 15, we consider that

(1− q) = (1− pc)(1− pu) ⇐⇒ (1− τq)

= (1− τc)(1− τu).

Additionally, to simplify the analysis, we have considered in
our simulations that pc = τc = pu = τu.

4Python libraries have been used for the simulations including numpy
(version 1.18.1) and scipy (1.4.1). The results we present in this section can
be reproduced using the code of [14].
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FIGURE 2. True negative probability when the history length changes
from 100 to 1000.

In the Kolmogorov Smirnov GoF test, the probability of
detecting that the declared preferences are different from the
reference distribution (i.e., true negatives) increases with the
length of the history (i.e., with the number of values used
to perform GoF test; see Figure 2). These values require
some memory space. (The false positive rate is not affected
significantly by the history length; see Figure 1.) Therefore,
the structure of the multilevel QPQ (i.e., the number of cluster
and the number of players in each cluster) determines the
memory available in the system. We fix the memory in both
systems (QPQ and multilevel QPQ) to be the same.

Taking into account the previous considerations (thresh-
olds and length of history), we define a baseline scenario with
n = 64 players and, following Proposition 11, we consider
that k =

√
n = 8 clusters. We assume a single dishonest

player whose strategy consists of declaring preferences that
follow a Beta(1.2, 1) distribution. The threshold value is τq =
0.03 and the length of the history of the GoF test in QPQ
for each player is H1 = 100 values (so the total memory is
S1 = 100n). In multilevel QPQ the total memory available
S2 = S1 is distributed among the cluster level and at the
upper level. We assume α = 1 (see Section V-B1), so that
the history length per player at the cluster level Hc is the
same as the history length per cluster Hu at the upper level.
The value of Hc and Hu is obtained with Eqs. 11 and 12,
and from Proposition 12 they are larger than H1 since in
all the considered cases n/k > 1. Moreover, for each set
of experiments, we vary one of the parameters while the
rest of the parameters are fixed. In all the experiments, we
consider the following utilities: (i) the utility under the QPQ
approach of the honest players (labelled as QPQ honest) and
of the dishonest players (labelled as QPQ dishonest), and (ii)
the utility under the multilevel QPQ approach of the honest
players (labelled as ML-QPQ honest) and of the dishonest
players (labelled as ML-QPQ dishonest). In both cases, we
represent in each plot the mean and the 95% confidence
interval of, at least, 500 values we obtained for the normalized
utility, which is:

u∗

E[ūc,i]
,

FIGURE 3. Normalized utility for different strategies of the dishonest
player. τq = 0.03.

where E[ūc,i] = 1
1+n is the expected utility of an honest

player (c, i) and u∗ is each of the aforementioned utilities.
In Figure 3, we compare the performance of multilevel

QPQ with QPQ for different strategies of the dishonest play-
ers. The strategies under consideration consist of declaring
values that follow a Beta(b, 1) distribution, where b changes
from 1.05 to 1.5. We note that the Beta(b, 1) distribution
with b = 1 coincides with the uniform distribution in [0, 1].
We observe that the utility of the honest players does not
change substantially under multilevel QPQ and QPQ. This
is as expected, since we have fixed τq = 0.03, and hence
(1 − τq) = (1 − q) = (1 − pc)(1 − pu) = 0.97. However,
the normalized utility of the multilevel QPQ of the dishonest
player is smaller than that of obtained with the basic QPQ.
This means that the multilevel QPQ approach penalizes more
the dishonest player than the QPQ.

In this figure, it can be also seen that for the multilevel
QPQ the utility of a dishonest player is larger than that of
an honest player when the parameter of the beta distribution
is smaller or equal than 1.1, whereas for QPQ this occurs
when this parameter is smaller than 1.2. The main reason
for this is that the parameter of the beta distribution is very
close to one, in which case the beta distribution and the uni-
form distribution are very similar. We also observe that when
the strategy of the dishonest player is far from the uniform
distribution (beta parameter equal to 1.5), the utility of the
dishonest players in QPQ and multilevel QPQ are very close.
Besides, theGoF test is not perfect.We have seen that this can
be solved by changing the threshold τq. In fact, in Figure 4,
we consider τq = 0.1 and we note that for this case the
utility of the dishonest players for multilevel QPQ andQPQ is
almost always smaller than the utility of the honest players in
the scenarios considered (except for the parameter 1.05). This
comes at the cost of reducing the expected utility of the honest
players, since they suffer more false negatives in the GoF test.
Observe that honest players incur a smaller reduction with the
increase of τq with multilevel QPQ than with QPQ. Another
interesting property of considering a larger the value of τq the
utility of dishonest player with QPQ and multilevel QPQ are
closer, specially when the beta parameter is large.
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FIGURE 4. Normalized utility for different strategies of the dishonest
player. τq = 0.1.

FIGURE 5. Normalized utility for different number of clusters and n = 64.

We now study the utility when we vary the number of
clusters k . In Figure 5, we observe that the utility of the
honest players is again very similar for multilevel QPQ and
QPQ and the multilevel QPQ approach penalizes more the
dishonest player than the QPQ. Furthermore, we observe
that the multilevel QPQ penalizes more the dishonest player
than the basic QPQ and the penalty that the dishonest player
suffers in multilevel QPQ is maximum when the number of
clusters is k = 8, which is the square root of the number of
players. In Figure 6, we consider a similar scenario with n =
256 players and we observe that the utility of the dishonest
player follows the same pattern, that is, when k =

√
n = 16,

the penalty suffered by the dishonest player inmultilevel QPQ
is the largest. Therefore, from these simulations, we conclude
that, for k =

√
n, not only the volume of data communication

is reduced as stated in Proposition 11, but also the penalty
suffered by the dishonest player is maximized.

We now focus on the utilities when we vary the number
of dishonest players from 0 to 8. We show in Figure 7 that
the utilities of multilevel QPQ and QPQ are very similar for
the honest players, whereas the dishonest players are more
penalized for the multilevel QPQ. Moreover, we also see
that the utility of the honest and dishonest players do not
change substantially with the number of dishonest players,
as expected. We also observe in this plot that the utility of

FIGURE 6. Normalized utility for different number of clusters and n = 256.

FIGURE 7. Normalized utility for different number of dishonest players.

honest player under multilevel QPQ is slightly larger than the
utility of honest player under QPQ.

We also analyze the influence of the utility when we vary
the number of players from 16 to 256 in Figure 8. We remark
that in all the scenarios, the number of clusters is set to the
square root of the number of players. As it can be seen in this
illustration, for the honest players, the utility of the multilevel
QPQ and the utility of QPQ are again very similar. However,
for the dishonest player, the utility for multilevel QPQ is
smaller than QPQ, i.e., the multilevel QPQ penalizes more
the dishonest player than QPQ. We observe that the utility
of the dishonest player for QPQ does not vary substantially
with the number of players. Moreover, the utility of the dis-
honest player in multilevel QPQ decreases with the number
of players because the total available memory increases and
can be used to improve the GoF test.

We study the influence of the memory used to perform
the GoF test (or history length) on the utility of honest and
dishonest player for multilevel QPQ andQPQ in Figure 9. For
this case, we consider three different values of H1, which are
100, 300 and 1000. We observe that the utility of the honest
players does not change with the history length H1, whereas
that of the dishonest player decreases with the history length
for both QPQ and multilevel QPQ, as expected. The main
reason for this is that, with a larger memory, the GoF test
performs better the task of detecting a dishonest behaviour,
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FIGURE 8. Normalized utility for different number of players.

FIGURE 9. Normalized utility for different history length H1 when the
declared values of the dishonest players follow a Beta(1.2,1) distribution.

which leads to a smaller utility for the dishonest player.
Observe that for history length 1000 the dishonest player has
normalized utility roughly 0.5. This occurs because its utility
is very close to 1/2n, which is the expected utility of a dishon-
est when the GoF test is perfect, from Proposition 8. We also
remark that, for QPQ, the utility of the dishonest player when
H1 is 1000 approximates 1/(2n) (i.e., the expected utility
of a dishonest when the GoF test is perfect) and, therefore,
we conclude that the utility of the dishonest player when the
history length is large for QPQ and multilevel QPQ are very
close.

In Figure 9 it can be observed that, withQPQ, forH1 = 100
the dishonest player has higher utility than the honest players.
As was shown in Figure 4, it is possible to deal with dishonest
players that follow a strategy close to uniform by increasing
the threshold τq, at the cost of reducing the utility of the hon-
est players. We observe in Figure 10 that this reduction can be
compensated by increasing the memory. The figure shows the
impact of memory size when a threshold τq = 0.10 is used.
We observe that, when H1 is small, the utility of the honest
players is larger than that of the dishonest player for QPQ and
multilevel QPQ. However, when the history length is large,
for QPQ and multilevel QPQ, the utility of the dishonest
player is close to 1/(2n).

We also consider the effect of the history length on the
utilities for a threshold value τq = 0.1 and a parameter of

FIGURE 10. Normalized utility for different history length H1 when the
declared values of the dishonest players follow a Beta(1.2,1)
distribution. τq = 0.10.

FIGURE 11. Normalized utility for different history length H1 when the
declared values of the dishonest players follow a Beta(1.05,1)
distribution. τq = 0.10.

the beta distribution of the dishonest players equal to 1.05.
As we saw in Figure 4, the utility of honest and dishonest
players for this case is very similar. In Figure 11, we show
that, for a larger value of the memory available, the utility of
the dishonest player in multilevel QPQ is smaller than in QPQ
and the utility of the honest players is still larger in multilevel
QPQ than in QPQ.

VII. RELATED WORK
The problem of how to assign a set of resources to a fixed
number of agents that act rationally has been studied in the
context of Mechanism Design by different authors. In [12],
[17], mechanisms based on payment systems are consid-
ered. We remark that the QPQ mechanism does not consider
payments among users (as in [18], [19]). Other models in
the literature such as [13], [20]–[22] assume the existence
of a central agent that handles the probability distribution
that characterizes the rational behaviour of the agents. This
assumption has already been criticized by [23] arguing that it
is not applicable in real environments.

In this work, we study an extension of theQPQmechanism,
which has been introduced in [9] and further analyzed in [15]
and [16]. In [15], the authors relax the assumption of the
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preferences of the players to be i.i.d by considering that
there is a correlation between the preferences of the players
for the resources. On the other hand, in [16] they consider
that in each round there are k resources to be assigned
to the set of players (whereas in the work of [9] a single
resource is considered in each round). The main feature of
these models is that the properties of efficiency, fairness,
etc. given in [9] are also achieved in the extensions under
consideration.

VIII. CONCLUSIONS AND FUTURE WORK
In this article, we generalize the QPQ approach of [9] to a sys-
tem with two levels. In the multilevel QPQ technique, players
are divided in clusters and the QPQ approach is applied at
the intra-cluster level and then at the inter-cluster level. More
precisely, the multilevel QPQ firstly uses the QPQ approach
to determine the winner of each cluster independently; then,
secondly, the multilevel QPQ uses again the QPQmechanism
among the winners of all the clusters to determine who gets
a resource.

We show that the positive properties of QPQ extend to
the multilevel QPQ. First, we show that the utility of an
honest player is always larger that the utility of a player
that declares values different from its real distribution if a
perfect detection mechanism is available. We also show that
the multilevel QPQ has several advantages with respect to
QPQ in terms of reduction of communication cost and use of
memory, which means that multilevel QPQ is more scalable.
We also study with simulations the performance of multilevel
QPQ (and QPQ) when the detection of a dishonest player
is not perfect. We show that in most cases dishonest players
have lower utility then honest players, and that with similar
amount of memory multilevel QPQ has this property in more
cases.

For future work, we would like to generalize the results of
this article to a multilevel QPQ mechanism with an arbitrary
number of levels. We would also like to consider correlated
players in multilevel QPQ. Another line worth exploring in
practice is adapting the parameters of the GoF test (e.g., τq)
to the evolution of the system (for instance the balance of
resources assigned among players). Finally, we are extremely
interested in studying QPQ and multilevel QPQ for unknown
and variable player sets.

APPENDIX. AUXILIARY COMPUTATIONS
A. COMPUTATION OF UTILITIES OF QPQ
In the QPQ, a player j is in competition against an aggregated
player formed by the rest of the players. In the remainder of
this section, we denote by θ̈−j the preference of the aggregated
player of player j.

The expected utility of an honest player in the QPQ whose
declared value passes the GoF test is denoted by E[UQPQ

H ].
We first show that E[UQPQ

H ] = 1/(n+ 1).
Proposition 16: The utility of the expected utility of an

honest player j whose declared value passes the GoF test
is 1

n+1 .

Proof: We first note that the utility is given by

UQPQ
H =

{
θ̄j if θ̈−j < θ̈j

0 otherwise

Let f (x) = 1 be the density function of the declared
values by player j. Using Proposition 6, we conclude that the
preferences θ̈−j follow a Beta(n − 1, 1) distribution. Hence,
the utility of player j is

E[UQPQ
H ] =

∫ 1

0
xf (x)P[θ̈−j < x]dx

=

∫ 1

0
x
∫ x

0
(n− 1)yn−2dydx

=

∫ 1

0
xxn−1dx

1
n+ 1

.

And the desired result follows. �
The expected utility of an honest player in the QPQ whose

declared value does not pass the GoF test is denoted by
E[ŪQPQ

H ]. We now show that E[ŪQPQ
H ] = 1/(2n).

Proposition 17: The utility of the expected utility of an
honest player j whose declared value does not pass the GoF
test is 1

2n .
Proof: First, we see that the utility is given by

ŪQPQ
H =

{
θ̄j if θ̈−j < θ̂j

0 otherwise

where θ̂j is the regenerated value.
Let f (x) = 1 be the density function of the declared

values by player j and g(z) = 1 the density function of the
regenerated values assigned to player j. Using Proposition 6,
we conclude that the preferences θ̈−j follow a Beta(n− 1, 1)
distribution. Hence, the utility of player j is

E[UQPQ
H ] =

∫ 1

0
x
∫ 1

0
f (x)g(z)P[θ̈−j < z]dzdx

=

∫ 1

0
x
∫ 1

0

∫ z

0
(n− 1)yn−2dydzdx

=

∫ 1

0
x
∫ 1

0
zn−1dzdx

=

∫ 1

0
x
1
n
dx

=
1
2n
.

And the desired result follows. �

B. COMPUTATION OF UTILITIES OF MULTILEVEL QPQ
We now compute the values ofUH ,Uu,Uc andUu,c of player
(c, i). We observe that, from Proposition 7, we have that
UH = 1

n+1 and from Proposition 8, that Uc = 1
2n . The rest of

the expressions are given below.
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Proposition 18: The utility of an honest player (c, i) that
passes the cluster level GoF test but not the upper one is

Uu =
nc

n· (nc + 1)
.

Proof: When the preference declared by (c, i) passes
the cluster level test and not the upper level test, its expected
utility

ūc,i =

{
θ̄c,i if θ̈c,−i < θ̈c,i and

...
θ −c <

ˆ̂
θc,i

0 otherwise

where ˆ̂θc,i is the value regenerated in the upper level test. The
regenerated value follows a Beta(nc, 1) distribution and the
preference of the winner of cluster c follows a Beta(nc, 1).

We can now express the utility of the player (c, i) as follows

Uu =
∫ 1

0
x· f (x)

∫ 1

0
gu(zu)

· P[(θ̈c,−i < x) ∧ (
...
θ −c < zu)]dzudx,

where zu represents the regenerated value in the upper level
test, f (x) = 1 is the density function associated to the random
variable θ̄c,i, and gu(zu) is the density function associated to

the random variable ˆ̂θc,i.
The preferences θ̈c,−i of the player (c,−i) and the prefer-

ences
...
θ −c of the player (−c) are independent and they follow,

respectively, a Beta(nc − 1, 1) and a Beta(n − nc, 1) distri-

bution. Additionally, they are independent of the values ˆ̂θc,i,
which follow a Beta(nc, 1) distribution. Therefore, the utility
of player (c, i) when its passes the cluster level test but not the
upper one is

Uu =
∫ 1

0
x
∫ 1

0
gu(zu)·P[θ̈c,−i < x]·P[

...
θ −c < zu]dzudx

=

∫ 1

0
x·P[θ̈c,−i < x]

∫ 1

0
gu(zu)·P[

...
θ −c < zu]dzudx

=

∫ 1

0
x·
[∫ x

0
(nc − 1)· ync−2dy

]
·

[∫ 1

0
nc· znc−1u ·

(∫ zu

0
(n− nc)· yn−nc−1dy

)
dzu

]
dx

=

∫ 1

0
x·
[
xnc−1

]
·

[∫ 1

0
nc· znc−1u · zn−ncu dzu

]
dx

=

∫ 1

0
xnc ·

[nc
n

]
dx

=
nc

n· (nc + 1)

�
Proposition 19: The utility of an honest player (c, i) that

does not pass neither the cluster level GoF test nor the upper
level one is

Uu,c =
1
2n
.

Proof: We consider that the preference of player (c, i)
does not pass any test. In that case, its expected utility is

ūc,i =

{
θ̄c,−i if θ̈c,−i 6 θ̂c,i and

...
θ −c 6

ˆ̂
θc,i

0 otherwise

where θ̂c,i and
ˆ̂
θc,i represent the values regenerated in the clus-

ter and in the upper level test, respectively. By Proposition 1
and Corollary 2, we know that these new values follow,
respectively, a U (0, 1) and a Beta(nc, 1) distribution.

We can now express the utility of the player as follows

Uu,c =
∫ 1

0
x· f (x)

∫ 1

0
gc(zc)∫ 1

0
gu(zu)·P[(θ̈c,−i < zc) ∧ (

...
θ −c < zu)]dzudzcdx

where zc and zu represent the regenerated value in the cluster
level and in the upper one, and f (x) = 1 is the density function
associated to the normalized preferences θ̄c,i, which follow
a U (0, 1) distribution, gc(zc) = 1 is the density function
associated to the random variable θ̂c,i, and gu(zu) = nc · z

nc−1
u

is the density function associated to the random variable ˆ̂θc,i.
The preferences θ̈c,−i of the aggregated player inside clus-

ter c of player (c, i) and the preferences
...
θ −c of the aggregated

player of the winner of cluster c are independent and they
follow, respectively, a Beta(nc − 1, 1) and a Beta(n − nc, 1)
distribution (see Corollary 1 and Corollary 3). Then, the util-
ity of player (c, i) when its does not pass any test is

Uu,c =
∫ 1

0
x
∫ 1

0

∫ 1

0
gu(zu)·P[θ̈c,−i < zc]·P[θ̈−c < zu]

dzudzcdx

=

∫ 1

0
x dx

∫ 1

0
P[θ̈c,−i < zc]dzc∫ 1

0
gu(zu)·P[θ̈−c < zu]dzu

=
1
2

∫ 1

0

(∫ zc

0
(nc − 1)· ync−2 dy

)
dzc

·

∫ 1

0
nc· znc−1u ·

(∫ zu

0
(n− nc)· yn−nc−1dy

)
dzu

=
1
2

∫ 1

0
znc−1c dzc

∫ 1

0
ncznc−1u zn−ncu dzu

=
1
2

∫ 1

0
znc−1c dzc

∫ 1

0
nczn−1u dzu

=
1
2
·
1
nc
·
nc
n

=
1
2n

�
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