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ABSTRACT Emergency crowd evacuation, especially in congested indoor scenes, is an important issue
in public areas’ daily management. Computer simulation is a widely adopted technique to study crowd
evacuations and help design reasonable emergence plans due to its flexibility, convenience, and cost-
effectiveness. In this paper, we propose ECEM, a novel evacuation model based on agent simulation.
In ECEM, we consider a special individual behavior in the evacuation, called seeking behavior, which
happens when relatives or friends (i.e., social groups) are in the crowd, and the members within a group
may tend to seek each other once separated instead of evacuating alone. Moreover, we incorporate the
crowd chaos based on Boltzmann entropy (i.e., crowd entropy) into ECEM to measure the evacuating
population’s disorder level and present an adaptive velocity smoothing method using crowd entropy for
updating individual’s velocity. Extensive simulation results demonstrate the effectiveness of ECEM and
provide several insights on designing the evacuation strategies.

INDEX TERMS Crowd evacuation, seeking behavior, Boltzmann entropy, social groups.

I. INTRODUCTION
Crowd evacuation caused by emergencies in congested
indoor scenes is an important issue that is considered in the
design of large buildings and the daily management of public
areas. However, due to the limitation of practical exercises
and the lack of experience data on the evacuation popula-
tion, computer simulation is widely adopted for studying
emergency crowd evacuations and helping design reasonable
emergence plans [1]–[6].

Generally, simulation-based evacuation models can be
classified into two categories [7]. One category is the
macroscopic evacuation model, including gas-kinetic model,
route-choice model, and queuing model, which treats the
population as a homogeneous flow [8], [9] and is efficient
for large-scale crowd evacuation simulations. However, this
kind of method does not consider individual behavior char-
acteristics, thus usually not comply with the actual situations
[10], [11]. The other category is the microscopic evacuation
model, which enhances the understanding of the evacuat-
ing population’s dynamic evolution by analyzing individual
behaviors, such as age, gender, walking speeds, physical
abilities, panic emotions, social relations, environmental
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perception, decision-making processes, etc. Existing micro-
scopic evacuation models mainly based on three frame-
works: cellular automaton (CA) [12]–[14], social force (SF)
[15]–[17], and agent-based simulation (ABS) [18]–[23].
Unfortunately, these frameworks have several limitations.
First, the CA models assume that a person in a grid (where
the evacuation scene is partitioned into a set of grids) can
only be influenced by the persons in the adjacent grids, which
is not satisfied in the real-world scenarios since a person
may be affected by anything in her visual field. Second,
the SF-basedmodels treat the relationship between individual
perceptions (e.g., noticing a person ahead) and reactions (e.g.,
avoid collisions) as a static force, overlooking that individual
may adaptively make decisions based on personal strategies.
Third, the ABS models can provide a flexible simulation
based on individual behaviors comparing to the former two
frameworks [6], but existing solutions mainly consider the
basic behaviors, such as escaping from the exit and avoiding
collision, which may be insufficient in some special scenar-
ios, e.g., there are a number of social groups (such as relatives
or friends) in the evacuating population.

In this paper, we follow the general agent-based simulation
framework and study an essential individual behavior under
this framework, called seeking behavior, when social groups
are in the crowd. Though several existing works [24]–[29]
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consider social groups in the evacuation process, they mainly
treat the companions (or members) in a group as a whole
(e.g., an agent with a larger radius) and assume the com-
panions always stay together during evacuation. However,
this kind of assumption may not be reasonable in practice.
Instead, the companions may want to keep a close distance
from each other and seek each other once separated. For
example, a mother would be more likely to seek her child
when the child is far away from her or invisible in her
visual field. The seeking behavior brings new challenges
for designing an evacuation model, such as importing more
randomness and making the evacuation more chaotic. To
address these issues, we propose an Entropy-based Crowd
Evacuation Model, called ECEM, to evaluate the influence
of the seeking behavior within social groups in the crowd
evacuation. Our approach has two main novelties. First,
based on the agent-based simulation, we define themovement
rules for individuals to search their companions according to
the characteristics of evacuation behaviors. Second, we incor-
porate the Boltzmann entropy to measure the chaos degree of
the crowd and use the entropy as an update factor to illustrate
the effect of chaos on individuals’ velocities. Specifically,
we make the following contributions:

• We propose an evacuation model that incorporates the
seeking behavior and three basic behaviors (including
exit behavior, avoidance behavior, and cohesion behav-
ior). An individual’s movement is determined by the
aggregation of these behaviors, which is more consistent
with realistic scenarios.

• We integrate the crowd chaos based on Boltzmann
entropy into the proposed model to measure the evacu-
ating population’s disorder level and present an adaptive
velocity smoothing method for updating individual’s
velocity. This method enables us to better simulate the
behaviors in the emergence of evacuation.

• We implement ECEM and conduct extensive evalua-
tions on the proposed model. The simulation results
demonstrate our model’s effectiveness and provide sev-
eral insights on how to design appropriate evacuation
strategies.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III presents the proposed
ECEM algorithm. Section IV demonstrates the effectiveness
of the proposed evacuation model by simulation experiments.
The conclusions is described in Section V.

II. RELATED WORK
A. EVACUATION WITH SOCIAL GROUPS
The evacuation models with social groups can be categorized
into two methods: real-life experiments [30]–[34] and model
simulation [24]–[29]. The real-life experiments [30]–[34]
focus on discovering intrinsic laws from actual phenomena,
and these findings are important references for evacuation
modeling. However, this method is cost-expensive, and usu-
ally it is difficult to collect sufficient data of the evacuating

population. On the contrary, the simulation-based method is
convenient and flexible, thus is widely adopted. [24] analyzes
the influence of social groups with various sizes and shapes
on the evacuation efficiency based on the CA technique.
[25] proposes an extended floor field CA model and finds
that the total evacuation time increases significantly with
the existence of social groups in the crowd. Similarly, [26]
proposed a CA model to simulate the behavior of relatives
in crowd evacuation. Moreover, [27], [28] describe social
groups’ behavior through a group attractiveness force based
on the SF technique. [29] designs an agent-based evacua-
tion model to simulate the influence of social relations on
the behavior and decision-making of evacuees during a fire
evacuation scenario.

Though existing evacuation models consider the social
groups, they treat a social group as a particle with a larger
radius than the standard individual and assume that group
companions always stay together during evacuation. This
assumption is relatively strong because it is often challenging
to guarantee that they are not separated in the real-world
emergence of evacuations. In particular, if the companions
are relatives or friends, they tend to seek each other first
once separated. Our evacuation model focuses on this seek-
ing behavior within social groups in the evacuation process;
thus, it is more consistent with realistic scenarios. Besides,
we further explore the effect of the seeking behavior on the
crowd’s chaos degree as well as the evacuation efficiency.

B. BOIDS MODEL
The BOIDS model was first proposed in [35], which
describes the birds’ flocking phenomenon through three
basic rules: cohesion, collision avoidance, and alignment.
Due to the ability of BOIDS to express grouping behaviors
[36]–[38], several following works [39], [40] explore its
usage in the simulations of crowd evacuation. [39] proposes a
variant of BOIDS model using an improved collision avoid-
ance rule to solve the problem that agents in the evacuation
may overlap with others. [40] focuses on the study of crowd
grouping behaviors based on the BOIDSmodel and the social
force technique. However, in these models, the rules of indi-
viduals are the same, and the existence of social groups is
not considered. Thus, they are not applicable to our problem.
Inspired by the BOIDS model, our evacuation model uses
its cohesion and avoidance rules and invents a rule for the
seeking behavior in the considered evacuation scenarios.

C. CROWD ENTROPY
Crowd chaos is one of the critical causes of crowd accidents in
the evacuation. Nevertheless, existing works related to crowd
state mainly focus on the anomaly recognition and detection
in videos surveillance [40], [41]. Entropy, a classic concept
for measuring the state of a system in thermodynamics and
informatics, is usually applied to quantitatively interpret the
crowd state. For example, [42], [43] establish crowd entropy
models to analyze the degree of crowd aggregation. They
show that the larger the entropy is, the more obvious the
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crowd gathering. Meanwhile, [44] proposes an agent-based
entropy model to interpret the heterogeneity of the crowd,
and [45] describes the instability of crowd movement by
calculating the information entropy of the velocity direction.

Given the similarity between crowdmovement and particle
thermal movement, [46] introduces Boltzmann entropy to
detect abnormal crowd behavior. Also, [47] discusses the
limitation of information entropy; that is, it only considers the
distribution probability but ignores the number of people par-
ticipating in the crowdmovement. In this paper, we utilize the
Boltzmann entropy to describe the crowd chaos (i.e., crowd
entropy) during evacuation and propose an adaptive velocity
smoothing method for individuals based on the calculated
crowd entropy.

III. ECEM MODEL
To better understand how the seeking behavior of social
groups affect the evacuation process, we propose ECEM,
an entropy-based crowd evacuation model. In particular,
we adopt the rule-basedmulti-agent simulation method, simi-
lar to [48], where each agent (i.e., individual) is assumed to be
a circular particle with a specific diameter and is given various
attributes (e.g., velocity, visual field, etc.) for the simulation.
In each iteration of the evacuation process, each agent moves
according to a velocity until leaving the exit.

Figure 1 gives an overview of ECEM. After initialization,
we iteratively compute the following steps for each agent that
does not leave the exit. First, we calculate several velocity
components of the agent in the current iteration. The required
velocity components for agents are different according to
whether an agent is going to seek its companions. The veloc-
ity components and velocity calculation will be proposed in
Section III-A and III-B, respectively. Second, we execute an
adaptive velocity smoothing step to incorporate crowd chaos
(i.e., the evacuating agents’ disorder level) into evacuation,
making the evacuation model more consistent with realistic
scenarios. This step will be presented in Section III-C. Third,
we compute an additional velocity correction step, as will be
described in Section III-D, to prevent the agents from over-
lapping with each other or colliding with obstacles. Finally,
we update the agents’ positions and check if the evacuation is
finished. The process ends when all the agents leave the exit.
Algorithm 1 presents the ECEM simulation algorithm, and
the detailed constructions will be introduced in the following
subsequent subsections.

A. VELOCITY COMPONENTS
In ECEM, we consider two types of agents in our model.
One is the individual agent who evacuates alone. The other
is the agent in a social group who may seek its compan-
ion(s) under specific circumstances, which we will discuss
shortly. There are four velocity components for an agent,
including exit velocity, avoidance velocity, cohesion velocity,
and seeking velocity. Now we describe the meaning of each
velocity.

FIGURE 1. The workflow of ECEM algorithm.

1) EXIT VELOCITY
This velocity refers to an agent’s behavior moving toward
the exit or the direction closest to the exit within its visual
field. In the evacuation process, especially in indoor scenes
with no obstacles or few obstacles, the agents usually have
a relatively reliable short-term memory of the exit direction.
Once the evacuation begins, agents can move in the direction
of the exit according to memory. Inspired by the static field
of the cellular automata evacuation model [49], in ECEM,
we discretize the evacuation scene into a set of unit grids and
define the escape field value of a grid as the distance from the
center of that grid to the center of the exit. As a result, based
on whether the exit is visible, an agent’s exit velocity is either
toward the exit or the grid with the smallest escape field value
in its visual field.

2) AVOIDANCE VELOCITY
This velocity represents the behavior of avoiding obstacles
(e.g., walls) and preventing them from colliding with other
agents (especially when the population density is high).
Therefore, when there are obstacles (or other agents) in an
agent’s visual field and the distance to the obstacles (or
other agents) is less than a comfortable distance, the agent
will tend to stay away from them to avoid colliding or
overlapping.
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Algorithm 1: ECEM Simulation Algorithm

initialize simulation parameters;
while not all agents leave the exit do

compute exit velocity Eqn (1);
if no seeking behavior then

compute avoidance velocity Eqn (2);
compute cohesion velocity Eqn (3);

else
compute seeking velocity Eqn (4);

end
compute velocity increment Eqn (5);
compute entropy in each agent’s vision field Eqn (6);
compute smoothed velocity Eqn (7);
velocity correction to avoid overlapping;
update each agent’s position based on velocity;

end while

3) COHESION VELOCITY
As described in [50], agents tend to gather and follow the
crowd during evacuation. Thus, we use this velocity to reflect
self-organizing cohesion behavior. In particular, we assume
that the agents are inclined to move to the crowd’s average
position in their visual fields.

4) SEEKING VELOCITY
Since we consider social groups’ seeking behavior in our
model, we define a seeking velocity when an agent is look-
ing for its companion(s). In this paper, we assume that an
agent has at most one companion for simplicity. However,
the situation that an agent has multiple companions can be
easily generalized. Specifically, when the distance between
an agent and its companion in a social group exceeds a
certain threshold, the agent would seek its companion instead
of directly escaping toward the exit. In ECEM, each agent
keeps observing and recording the position of its companion
while evacuating. We define three rules of an agent’s seeking
behavior, including:

• if the distance from its companion is no larger than a
comfortable distance, the agent will not search for the
companion, and the velocity calculation is the same as
that of an individual agent;

• if the distance is greater than the comfortable distance
but does not exceed the agent’s visual field, the agent
will tend to move towards its companion;

• if its companion is not visible, the agent will search
for its companion according to the last position of the
companion it records, and if the agent has already arrived
that position but still cannot find its companion, it will
search randomly.

Before moving to a new position, an agent needs to deter-
mine its desired moving velocity (i.e., speed and direction)
through the above behaviors. As illustrated in Figure 1, if an
agent does not seek its companion, we compute the exit

velocity, avoidance velocity, and cohesion velocity for the
agent; otherwise, we compute the exit velocity and seeking
velocity. In the following subsections, we present how to
calculate these velocity components of an agent in ECEM.

B. VELOCITY CALCULATION
Let {vi, pi, ei,Ci,P

C
i } be the attributes of an agent Ai in the

evacuation, where vi denotes its velocity vector, pi is its
current position, ei is the crowd entropy within its visual
field (will be discussed in Section III-C), Ci is the set of its
companions (Ci = ∅ if it has no companion), and PCi is the
historical positions of its companions. Besides, we denote the
vision radius of every agent as rvision, and the corresponding
visual field is a fan-shaped area (e.g., with 200 degrees).
Figure 2 illustrates the visual field of an agent, where the
black squares are obstacles. Therefore, the gray areas are
invisible to the agent.

FIGURE 2. The illustration of an agent’s visual field.

Note that we assume that an agent has at most one com-
panion (see Section III-A), thus, we let Aj be the companion
of Ai if Ci 6= ∅, pj be the current position, and phj be the
historical position of Aj, respectively. In addition, let rease
be the comfortable distance of agents. There are two cases
according to whether the seeking behavior is activated.

First, ifAi has no companion or the distance betweenAi and
its companion Aj is less than rease, then velocity increment
1vi is calculated according to the exit velocity, avoidance
velocity, and cohesion velocity. Specifically,

1) For exit velocity, if the exit is invisible, Ai’s moving
target is the grid with the smallest escape field value in
its visual field; otherwise, the target is the nearest exit
grid from its current position pi. Let the moving target’s
position be pgoal, then Ai’s exit velocity is:

vei = pgoal − pi (1)

2) For avoidance velocity, let pa and po be the nearest
agent and the nearest obstacle within Ai’s comfortable
distance rease, then we have:

vai = (pi − pa)+ (pi − po) (2)

3) For cohesion velocity, let pcrowd be the average position
of the crowds within Ai’s visual field, then we have:

vci = pcrowd − pi (3)
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FIGURE 3. Relationship between various weights and the instantaneous maximum speed of evacuation crowd.

As a result, the velocity update1vi of Ai can be computed by
the weighted aggregation of these three velocities.

Second, if Ai has a companion and the distance between Ai
and its companion Aj is no less than rease, then the seeking
behavior is activated. Specifically, the exit velocity is the
same as that in the first case, i.e., Eqn (1), and the seeking
velocity is computed according to the rules described in
Section III-A, which is:

vsi =


pj − pi,Aj is visible
phj − pi,Aj is invisible ∧ pi 6= phj
prandom − pi,Aj is invisible ∧ pi = phj

(4)

where prandom denotes a random position in Ai’s visual field.
To summarize, Ai’s velocity increment1vi is computed as

follows according to the above two cases:

1vi =

{
wevei + wav

a
i + wcv

c
i ,Aj = ∅ ∨ Aj within rease

(1− ws)vsi + wsv
s
i , otherwise

(5)

where we,wa,wc,ws are the corresponding weights of the
exit velocity, avoidance velocity, cohesion velocity, and seek-
ing velocity, respectively.Wewill discuss how to choose these
weight values in the simulation in Section IV-B.

C. ADAPTIVE VELOCITY SMOOTHING
To make an agent’s velocity transition as smooth as the real-
istic movement, we use the exponential smoothing method
[48], [51] to update the agent’s velocity. However, directly
applying a fixed smoothing factor through the whole evac-
uation process may be problematic. The reason is that the
evacuated agents may show irrational behavior due to the
excessive chaos in the emergence of evacuation.

In ECEM, we consider the influence of the chaos degree
to smooth an agent’s velocity. Specifically, we use the crowd
entropy in the perspective of an agent as the smoothing factor
to adaptively update the agent’s velocity. The crowd entropy
is used to quantify the chaos degree in the crowd.We compute
the crowd entropy based on the Boltzmann entropy [52],
because it can better reflect the population density [47], which
is more suitable in crowd evacuation. Assume that there areN
people within the visual field of Ai. We first divide both the

TABLE 1. Simulation parameters.

velocity direction i.e., [0, 360), and the velocity magnitude,
i.e., [0, vlimit], into four equal parts, where vlimit is the speed
limit of any agent (in scalar). Then we have 4*4 velocity
distribution cells. Let nj be the number of agents in the j-th
cell, such that

∑16
j=1 nj = N . As a result, we can compute the

crowd entropy of Ai in the current iteration by:

ei = k · ln
(
516
j=1C

nj

N−
∑j−1

t=1 nt

)
(6)

where k is a constant. Recall that in the thermodynamic
Boltzmann entropy formula S = kB · ln� [52], kB is the
Boltzmann constant, and the Boltzmann entropy depends
entirely on the number of possible microscopic states of the
system �. The larger � is, the more chaotic and disorder the
system is. Since kB is extremely small, and its value does not
affect the transition trend of entropy, we use k = 0.0138 for
the crowd entropy calculation.

After obtaining the crowd entropy, we can compute the
smoothed velocity of the current iteration as follows.

vi = α · v
prev
i + (1− α)1vi (7)

where α = ei/2 and vprevi is the velocity in the previous
iteration. By applying the adaptive entropy-based velocity
smoothing, the evacuation model is more consistent with
the realistic scenario: when the surrounding people are more
chaotic, the individual behavior will be more likely to con-
tinue the previous inertial movement; on the contrary, when
the surrounding people are more orderly, the individual can
make more rational and appropriate decisions based on the
current situation.

VOLUME 9, 2021 4657



X. Chen, J. Wang: Entropy-Based Crowd Evacuation Modeling With Seeking Behavior of Social Groups

FIGURE 4. Average evacuation time and average crowd entropy w.r.t. various velocity weights. The default weights are: we = 0.3, wa = 0.2,
and wc = 0.2. For each line in the figures, we fix two weights with their default values and change the remaining weight within the range
[0.1, 0.8] in the simulations.

D. VELOCITY CORRECTION
Another consideration is to correct the velocity before mov-
ing to a new position. The rationale is that an agent may over-
lap with other agents or the obstacles if it directly moves to
the designated position. Therefore, we apply several heuris-
tics for velocity correction. Specifically, we let the agent
do the following step by step after obtaining the velocity
increment 1vi:

1) if there is no overlap, then update the position; other-
wise, decrease its velocity (for example, in half) and go
to step 2;

2) if there is no overlap, then update the position; other-
wise, turn to the direction where the crowd density is
the smallest or there is no obstacle and go to step 3;

3) if there is no overlap, then update the position; other-
wise, set the velocity to 0 and wait for position updating
in the next iteration.

By doing so, we can ensure that the agents will not overlap
in the evacuation process. Consequently, each agent moves to
the desired position. An agent will continue the next iteration
until it finishes the evacuation (i.e., leave the exit).

IV. SIMULATION AND ANALYSIS
In this section, we evaluate the proposed evacuation model
through simulation. The simulation setup is given in
Section IV-A. We explore the appropriate settings of vari-
ous velocity weights and verify the effectiveness of ECEM
in Section IV-B, and analyze the impacts of the seeking
behaviors and crowd chaos on the evacuation process in
Section IV-C.

A. SIMULATION SETUP
We implement and simulate ECEM using NetLogo,1 a
multi-agent programmable modeling environment. Our pro-
gram2 can be found on GitHub. We conduct experiments

1https://ccl.northwestern.edu/netlogo/
2https://github.com/clxvivi/ECEM

FIGURE 5. The illustration of arch-like collective blocking around the exit.

FIGURE 6. Effect of the smoothing factor on the average evacuation time
and average crowd entropy.

on a machine equipped with Intel (R) Core (TM) i5-8265U
CPU@1.60GHz and 8.00GB of RAM, runningWindows 10.
Table 1 describes the default settings of the simulation param-
eters. The evacuation scene is a 40×40m2 roomwith a single
exit whose width is 3m. The total number of agents in the
simulation Ntotal is 200, and the radius of each agent ragent
is 0.3m. Besides, the agent’s speed limit vlimit, vision radius
rvision, and comfortable distance rease are set to 2m/s, 5m, and
2m, respectively.
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FIGURE 7. The evacuation process w.r.t. evolved time (the percentage of social groups is 20%).

B. EVACUATION MODEL VERIFICATION
In order to ensure the effectiveness of the simulation model,
we first conducted a series of comparative simulation experi-
ments with different parameters to determine the value ranges
of the velocity weights. Specifically, we study the effects of
weights for the exit velocity, avoidance velocity, and cohe-
sion velocity, i.e., we, wa, and wc. We fix two of them with
default values and evaluate the effect of the remaining weight.
Specifically, the default weights are set to we = 0.3, wa =
0.2, and wc = 0.2, respectively. Besides, we assume that
the distribution of each agent’s initial velocity follows the
Gaussian distribution N (1.5, 0.15).

1) EFFECTS ON INSTANTANEOUS MAXIMUM SPEED
Figure 3 shows the relationship between various velocity
weights and the instantaneous maximum speed of the evacu-
ation crowd, where the latter refers to the maximum speed (in
scalar) of any agent in the crowd in an iteration. In this set of
experiments, we adopt the same random seed, which means
the pseudo-random number generator in NetLogo will gen-
erate a fixed random sequence for each simulation, ensuring
that the simulations are reproducible.

From Figure 3a, we can observe that we influences the
instantaneous maximum speed throughout the whole evac-
uation process. When we ≤ 0.2, the instantaneous maxi-
mum speed is always less than the agent’s speed limit vlimit,
and it gradually decreases in the middle and late stages of
evacuation. As we increases, the individual’s instantaneous

maximum speed increases quickly in the early stage of evac-
uation, and the time of its gradual decrease is shortened in
the later stage, leading to a significantly reduced evacuation
time. Intuitively, in the early stage of evacuation in realistic
scenarios, the agents are able to approach the speed limit in
areas where the crowd density is small; however, when the
crowd gather around the exit and form an arch-like collective
blocking (as will be shown in Figure 5), the agents cannot
stay at the speed limit anymore. As a result, we set the
default weight of exit velocity we = 0.3 for two reasons.
On the one hand, if we is too small, the individual waiting
time around the exit will be long since the avoidance and
cohesion behaviors also affect the velocity increment. On
the other hand, if we ≥ 0.4, then during about 80% of the
evacuation period, the individual’s instantaneous maximum
speed is always the agent’s speed limit vlimit, which is not
reasonable in realistic scenarios. Also, a largewe would make
the proportions of other velocity components too low, thus
those behaviors cannot be well interpreted.

According to Figure 3b, wa mainly affects the instan-
taneous maximum speed of the individual and its oscilla-
tion amplitude in the late stage of evacuation. The larger
the wa is, the higher the instantaneous maximum speed,
the greater the amplitude, and the longer the evacuation
time. This result shows that if given a large wa, the agents
tend to be mutually repelled by avoidance, leading to hov-
ering near the exit. Therefore, the evacuation efficiency is
undesirable.
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Moreover, from Figure 3c, we can see that as wc increases,
the instantaneousmaximum speed of the individual increases,
the oscillation amplitude increases in the late stage of evac-
uation, and the evacuation time extends. In particular, when
wc = 0.4, the same phenomenon occurs as when we ≥ 0.4,
that is, the instantaneous maximum speed continues to be too
large, which is unrealistic.

2) EFFECTS ON THE EVACUATION PROCESS
Figure 4 presents the effect of velocity weights on the evac-
uation process. In this set of experiments, the random seed
is randomly generated. For each experiment, we conduct
50 independent trials and report the average result. From
the experimental results, we has the most significant impact
on the average evacuation time and average crowd entropy.
As we increases, the average evacuation time decreases sig-
nificantly and becomes stable, and the average crowd entropy
first increases and then decreases. The reason is that when
we is large, the time for the crowd to move to the exit can be
reduced, improving the evacuation efficiency. However, when
we ≥ 0.4, the increased agents that reach the speed limit tend
to stabilize such that the further reduced time is not apparent.
For crowd entropy, when we is increased to 0.3, the agents
would be congested around the exit in most evacuation time.
This situation would increase crowd entropy because the
uncertainty of velocity is also influenced by the avoidance
and cohesion velocities. But when we ≥ 0.4, the exit velocity
is dominant, such that the agents’ velocity direction is similar
(i.e., towards the exit), and thus the movement is more order.

For wa, its influence on the average evacuation time and
average crowd entropy is not obvious, comparing to the other
two weights. In terms of wc, we can see that as wc increases,
the average evacuation time first increases and then slightly
decreases. When wc is small, it is less likely for individuals to
gather; the herding phenomenon becomes more pronounced
when wc increases; and when wc is large, individuals tend
to gather into several large groups, improving the evacuation
efficiency. This is consistent with what is observed in [34]
that the evacuation time will be reduced when the group size
is large.

3) VERIFICATION OF EVACUATION MODEL EFFECTIVENESS
Finally, we verify the effectiveness of ECEM given the
default weights described above. Figure 5 shows the sim-
ulation results. We can observe that, regardless of whether
the crowd contains social groups, the proposed evacua-
tion model can correctly reproduce the arch-like collective
blocking phenomenon around the exit. As investigated in
previous work [25], [53], the arch-like collective blocking
phenomenon demonstrates the effectiveness of the evacuation
model. Therefore, our evacuation model performs consis-
tently with crowd evacuation in realistic scenarios.

C. EVACUATION ANALYSIS
Now we analyze the effects of crowd chaos and seeking
behaviors on the evacuation process, which is to give a

FIGURE 8. Effect of the percentage of social groups on the average
evacuation time and average crowd entropy.

FIGURE 9. Illustration of evacuation w.r.t. obstacles.

better interpretation of our evacuation model and provide
some insights on how to design effective evacuation strategies
under this circumstance.

1) EFFECT OF ADAPTIVELY VELOCITY SMOOTHING
In our evacuation model, we incorporate the sense of crowd
chaos into the velocity smoothing formula (i.e., Eqn (7)) for
the agents, by setting the smoothing factor to half of the crowd
entropy in each agent’s visual field, i.e., α = ei/2. To illus-
trate the effect of this method, we compare it with a baseline
using a fixed smoothing factor α = 0.5. Figure 6 presents the
evacuation process with respect to the two smoothing factors
and different percentages of social groups. The comparison
results show that no matter whether social groups exist (non-
zero percentages) or not (zero percentage), the entropy-based
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FIGURE 10. The evolution of crowd entropy within partitioned areas.

velocity smoothing method incurs a longer average evacua-
tion time and a higher average crowd entropy comparing to
that with the fixed smoothing factor. This demonstrates that
the crowd chaos has a negative impact on evacuation, which
is in accordance with the realistic situation.

2) EFFECT OF SEEKING BEHAVIOR ON EVACUATION
Figure 7 presents the evacuation process w.r.t. evolved time,
where the percentage of social groups is set to 20%. In the
figure, gray particles represent individuals, pink particles
represent social groups whose companions are within the
comfortable distance, blue particles represent social groups
whose companions are beyond the comfortable distance but
still visible, and black indicate social groups whose compan-
ions are invisible. We can observe from the simulation results
that, in the early stage of evacuation, the seeking behaviors
mainly occur during the movement of social groups; and in
the middle and late stages of evacuation, the seeking behav-
iors occur around the periphery of the arch-like collective
cohesion.

Next, we evaluate the effect of the percentage of social
groups on the average evacuation time and average crowd
entropy, as illustrated in Figure 8. Generally, the average
evacuation time and average crowd entropy increase linearly
as the percentage of social groups goes large. The reason is
that, when the percentage is larger, more agents will seek
their companions, leading to a more chaotic evacuation and
a longer evacuation time. Besides, we can observe from
Figure 8 that, when the percentage of social groups is 0%,
the simulation result is the evacuation without seeking behav-
iors in the crowd. In this situation, the simulation is ideal as
the negative impact caused by seeking behaviors is ignored,
which may not be in line with the realistic scenario.

3) EFFECT OF OBSTACLES ON EVACUATION
We further compare the evacuation with and without obsta-
cles. Specifically, we consider the following four cases:

1) Case 1: with no obstacles and no social groups;
2) Case 2: with no obstacles and 40% social groups;

TABLE 2. Comparison of evacuation w.r.t. obstacles.

FIGURE 11. Illustration of partitioned areas.

3) Case 3: with dense obstacles and no social groups;
4) Case 4: with dense obstacles and 40% social groups.

For a better illustration of the chaos degree in the crowd dur-
ing the evacuation, we utilize Eqn (6) to calculate the Boltz-
mann crowd entropy for each grid and visualize in Figure 9 at
a specific timestamp (the darker the color is, the higher crowd
entropy in the grid). In addition, we summarize the number
of seeking behaviors during the whole evacuation in Table 2,
where visible represents the companion is within an agent’s
visual field, and invisible represents the opposite. We report
the average result of 50 independent trials.

We have three observations. First, the results show that the
proposed ECEM algorithm is suitable for evacuation scenar-
ios with different obstacle distributions. Second, as shown
in Figure 9, the existence of social groups slows down the
progress of individuals gathering to the exit, and there are
more dark grids near the exit (indicating that the crowd is
more chaotic). Together with the evacuation time in Table 2,
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FIGURE 12. The distribution of crowd entropy w.r.t. evolved time (the percentage of social groups is 20%).

we observe that the seeking behaviors lead to a prolonged
evacuation process, which is consistent with the findings
mentioned above. Third, by comparing Case 2 and Case 4 in
Table 2, we can see that, when the percentage of social groups
is the same, given obstacles, the number of seeking behav-
iors (including both visible and invisible seeking) increases
notably. This dues to that the obstacles restrict the individual’s
visual field and increase the uncertainty of the evacuation
path. Therefore, the obstacles negatively impact evacuation
efficiency and the crowd’s chaos degree.

4) ANALYSIS OF CROWD CHAOS AROUND THE EXIT
Because the crowd is usually congested around the exit for
a long time during the evacuation process, we are interested
in the crowd chaos within this area. For a better analy-
sis, we partition the area around the exit by two strategies,
as shown in Figure 11. One strategy is based on the distance
to the exit, with A, B, and C areas (Figure 11a). The other
strategy is based on the exit location, with L, M, and R areas
(Figure 11b).

Figure 10a describes the evolution of crowd entropy for the
first partition strategy. We can observe that, in area B (i.e.,
between 5m and 10m from the exit), the degree of crowd
chaos is the most serious, and the magnitude of change is
the most drastic; in area A (i.e., less than 5m from the exit),
the state of crowd chaos lasts the longest, but the degree of
chaos is relatively stable; and in area C (i.e., between 10m
and 15m from the exit), the duration of crowd chaos is the
shortest and its degree is the lowest.

Similarly, Figure 10b presents the evolution of crowd
entropy for the second partition strategy. During time t = 25s
to t = 100s, the crowd entropy in area M is lower than
that in areas L and R, which means that the crowd in the
middle of the exit is more orderly than the left and right
sides. This is because the population density is higher during
this period, and the competition between the crowds on both
sides of the exit is more intense. Meanwhile, the avoidance
velocity, cohesion velocity, and velocity correction make the
uncertainty of individual velocity much higher in areas L and
R. While in area M, the velocity direction is more consistent
and therefore more orderly. When t > 100s, the degree
of chaos in areas L and R gradually weakened and is less
than that of area M. The reason is that, in the late stage
of evacuation, the scale of the arch-like collective blocking
becomes smaller, and individuals are more likely to escape
through area M. As a consequence, the crowd density in area
M is larger, and the competition is more intense than on both
sides of the exit.

Finally, by calculating the crowd entropy in each grid
(using Eqn (6) for each grid), we show the crowd entropy
distribution during the whole evacuation process to identify
the most chaotic areas, as illustrated in Figure 12. The simu-
lation results are consistent with the above analysis: the most
chaotic area is B when t = 10s and 20s (i.e., early stage),
is R when t = 30s and 50s (i.e., middle stage), and is M
when t = 100s and 150s (i.e., late stage), respectively.
The simulation results could help design emergency evac-

uation plans and optimize the management of evacuating
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crowds. For example, the observations inspire us to focus on
those areas with higher disorder levels during the simulation
and take further measures, e.g., adding markers or guidance,
to prevent the evacuating crowd from being too chaotic and
causing casualties.

V. CONCLUSION
We have proposed ECEM, an entropy-based crowd evacu-
ation model, that considers the seeking behavior in evacu-
ation where social groups are in the population. Moreover,
we incorporate the crowd chaos based on Boltzmann entropy
into the model, ensuring that an individual adaptively com-
putes its velocity according to the disorder level in its per-
spective. Finally, we demonstrate the effectiveness of ECEM
through extensive simulations and further provide insights on
designing evacuation strategies in realistic scenarios based on
the experimental analysis.
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