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ABSTRACT Autonomous sailing robots are a new type of green ship that use wind energy to maintain
continuous cruising operations. Compared with traditional algorithms, swarm intelligence optimization
algorithms have better intelligence and adaptation. An intelligent algorithm acts as one of the most important
solutions to the path planning problem of autonomous sailing robots. The beetle swarm optimization, which
is a novel intelligent method that combines the search mechanism of a single beetle with the particle swarm
optimization algorithm, is utilized to obtain the optimal path. In this study, the track navigation control
of an improved mathematical model of a sailing ship is introduced, and the navigation is tested using a
downsized prototype of an autonomous sailing robot. The improved beetle swarm optimization is proposed
here by dynamically changing the step size factor and the inertia weight formula. In the iteration of the
improved beetle swarm optimization algorithm, the location update cooperates with the beetle monomer
search mechanism to learn the update strategy of the particle swarm optimization algorithm. Combinatorial
strategies can speed up the overall iterative convergence speed and reduce the possibility that the population
will fall into a locally optimal solution. The simulation results demonstrate the robustness, efficiency, and
feasibility of the improved beetle swarm optimization in different cases. The research results can provide
some references and ideas for the autonomous intelligent navigation control design of autonomous sailing
robots.

INDEX TERMS Autonomous sailing robot, beetle antennae search, improved beetle swarm optimization,
path planning.

I. INTRODUCTION
Currently, the main methods of marine environmental moni-
toring and resource exploration include onsite detection with
ocean buoys [1], underwater robots [2]–[5], unmanned sur-
face vessels [6], and remote monitoring with aircraft and
satellites. Manned motorboats, which are the main equipment
for long-term marine monitoring, are limited by the power
of batteries or fuels and the high manpower and material
resource requirements. Fixed-point offshore buoys also have
limitations. In particular, if there is the need to monitor a large
area of the sea, many offshore fixed-point buoys are required,
which is very costly. Furthermore, fixed detection devices
lack maneuverability and need manual deployment. With the
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increasing demand of marine monitoring and exploration,
traditional monitoring and explorationmethods have revealed
a large number of defects; therefore, it is necessary to develop
new monitoring equipment.

In the last decade, autonomous sailing robots have shown
good potential as alternative monitoring and exploration
equipment. First, they use wind energy to maintain con-
tinuous cruising operations; thus, they do not have fuel or
battery restrictions, which greatly extends their operation
time. Second, they can collect data at fixed points during
the voyage, and their collection range is much larger than
that of static acquisition equipment, such as buoys. Third,
they can greatly reduce fuel consumption and environmental
pollution.

Autonomous sailing robots are mainly propelled by wind
power and only require little energy to control their rudders
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and sails. They rely on renewable energy sources, such as
solar and wind energy, and are essential for long-range cruis-
ing and long-term continuous operations. Extensive research
is being conducted on these marine vehicles. The navigation
system of a simple autonomous sailing robot consists of two
parts: navigation (high-level control) and execution (low-
level control). The latter includes the independent control of
the sails and the steering gear.

In the past decade, many methods have been
proposed to solve the navigation and obstacle avoidance
problems of autonomous sailing robots. The path planning for
autonomous sailing robots can be divided into unobstructed
and obstructed path planning, depending on whether obsta-
cles are considered. Because autonomous sailing robots are
completely powered by wind, their path planning is challeng-
ing evenwhen there are no obstacles in the environment, since
the target position, wind field, and side change strategies need
to be considered. Stelzer R proposed a speed optimization
algorithm that can give the fastest direction of the current
sailing speed according to the speed curve of the autonomous
sailing robot. In other words, this algorithm ensures that the
speed component of the autonomous sailing robot in the
direction connecting the current position with the target is
the largest. The output path of this algorithm is generally not
optimal, but it is more optimized than a straight path, and
the planning speed is fast [7]. Furthermore, Stelzer added
obstacles on the basis of velocity made good (VMG) and
modified the speed pole diagram of the sailing boat according
to the distance of the obstacle from the autonomous sailing
robot, i.e., he added the direction in which the autonomous
sailing robot cannot sail or he reduced the speed of the
autonomous sailing robot in certain directions. However,
this method inherits the disadvantages of VMG [8]. Con-
sidering the optimality of the planning, Erckens designed
a local path planning algorithm for the sailboat based on
the A∗ algorithm and incorporated the sailing strategy of
the sailboat in the algorithm. He then tested the proposed
algorithm on an autonomous sailing robot named Avalon [9].
Romero M designed a local obstacle avoidance algorithm for
sailboats based on fuzzy logic and added sailing rules based
on empirical sailing knowledge [10]. Sauze C included the
obstacles into the polar coordinates centered on the sailing
boat. When approaching the obstacles, a new course was
obtained by comprehensively considering the target heading
angle, subsequent obstacles, the wind direction, and other
factors [11]. Nevertheless, this method could not guarantee
the optimal path. Other path planning algorithms include
the PRM-Dijkstra algorithm [11], interval analysis [12],
the cost function method [13], and the artificial potential field
method [14]–[17].

In the tracking control of autonomous sailing robots,
the waypoints are generally set, as is straight-line tracking
control between the two waypoints. The controller has a PID
heading controller [18], a speed direction controller [11], and
a fuzzy logic controller [19], [20]. FOSSEN proposed to use

the Line of Sight (LOS) projection LOS algorithm to track
and correct the deviation of the track, which can complete
the underdriven ship’s linear path tracking control [21].

Generally, the existing path planning methods can
be divided into two categories: classic algorithms and
meta-heuristic optimization algorithms. Classic algorithms
include cell decomposition, artificial potential fields, and
sampling-based methods. However, classic methods are
very time-consuming and require sufficient storage memory.
Meta-heuristic algorithms have become very popular due
to their stability and flexibility and their ability to better
avoid local optimizations. Thus, meta-heuristic optimization
algorithms are used frequently to optimize the path plan-
ning problem. These algorithms can also be grouped in
four main categories (see Table 1): evolution-based, physics-
based, swarm-based methods, and human-based algorithms.

Evolution-based methods are inspired by the laws of
natural evolution. The most popular evolution-inspired tech-
nique is genetic algorithms (GA) [22]. GA is an optimiza-
tion algorithm based on natural genetics, including natural
selection, crossover, and mutation. Other popular algorithms
are probability-Based incremental learning (PBIL) [23], evo-
lution strategy (ES) [24], the biogeography-based optimizer
(BBO) [25], and genetic programming (GP) [26].

Physics-based methods imitate the physical rules in the
universe. The most popular algorithms include simulated
annealing (SA) [27], the gravitational local search algorithm
(GLSA) [28], curved space optimization (CSO) [29], charged
system search (CSS) [30], the small-world optimization algo-
rithm (SWOA) [31], central force optimization (CFO) [32],
the artificial chemical reaction optimization algorithm
(ACROA) [33], big-bang big-crunch (BBBC) [34], the grav-
itational search algorithm (GSA) [35], black hole algorithm
(BH) [36], and ray optimization algorithm (RO) [37].

The third group of methods inspired by nature includes
group techniques that mimic the social behavior of ani-
mal groups. The most popular algorithms are the parti-
cle swarm optimization algorithm (PSO) [38], ant colony
optimization (ACO) [39], artificial bee colony (ABC) [40],
the fruit fly optimization algorithm (FOA) [41], the artificial
fish-swarm algorithm (AFSA) [42], and gray wolf optimiza-
tion (GWO) [43].

It’s worth mentioning here that there are other meta-
heuristics inspired by human behavior. Some of the
most popular algorithms are seeker optimization algo-
rithm (SOA) [44], group search optimizer (GSO) [45],
league championship (LCA) [46], social-based algorithm
(SBA) [47], mine blast algorithm (MBA) [48], and harmony
search (HS) [49].

The PSO algorithm is a random search algorithm based
on group cooperation developed by simulating the foraging
behavior of birds. Thabit and Mohades [50] proposed a new
method for multirobot path planning in unknown environ-
ments. This method is inspired by particle swarm optimiza-
tion and is called multirobot MOPSO. It considers shortness,
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TABLE 1. Classification of meta-heuristic algorithms.

safety, and smoothness. ACO is an algorithm inspired by the
foraging behavior of ants. Although the ability of a single
ant is limited, after multiple ants mark the path, the entire
ant colony will tend to the optimal path. In the applica-
tion of path planning, Zhu et al. [51] combined the artificial
potential field method with the ant colony algorithm, intro-
duced inducing heuristic factors, and dynamically adjusted
the state transition rules of the ant colony algorithm, which
has higher global search capabilities and a faster convergence
speed. The ABC is a global optimization algorithm based
on swarm intelligence. Its intuitive background comes from
the honey-collecting behavior of bee colonies. Bees perform
different activities according to their respective division of
labor and share and communicate bee colony information to
find the optimal solution to the problem. Xu et al. [40] intro-
duced the coevolution framework into ABC and designed a
leading artificial bee colony algorithm, which has an

improved strategy that can quicken its convergence and over-
come size dependence. The GWO is a swarm intelligence
optimization algorithm. The algorithm is inspired by the prey
hunting activities of gray wolves and developed an optimized
search method. It has a strong convergence performance, a
few parameters, and easy implementation. Qu et al. [52]
proposed a novel gray wolf optimizer algorithm based on
reinforcement learning, called RLGWO. In the proposed
algorithm, reinforcement learning is inserted, which is to
control individuals to switch operations adaptively based on
accumulated performance.

The beetle antennae search (BAS) algorithm is a
novel meta-heuristic optimization algorithm proposed by
Jiang and Li [53]. Its idea stems from the simulation of
the beetle’s foraging behavior. The BAS algorithm has the
advantages of having few parameters and an easy imple-
mentation, and the calculation process of the algorithm is
simple, versatile, robust, less subject to initial condition
constraints, and can be used to solve complex nonlinear
optimization problems. After the algorithm was proposed,
it was applied in many fields. Wu applied the improved
algorithm of basic BAS to the route planning of unmanned
aerial vehicles and mobile robots [54]. Wang used BAS’s
improved algorithm, BSAS, for parameter estimation of the
RC model [55]. Lin et al. [56] proposed a new algorithm –
WSBAS based on the BAS algorithm. The change strategy of
inertia weight enhances the global search and local search
capabilities of the method and applies the improved BAS
algorithm to the Economic load distribution problem. Based
on the BAS algorithm,Wang et al. [57] designed the adaptive
mutated beetle particle swarm algorithm, replacing artificial
experience with a new optimization algorithm. The optimal
control parameters can be quickly determined in the control
algorithm, and the heading angle control under the optimal
parameters can be realized. Jiang applied the BAS algorithm
and its improved algorithm to 3D path planning research [58].
According to the size of the adaptive step size, BAS can
effectively jump out of the local optimal value in the early
stage of exploration and quickly converge at the end of the
search. Therefore, it is very suitable for solving path planning
problems. However, the BAS algorithm is also affected by the
initial search step and a completely random search direction
and requires complex initialization parameter adjustment.
The performance of the BAS algorithm in processing high-
dimensional functions is not very satisfactory, and the iter-
ation result is very dependent on the initial position of the
beetle.

Wang et al. [59] proposed the beetle swarm optimization
algorithm (BSO), which combined BAS and PSO algorithms.
Compared with other group intelligent optimization algo-
rithms, the BSO algorithm has a higher convergence speed,
can avoid falling into the local optimal solution, and has
certain advantages in solving many optimization problems.
However, no research has been conducted on applying the
BSO algorithm to the field of autonomous sailing robots path
planning.
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In this paper, the improved beetle swarm optimiza-
tion (IBSO) algorithm is proposed by dynamically changing
the step size factor and the inertia weight formula. This
study applies the beetle swarm optimization algorithm to
autonomous sailing robots path planning for the first time and
a path planning simulation is conducted. To verify the effec-
tiveness of the improved beetle swarm optimization algo-
rithm, it is compared with the Particle Swarm Optimization
Algorithm and the beetle swarm optimization algorithm in
different cases. Comparedwith other swarm intelligence opti-
mization algorithms, the improved beetle swarm optimization
algorithm has a better convergence speed and convergence
accuracy. It was concluded that an improved beetle swarm
optimization algorithm generates the optimal path with a
higher quality.

The contributions of this work are as follows. First,
the track navigation control of the sailboat based on the
improved mathematical model of sailing was determined.
Second, a navigation test on the sailboat in the sea area
of Ningbo, China was conducted. Last, the improved bee-
tle swarm optimization algorithm for the path planning of
autonomous sailing robots was proposed.

The remainder of this paper is organized as follows.
Section II describes the autonomous sailing robot system.
Section III describes the improved beetle swarm optimization
algorithm and its application to the path planning problem.
In Section IV, the track simulation and path planning simu-
lation experiments are performed, as are the actual measure-
ment experiments of the sailboat. In the last section conclu-
sions are drawn.

II. AUTONOMOUS SAILING ROBOT SYSTEM
In this section, sailingmodeling, track navigation control, and
a small autonomous sailing robot are introduced.

A. SAILBOAT DYNAMICS AND KINEMATICS (WITH A
FOUR-DEGREE-OF-FREEDOM SIMULATOR)
To validate our proposed method, the sailing model devel-
oped by researchers at the Department of Mechanical Engi-
neering, Kanazawa Institute of Technology [60] is improved
upon.

The original sailing parameters to meet the specifica-
tions of our sailing boat are changed. Table 2 describes
some of the improved parameters used in the Simulink, and
Table 3 explains the symbols used in this paper.

Due to the lack of data on the aerodynamics of the sailboat,
the sail of the simulated model ship adopts the aerodynamic
characteristic curve of the typical sail mentioned in Wang
Yifu’s Theory of Ship Wing [61]. The controller writes the
control rules according to the classic sail wing limit diagram
given in [61].

Therefore, the simulated model ship is a sailboat with the
hull of the Fujin ship [60] and a sail that conforms to the
aerodynamic characteristic curve.

TABLE 2. Adopted parameters.

TABLE 3. Adopted symbols.

The simulator model describes the dynamics of a four-
degree-of-freedom sailboat. The equations of the mathemat-
ical model are as follows:

Surge

(m+mx) U̇−
(
m+my cos2 ϕ + mz sin2 ϕ

)
V ψ̇

= X0 + XH + XVψ̇V ψ̇ + XR + Xs (1)

Sway(
m+mycos2ϕ+mzsin2ϕ

)
V̇+(m+mx)Uψ̇

+2
(
mz − my

)
sinϕcosϕ · Vϕ = YH+Yϕ̇ ϕ̇+Yψ̇ ψ̇+YR+Ys

(2)
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Roll(
m+mycos2ϕ+mzsin2ϕ

)
V̇+(m+mx)Uψ̇

+2
(
mz − my

)
sinϕcosϕ · V ϕ̇=YH+Yφ ϕ̇+Yψ ψ̇+YR+Ys

(3)

Yaw{(
Iyy + Jyy

)
sin2 ϕ + (Izz + Jzz) cos2 ϕ

}
ψ̈

+2
{(
Iyy + Jyy

)
− (Izz + Jzz)

}
sinϕ cosϕ · ψ̇ϕ̇

= NH + Nψ ψ̇ + NR + NS (4)

The steady forces on the canoe body and fin keel are
described using the following hydrodynamic derivatives:

XH =
(
X ′VVV

′2
+ X ′ϕϕϕ

2
+ X ′VVVV

′2
)(1

2
ρV 2

BLD
)

(5)

YH =
(
Y ′VV

′
+ Y ′ϕϕ + Y

′
VϕϕV

′2ϕ + Y ′VVV
′3
)(1

2
ρV 2

BLD
)
(6)

KH =
(
K ′VV

′
+ K ′ϕϕ + K

′
V∞V

′2ϕ + K ′VVϕV
′2ϕ + K ′VVV

′3
)

×

(
1
2
ρV 2

B LD2
)

(7)

NH =
(
N ′VV

′
+ N ′ϕϕ + N

′
VϕϕV

′2ϕ + N ′VVV
′2ϕ + N ′VVV

′3
)

×

(
1
2
ρV 2

B LD2
)

(8)

where

V ′ = −
VBsinβ
VB

= −sinβ (9)

The hydrodynamic forces and moments on the rudder are
expressed as

XR = CXδsinαRsinδ
(
1
2
ρV 2

BLD
)

(10)

YR = CY δsinαRcosδcosδ
(
1
2
ρV 2

BLD
)

(11)

KR = CKδsinαRcosδ
(
1
2
ρV 2

BLD
2
)

(12)

NR = CNδsinαRcosδcosϕ
(
1
2
ρV2

BL
2D
)

(13)

where CXδ to CNδ are the coefficients determined from the
rudder angle tests. The effective attack angle of the rudder,
αR, is given by

αR = δ − γR · β − tan−1
(
1Rψ̇
U

)
(14)

where γR is the decreasing ratio of the inflow angle, which is
mainly caused by the downwash from the fin keel.

As previously stated, it mainly introduces themathematical
model of the sailboat and improves the parameters to better
suit our simulation needs.

B. TRACK NAVIGATION CONTROL
Based on the mathematical model of the sailboat, aMATLAB
simulation program is established to realize the track navi-
gation control. The track navigation control mainly involves
tracking of the sailboat’s rudder and sail controller.

In our simulation, the rudder and sail are controlled in two
separate single-input single-output systems that are assumed
to be independent of one another.

The development of a low-order controller to guide a
sailboat to its desired location is a relatively easy task, usu-
ally solved by a simple, static proportional integral differen-
tial (PID) course controller. The PID controller can easily set
the process. In general, it is sufficient for the sailboat to use
a set of (static) control parameters (Kp,Ki,Kd ), which are
usually found through trial and error, throughout the mission
to reach the target location.

Fig. 1 shows the relationship between the sailing direction
and the wind direction. When there is no wind, the sails
float freely, and the boat slows down until it stops. Few
sailboats can sail at less than 45 degrees from the direction
of the wind, so the area between the wind direction and the
45 degrees angle (on both sides) is called the ‘‘no-go-zone’’.
In this study, the upwind 45 degrees are considered to be the
boundary lines of the no-go-zone. In the no-go-zone area,
autonomous sailing robots are driven by the wind and can
be driven normally. When the target coordinates received by
the autonomous sailing robots cause the heading angle to be
in the ‘‘no-go zone’’, the autonomous sailing robots cannot
obtain the necessary speed and therefore cannot sail in a
straight line. It is necessary to plan the route into a ‘‘Z’’ shape
to avoid the ‘‘no-go zone’’.

FIGURE 1. Relationship between the sailing direction and the wind
direction.

For the sail, the controller’s input and output variables are
the relative wind direction angle and the sail’s angle, respec-
tively. The aerodynamic force of a sail is usually expressed in
terms of the lift coefficient Cl and the drag coefficient Cd. The
sail’s lift coefficient and drag coefficient data in this study
are obtained according to the typical sail wing polar diagram
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(Cl-Cd diagram) reported in [61]. The best angle of attack is
the difference between the relative wind direction angle and
the optimal sail angle. In simulation control, linear interpola-
tion is used when using values between the data points. In our
simulation, it is assumed that the sail is adjusted at any time
according to the specified data, i.e., the optimal sail angle can
be achieved at any moment to obtain the best angle of attack.
The sail’s lift resistance coefficient data is shown in Table 4.

TABLE 4. Sail lift coefficient and drag coefficient data.

For the rudder, a heading error minimizing the PID con-
troller was designed in a control process using the MATLAB
simulation. The PID controller consists of a proportional unit
P, an integrating unit I, and a differential unit D.

C. A SMALL AUTONOMOUS SAILING ROBOT
In this section, the small autonomous sailing robot shown
in Fig. 2 is introduced. The hardware and software of the
sailboat are also introduced.

FIGURE 2. Photograph of the small-scale autonomous sailing robot.

The advantage of the small-scale sailboat is that it can have
the behavior of a large ship and is easy to test.

The GPS of the sailing robot adopts the ATK-S1216F8-BD
high performance positioning module of ALIENTEK and is
used to locate the current position of the sailboat and provide
data for the calculation of the path and control. The electronic
compass uses the low-cost module GY953. In this compass,
a gyroscope and acceleration sensor are used; the magnetic
field sensor obtains the direct angle data through the data
fusion algorithm and can directly output the heading angle.
The wind direction sensor consists of a high precision single-
turn absolute encoder and a wind vane.

All electronic devices are managed via Raspberry Pi.
The autonomous sailing robot has two modes of operation,
namely, automatic and manual modes, in which the sailboat
can sail autonomously and can be operated by remote control,
respectively.

Fig. 3 illustrates the framework of the autonomous sailing
robot software, which can be divided into four main parts.
The perceptual modules are used to collect the internal state
and environmental data; the internal data include information
on the sail and rudder angle, heading, and absolute position of
the sailboat, and the environmental data include information
on the wind direction. The angle of the sail and rudder are
controlled by the control module.

FIGURE 3. Software framework.

III. PATH PLANNING
In this section, the Beetle Antennae Search algorithm (BAS),
the adaptive factor, the improved beetle swarm optimization
algorithm (IBSO), and the path planning algorithm based on
IBSO are introduced.

A. BEETLE ANTENNAE SEARCH ALGORITHM
The Beetle Antennae Search (BAS) algorithm is an intelli-
gent optimization algorithm that simulates beetle foraging
behavior. When a beetle forages, it will use its left and right
antennae to sense the odor intensity of food. If the odor
intensity received by the left antennae is large, it will fly to
the left with the strong odor intensity; otherwise, it will fly to
the right.

The modeling process of the BAS algorithm is as follows:

1) THE POSITION AND ORIENTATION OF THE BEETLE ARE
RANDOMLY GENERATED AND NORMALIZED

Eb =
rands(Dim, 1)
‖rands(Dim, 1)‖

(15)

where Dim is the spatial dimension.
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2) THE SPACE COORDINATES OF THE BEETLE’S LEFT AND
RIGHT SIDES AND ITS ANTENNAE ARE CREATED{

xrt = x t + d0 ∗ Eb/2
xlt = x t − d0 ∗ Eb/2

(16)

Among them, x t represents the position of the beetle’s
antennae at the t-th iteration, xrt represents the position of the
beetle’s right antennae at the t-th iteration, xlt represents the
position of the beetle’s left antennae at the t-th iteration, and
d0 represents the beetle’s two positions.

3) THE DIRECTION IN WHICH THE BEETLE IS MOVING IS
DETERMINED
According to the selected fitness function, the respective
fitness values of the left and right antennae are calculated, and
the beetle moves towards the antennae with a small fitness
value.

4) THE LOCATION OF THE BEETLE IS ITERATIVELY UPDATED

x t+1 = x t + δt ∗ Eb ∗ sign (f (xrt)− f (xlt)) (17)

δt = eta ∗ δt−1 (18)

Among them, δt is the step factor, sign is a sign function,
and eta is the parameter step factor, which is usually 0.95.

B. ADAPTIVE FACTOR
In the BAS algorithm, the parameter step factor eta is the key
to controlling the convergence speed of the algorithm, and the
step size is closely related to the factor eta. The specific rea-
sons are as follows: If the step size decays sufficiently slowly,
the global search capability is stronger, but the convergence
rate is too slow. Alternatively, if the step size decays too fast,
the global optimal solution may not be obtained.

The step size factor controls the convergence speed of
the algorithm. The larger the step size factor (towards 1),
the slower the convergence speed, but the global search abil-
ity is strong; otherwise, the smaller the factor (towards 0),
the faster the convergence speed, but it can easily fall into
the local minimum value. However, the step factor in the
basic BAS is fixed during the optimization process. To make
the algorithm obtain a better optimization ability, this paper
proposes an improved method to dynamically change the step
size factor, which is an adaptive factor. Specifically, in the
early stage of optimization, in order to expand the overall
search range in the solution space and increase the speed
of optimization, a larger step factor should be used; in the
later stage of optimization, the search solution tends to be
stable. To improve the accuracy of the solution, the step factor
should be reduced. Additionally, the smaller the initial step
size factor, the easier it is to fall into the local minimum value,
so a higher initial value should be given, such as 0.95.

Based on the above considerations, the following adjust-
ment mechanism is set:{
β = eta− 0.2 ∗ ((i+ 1)/(5 ∗ n)+ 0.5), fi > fmin

β = eta, fi ≤ fmin
(19)

where fi is the current fitness value, fmin is the historical
optimal fitness value, i is the current number of iterations,
n is the total number of iterations, eta is the default step
factor (generally 0.95), and β is the current step factor. When
the current fitness value is less than the historical optimal
fitness value, this indicates that the current optimization per-
formance is good. At this time, the default value of the step
factor is maintained to ensure a global search. In contrast, it is
considered that the optimization performance is not good, and
the step size factor is reduced to accelerate the convergence
speed; as the number of iterations increases, the minimum
fitness value tends to be stable, and the decrease in the step
factor should be expanded.

C. IMPROVED BEETLE SWARM OPTIMIZATION
ALGORITHM
The iteration results of the BAS algorithm have a great rela-
tionship with the initial position of the beetle. In other words,
the choice of the initial position greatly affects the efficiency
and effect of optimization. PSO simulates birds in a flock by
designing massless particles, where each particle represents
a potential solution to the problem, and each particle corre-
sponds to a fitness value determined by a fitness function.

Inspired by the PSO algorithm, the BAS algorithm is fur-
ther improved upon to expand individuals into groups. That
is, the BSO algorithm to be introduced. The basic principle of
the algorithm is to replace the particles in the particle swarm
algorithm with the beetle, that is, to use BAS optimization to
replace the comparison of individual optimal values in the
particle swarm algorithm. The initial position and velocity
parameters of the beetle are the same as in a particle swarm
optimization. In the iterative process, the way to update the
position of the beetle not only depends on the current global
optimal solution of the individual beetle, but also on each
iteration, where the beetle judges the odor concentration.
X = (X1,X2, . . . ,Xn) is used to represent the beetle swarm
of size n in the S-dimensional search space, where Xi =
(xi1, xi2, . . . , xiS )T is an S-dimensional vector representing
the position attribute of beetle i in the S-dimensional search
space and is a potential solution to the optimization prob-
lem. Vi = (vi1, vi2, . . . , viS )T is the speed attribute of the
beetle i. The individual extreme is represented by Pi =
(pi1, pi2, . . . , piS )T , and the global extreme is represented by
Pg = (pg1, pg2, . . . , pgS )T . The speed and position updates
of the BSO algorithm can be expressed as follows [59]:

xk+1is = xkis + λv
k
is + (1− λ)ξ kis (20)

vk+1is = ωvkis + c1r1
(
pkis − x

k
is

)
+ c2r2

(
pkgs − x

k
gs

)
(21)

ξ k+1is = δk ∗ vkis ∗ sign
(
f
(
xkrs
)
− f

(
xkls
))

(22)

xk+1rs = xkrs + v
k
is ∗
Ed
2
; xk+1ls = xkls − v

k
is ∗
Ed
2

(23)

where s = 1, 2, . . . , S;i = 1, 2, . . . , n; and k is the current
number of iterations. Vis is expressed as the speed of the
beetles, and ξis represents the increase in the beetle position
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movement. The loosening factor (λ) and inertia weight (ω) are
adjustable parameters, and r1, r2 are two random functions in
the range of [0, 1]. The parameters c1 and c2 determine the
impact degree of the individual and global extremes on the
beetle.

In the BSO algorithm, the greater the value of the inertial
weight ω, the wider the search range corresponding to the
particle; that is, a stronger global search ability and a weaker
local search ability. The smaller the value of the inertial
weight ω, the greater the search range corresponding to the
particle narrow; that is, a stronger local search ability and a
weaker global search ability. This article modifies the BSO
from the perspective of improving the inertia weight. In this
paper, the inertia weight formula is adjusted as follows:

ω(k) = rand ∗ ωmin ∗ (1− cosh)+ ωmax ∗ cosh (24)

where rand is a random function in the range [0, 1], ωmin =
0.4, ωmax = 0.9, h = π t/2kmax , and kmax is the maximum
number of iterations during the entire iteration. The improved
strategy has a larger value and a slower change rate ω in the
early stage of the search, which is conducive to the algorithm
for a longer global search time. The possibility of finding
a globally optimal solution is greatly improved. The fast
ω enhances the ability to continuously approach the global
optimal solution in the later stage of the search, find the global
optimal solution, and improve the accuracy of the algorithm.

According to the improvement of the adaptive factor in the
BAS algorithm, the improved BAS algorithm is combined
with the PSO algorithm to obtain the IBSO.

In the iteration of the IBSO algorithm, the location update
cooperates with the beetle monomer search mechanism to
learn the update strategy of the PSO algorithm. Combinatorial
strategies can quicken the overall iterative convergence speed
and reduce the possibility that the population will fall into a
locally optimal solution. The IBSO algorithm includes explo-
ration and development capabilities and belongs to global
optimization. Additionally, the linear combination of speed
and beetle search improves the speed and accuracy of the
population optimization, making the algorithm more stable.

The pseudo code of the IBSO algorithm is presented.

D. PATH PLANNING ALGORITHM BASED ON THE
IMPROVED BEETLE SWARM OPTIMIZATION ALGORITHM
The autonomous sailing robot path planning problem is an
NP-hard optimization problem. The main purpose of solving
this problem is that the robot should reach the target posi-
tion from the start position with the shortest path without
encountering any obstacles. This consists of the start and
target positions, the size of the obstacle, the shape of the
obstacle, the number of obstacles, and the boundary of the
area. The objective function of the path planning problem is
given below:

J = min
x,y

Q(1+ ηV ) (25)

where V is the violation cost; η is violation coefficient,
which is a positive constant; and Q denotes the total distance

Algorithm 1 IBSO Algorithm
input: Initialize the swarm Xi(i = 1, 2, . . . , n), v, δ,
K , velocity range vmin and vmax
output: xbest , fbest
1: Calculate the fitness of each search agent
2: While (k < K )
3: Set inertia weight ω according to (24)
4: for each search agent
5: Calculate f (Xrs) and f (Xls) according to (23)
6: Update the incremental function ξ according

to (22)
7: Update the speed formula V according to (21)
8: Update the position of the current search

agent according to (20)
9: end for
10: Calculate the fitness of each search agent f (x)
11: Record and store the location of each search agent
12: for each search agent
13: if f (x) < fpbest then
14: fpbest ← f (x)
15: end if
16: if f (x) < fgbest then
17: fgbest ← f (x)
18: end if
19: end for
20: Update x∗ if there is a better solution
21: Update step factor δ according to (18) and (19)
22: end while
23: Return xbest , fbest

between the start and target positions. The pseudo code is as
follows:

Algorithm 2 Violation’s Calculation
1: Violation← 0
2: for each obstacle
3: Calculate distance vector between the obstacle’s center
and path
4: a← max (1 – distance/radiusobs, 0)
5: Violation← Violation + mean (a)
6: end for

The flowchart of the route planning based on the IBSO
algorithm is shown in Fig. 4.

IV. SIMULATION STUDIES AND EXPERIMENTAL RESULTS
In this section, the results of tracking navigation control, the
autonomous sailing robot experiment, and path planning are
introduced.

A. TRACKING NAVIGATION CONTROL
Fig. 5 shows the results of the tracking navigation simulation
of a rectangular path. It can be seen that the autonomous
sailing robot works well under the conditions of headwind,
crosswind, and downwind. In the following simulations,
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FIGURE 4. Flowchart of path planning based on the IBSO algorithm.

FIGURE 5. Sailboat rectangular trajectory with a given wind direction.

the default parameters for the sailboat are set as follows:
P = 1.2; I = 0.07; D = 0.4; true wind speed = 5 m/s; and
true wind angle = 0◦. The data of the surge, roll, sway, and
yaw are displayed in Figs. 6–9.

FIGURE 6. Plot of the boat speed as a function of U-time.

FIGURE 7. Plot of the boat speed as a function of V-time.

FIGURE 8. Plot of the roll rate as a function of time.

FIGURE 9. Plot of the yaw rate as a function of time.

In Fig. 5, point A to point B is the upwind sailing area,
and the route is ‘‘Z’’ shaped; point C to point D is sailing
downwind; and point B to point C and point D to point A
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FIGURE 10. Sailing track in Ningbo, China.

FIGURE 11. Plot of the relative wind angle as a function of time.

are cross-wind driving, where the sailboat is approximately
straight.

The test results prove that the controller can control the
sailboat to maintain a good straight-line navigation ability
and turn in time to reach a new route and can also plan a
new Z-shaped route to maintain a good speed when heading
upwind.

As seen from the figures above, the controller makes the
autonomous sailing robot follow the specified route, which
proves the feasibility of the controller.

B. EXPERIMENT
The experiments were conducted on a lake in Ningbo, China.
One purpose of these experiments was to test the navigation
and control modules of the sailboat without the obstacle
detection module. The purpose of the test was mainly to
evaluate the performance of different sails in different winds
and record the wind direction, bow orientation, GPS data, and
navigation data. Fig. 10 shows a four-minute trajectory of the
autonomous sailboat; Fig. 11 shows the true wind direction
in the actual course of the sailboat; and Fig. 12 displays the
heading angle of the sailboat in the experiment.

The autonomous sailing robot starts from the start point,
travels a certain distance in the manual control mode, and

FIGURE 12. Plot of the heading angle as a function of time.

then switches to the autonomous navigation mode. It then
passes the designated points A, B, C, and D, and success-
fully reaches the target point. The autonomous sailing robot
successfully sailed to four predetermined points without any
manual intervention.

C. PATH PLANNING
1) THE EXPERIMENT COMPARISON RESULTS
In the simulation, the influence of such factors as currents
and waves is ignored, and it is assumed that the sailboat
moves forward under the action of constant wind. The
obstacle was set as static. In the simulations, a volumeless
and massless particle is used to simulate an autonomous
sailing robot. The start points of the path planning are
S1 (10, 0) , S2(−30, 0), and the target points of the path plan-
ning are T1 (10, 70) ,T2(40, 60). This section is divided into
four cases according to the start points, target points, and the
number of obstacles. The information of the four cases is
shown in Table 5.

TABLE 5. Information for the four cases.

Some simulation experiments were given here to verify the
good performances of IBSO in the path planning problem.
To show the superiority of the proposed algorithm, the path
planning problem using IBSO algorithms is solved and its
performance has been compared with PSO and BSO.

For a fair comparison, the population sizes of all algorithms
are set to 20, and the maximum number of iterations is set to
100. For each algorithm, a total of 30 runs were performed
for each experiment. These algorithms are compared based
on the solution’s quality, stability, and convergence speed.
The quality of the solution can be represented by the average
optimal fitness value, which is the average of the 30 optimal
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FIGURE 13. Sailboat trajectories in Case 1.

TABLE 6. The related parameter values.

fitness values produced by 30 trials. The stability of the
algorithm is determined by the standard deviation. The con-
vergence speed of the algorithm depends on the number of
iterations required for the algorithm to converge to the opti-
mal solution. The initial parameters of the three algorithms
are listed in Table 6. Four sets of simulation experiments were
conducted at different start points, target points and obstacles,
and the simulation results are shown in Figs. 13-24. The path
planning comparison results are shown in Table 7.

For the first case, Fig. 13 shows some differences
in the experimental results of the three algorithms.
Although all three algorithms can successfully generate a
collision-avoidance path, IBSO found a path close to the opti-
mal path and performed better. Fig. 14 shows the convergence
curves of the three algorithms in Case 1. The results show
that the convergence speed and accuracy of this algorithm
are better than those of other algorithms. PSO reached the
best optimal value in the 79th iteration, BSO obtained the
best optimal value in the 49th iteration, and IBSO found its
best optimal value in the 38th iteration. The statistical results
are shown in Fig. 15 and Table 6. Among them, the best
PSO value is 85.8227, the worst is 87.4808, the average is
86.5876, the median is 86.5599, and the standard deviation is
0.4934; the best BSO value is 83.1233, the worst is 87.0604,
the average is 84.5372, the median is 83.8286, and the
standard deviation is 1.2618; the best IBSO value is 82.2377,
the worst is 85.5946, the average is 82.9455, the median is
82.6548, and the standard deviation is 0.8604. Compared
with the other algorithms, the simulation results of the IBSO

FIGURE 14. The convergence cures of the three algorithms in Case 1.

FIGURE 15. The statistical results of the three algorithms in Case 1.

FIGURE 16. The sailboat trajectories in Case 2.

algorithm have a smaller best value, median value, worst
value, average value, and the optimal number of iterations.

For the second case, the number of obstacles is slightly
increased. Fig. 16 shows that IBSO can find a feasible path
that meets the path planning requirements at the lowest cost.
Fig. 17 shows the convergence curves of the three algorithms
in Case 2. It can be seen from these curves that the IBSO algo-
rithm has the best convergence speed and accuracy. The PSO
algorithm reached the best optimal value in the 81st iteration,
BSO obtained the best optimal value in the 57th iteration,
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TABLE 7. Comparison results for the four cases.

FIGURE 17. The convergence cures of the three algorithms in Case 2.

FIGURE 18. The statistical results of the three algorithms in Case 2.

and IBSO found its best optimal value in the 31st iteration.
Among them, the best IBSO value is 82.2766, the worst is
90.1005, the average is 85.9451, the median is 86.5485, and
the standard deviation is 2.1536. For the statistical results
shown in Fig. 18 and Table 6, the simulation results of the
IBSO algorithm have a smaller best value, median value,
worst value, average value, and the optimal number of iter-
ations, which demonstrate its good performance.

FIGURE 19. The sailboat trajectories in Case 3.

For the third and fourth cases, Figs. 19 and 22 show that
the experimental results of the three algorithms have some
differences. Compared with PSO and BSO, IBSO can obtain
the shortest path. It can be seen from Figs. 20 and 23 that
IBSO has the best convergence. As the statistical results are
shown in Figs. 21 and 24 and Table 6, the IBSO still provides
the best results in terms of the best, worst, mean, and average
values.

In summary, from the above experimental results, it can
be seen that the IBSO algorithm can search for a satisfac-
tory path. The excellent performance of IBSO is verified.
The results show that the convergence speed and accuracy
of the IBSO are better than the PSO and BSO. Compared
with the PSO and BSO, the IBSO algorithm has a smaller
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FIGURE 20. The convergence cures of the three algorithms in Case 3.

FIGURE 21. The statistical results of the three algorithms in Case 3.

FIGURE 22. Sailboat trajectories in Case 4.

best value, median value, worst value, average value, and the
optimal number of iterations, which demonstrate its superior
performance and effectiveness. In other words, the IBSO
algorithm is superior to the PSO and BSO algorithms in path
planning.

2) COMPUTATIONAL COMPLEXITY COMPARISON
In this section, the computational complexities of the three
algorithms are compared. To compare their performances,
a more specific assessment needs to be done. Therefore,

FIGURE 23. The convergence cures of the three algorithms in Case 4.

FIGURE 24. The statistical results of the three algorithms in Case 4.

TABLE 8. The time complexity of the three algorithms.

TABLE 9. The space complexity of the three algorithms.

the computational complexity is compared in two parts: time
and space.

a: TIME COMPLEXITY
The time complexity of the algorithm measures the time it
takes for the function to run the algorithm, excluding coeffi-
cients and low-order terms. Some parameters are indicators
and the growth time of these parameters are analyzed and
selected. In the case of time complexity, three parameters
are set: population size (N), parameter dimension (D), and
number of iterations (M). Table 8 shows the comparison
results of time complexity.

b: SPACE COMPLEXITY
The space complexity of a program refers to the amount
of memory required to run a program. Using the space
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TABLE 10. Benchmark functions.

TABLE 11. Mean values of the PSO, BSO, and IBSO.

complexity of the program, a pre-estimation of how much
memory the program needs to run can be known. In the case
of space complexity, the number of iterations does not affect
the results. The comparison results of space complexity are
shown in TABLE 9.

From TABLE 8 and TABLE 9, it can be seen that these
three algorithms have no significant differences in time com-
plexity and space complexity. In other words, IBSO achieves
a better path planning performance without increasing the
computational complexity of the algorithm.

V. CONCLUSION
A simulation based on a mathematical model of an
autonomous navigation robot was conducted. The controller
was successfully used to drive the autonomous navigation
robot through the designated route. A navigation test on
the sailboat was conducted in a sea area. Furthermore, the
improved beetle swarm optimization algorithm was proposed
here by dynamically changing the step size factor and the
inertia weight formula. The improved beetle swarm optimiza-
tion algorithm for the path planning of autonomous sailing
robots was improved. This algorithm has the advantages of a

simplemodeling, fewer adjustment parameters, a small calcu-
lation amount, and a fast convergence speed. IBSO allows for
the obstacle avoidance path planning of autonomous sailing
robots. Two aspects were mainly compared. One was the path
planning performance, which is measured by the planning
model; the other was the computational performance, which
is measured by computational complexity. Through a com-
parison of the path planning performance, the proposed IBSO
algorithm outperforms both the PSO and BSO algorithms.
Through a comparison of the computational performance,
the IBSO algorithm has the same computational complexity
as PSO and BSO in terms of time complexity and space
complexity.

Currently, the sails and rudder of autonomous sailing
robots are controlled separately. Because the change in the
sail angle inevitably leads to a change in the boat direction,
a joint control of the sails and rudder is needed. Future plans
include testing the proposed algorithm on an autonomous
sailing robot with a 2.38 m-long and 1.1 m-wide hull and
2.7 m-high sails. Preliminary tests were conducted on a
river near Qingdao, China, and the autonomous sailing robot
was successfully controlled. In addition, the study of path
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planning problems of heuristic optimization algorithms in
autonomous sailing robots will be continued.

APPENDIXES
COMPARISONS OF THE PROPOSED IBSO, THE ORIGINAL
BSO, AND THE PSO WITH BENCHMARK FUNCTIONS
To comprehensively verify the optimization performance of
the improved beetle swarm optimization (IBSO) algorithm,
several benchmark tests are conducted in this section. The
original beetle swarm optimization (BSO) algorithm [59]
and the original particle swarm optimization (PSO) algo-
rithm are used for comparisons. 6 benchmark functions with
30 dimensions, ‘Sphere’, ‘Rosenbrock’, ‘Quartic with noise’,
‘Rastrigin’, ‘Ackley’, and ‘Griewank’ are selected. The three
algorithms were tested 30 times and the mean values were
obtained. It can be seen fromTable 11 that the proposed IBSO
can obtain smaller mean values for the optimal fitness results
than PSO and BSO in all benchmark functions.
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