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ABSTRACT Adaptive neural networks that provide a trade-off between computing costs and inference
performance can be a crucial solution for edge artificial intelligence (AI) computing where resource and
energy consumption are significantly constrained. Edge AIs require a fine-tuning technique to achieve target
accuracy with less computation for pre-trained models on the cloud. However, a multi-exit network, which
realizes adaptive inference costs, requires significant training costs because it has many classifiers that
need to be fine-tuned. In this study, we propose a novel fine-tuning method for an ensemble of classifiers
that efficiently retrain the multi-exit network. The proposed fine-tuning method exploits individualities
by assembling the output of the intermediate classifiers trained with distinct preprocessed data. The
evaluation results show that the proposed method achieved 0.2%-5.8%, 0.2%-4.6% higher accuracy with
only 77%-93%, 73%-84% training computation compared to the entire fine-tuning of classifiers on the pre-
modified CIFAR-100 and Imagenet, respectively, although it depends on assumed edge environments.

INDEX TERMS Ensemble, fine-tuning, neural networks.

I. INTRODUCTION
Deep neural networks (DNNs) have achieved remarkable
breakthroughs in computer vision applications because of
their outstanding recognition accuracy, while the edge
devices still struggle to use them in practical situations.
Therefore, for utilizing the benefit of DNNs in edge devices
such as mobile phones, autonomous vehicles, and edge
servers, the key challenges are computational cost and mem-
ory footprint. Because each edge device lies in various situ-
ations, achieving high accuracy with a single DNN for every
scene requires massive operations and parameters.

To tackle this issue, we can use either one or both of the
following approaches: i) Improving the efficiency of DNN
processing. ii) Adjusting the computation cost of the DNN
according to each situation. To improve the efficiency of
DNNs, many researchers have proposed multiple approaches
in the past decade: pruning [1], quantization [2], efficient
convolution network [3], and network architecture search [4].
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Recently, for flexibly adjusting the trade-off between compu-
tation cost and inference performance, several studies have
been presented using a model with multiple classifiers in the
middle layers, which enable the model to terminate its infer-
ence process at the early stage [5]–[7]. This article mainly
focuses on the latter.

The multi-exit networks mentioned above allow edge
devices to select an affordable trade-off between the com-
putation cost and accuracy of an inference process. This
advantage can broadly extend the applications of sophisti-
cated DNNs on edge devices. However, a model pre-trained
on a cloud hardly shows its full potential in each device
equally because of the difference between its training data
and the data the device has to handle. The fine-tuning pro-
cess can complement the gap and improve inference perfor-
mance in edge environments that have rich diversity. The
remaining problem is that the fine-tuning of a multi-exit
network requires major computation costs compared to that
of a single-exit network such as VGG [8] and ResNet [9]
because all exits require retraining for maintaining the
accuracy.
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FIGURE 1. Selective fine-tuning on classifier ensemble.

This article proposes a novel fine-tuning method for multi-
exit networks, which improves the inference performance of
an ensemble of multi-exit classifiers with a lower compu-
tational requirement by using partial fine-tuning with dif-
ferently preprocessed data for each classifier, as shown in
Figure 1. Here, preprocessing is introduced to represent data
distortions or variations that are expected to exist in edge
environments. The major contributions of this article are
summarized as follows:

1) We proposed a selective fine-tuning method for an
ensemble of intermediate classifiers in the multi-exit
neural network.

2) The evaluation results show that the proposed method
achieved 0.2%-6.5%, 0.2%-4.6% higher accuracy with
only 73%-93%, 61%-84% training computation com-
pared with the entire fine-tuning of classifiers on the
premodified CIFAR-100 and Imagenet, although it
depends on assumed edge environments.

3) Furthermore, the proposed method’s accuracy can sur-
pass that of the base case even for original (i.e., not
preprocessed) test data in a particular case for training
a baseline model.

The rest of this article is organized as follows. Section II
introduces related studies. Section III describes the proposed
fine-tuning method and ensemble classifiers of a multi-exit
network. Section IV shows the evaluation results of the pro-
posed method using the CIFAR-10, CIFAR-100, and Ima-
geNet datasets. Finally, Section V concludes this article.

II. RELATED WORK
This section describes three categories of related studies:
efficient learning, adaptive inference, and ensemble learning.
The efficient learning studies are co-operable approaches
with the proposed method to improve training efficiency. The
studies of adaptive inference are network architectures that
enable a trade-off between computation cost and inference
performance, including the multi-exit network, which is the
base model used in this study. Finally, the studies of ensemble
learning provide previous ensemble methods on multi-exit
networks.

A. EFFICIENT LEARNING
[2], [10], [11] proposed quantization methods of gradient
values to reduce computation complexity in backpropagation.
In addition, [12]–[14] proposed a simpler training algorithm
that removes complicated operations in the backpropagation,
such as transposition of weights and differentiation of the
activation function. These studies are useful for reducing the
computation during training; however, it is not a solution for
suppressing the linearly increasing computational cost of a
multi-exit architecture, which is proportional to the number
of intermediate classifiers. Thus, our selective fine-tuning
method provides a direct solution to this problem. Combin-
ing our method with an efficient learning approach, we can
further improve its efficiency.

B. ADAPTIVE INFERENCE
Several studies have proposed network architectures that
adaptively adjust the computational cost of inference. [15],
[16] proposed a structure to skip forward paths dynamically
depending on input data. [5], [7], [17], [18] have multiple
classifiers attached to the middle layers of their model, ter-
minating inference at the early stage when necessary. The
difficulty is that the computation cost of fine-tuning increases
with the number of exits, which are also called intermediate
classifiers. We aim to alleviate the burden of fine-tuning
without an accuracy drop. Therefore, we designed and eval-
uated the selective fine-tuning method on the baseline model
proposed in [5] and adopted distillation loss [19], [20] for the
training process.

C. ENSEMBLE LEARNING
Ensemble techniques can improve the accuracy of neural
networks [21]–[24]. Even if every model learned from the
same dataset, the advantage gained by averaging the models
allows us to obtain robust and stable solution points. Dif-
ferences caused by random initialization, random mini-batch
selection, hyperparameters, and implementation details gen-
erate the diversity of models composing the ensemble model.
The ensemble of models is a reliable method for reducing
a generalization error. The proposed method improves the
diversity by retraining each intermediate classifier of a multi-
exit architecture with a distinct preprocessed dataset.

III. SELECTIVE FINE-TUNING ON CLASSIFIER ENSEMBLE
We propose a selective fine-tuning method for an ensemble
of multi-exit neural networkmodels. To improve the accuracy
of an ensemble, each source of the ensemble must be distinct.
Our proposed method enables us to efficiently train the net-
work based on the selective classifiers to be fine-tuned with
distinct preprocessed training data to enhance the diversified
classifiers.

A. NOTIONS
Let the training dataset on a cloud be DT and the dataset
on the inference environment be DI . The elements of each
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FIGURE 2. Ensemble multi-exit network: The blue blocks have pre-trained
parameters, and the red blocks are intermediate classifiers retrained by a
fine-tuning method. Ensemble outputs were obtained from these
intermediate classifiers. We proposed a fine-tuning strategy to increase
the generalizability of the classifier ensemble.

dataset are defined as zT = (xT , yT ) ∈ DT and zI =
(xI , yI ) ∈ DI , which are pairs of input feature x and label
y. In this study, we assume that a baseline model learned
DT on a cloud, and the fine-tuning process uses DI an edge
device. Environmental changes on the edge device can easily
affect the inference performance. As it is challenging to
gather datasets on the actual environment, we prepared DI
by applying several preprocesses to DT .

B. ENSEMBLE OF INTERMEDIATE CLASSIFIERS
We build the ensemble on a multi-exit neural network by
accumulating the output value of each intermediate classifier,
as shown in Figure 2. Amulti-exit network comprises several
convolution blocks (ConvBlocks), followed by a classifier.
A ConvBlock can consist of a convolution layer, batch nor-
malization layer, activation function, and pooling layer. We
denote this as ConvBlock{1..b..B} on the network blocksize
B. Let this output be xb = ConvBlockb(xb−1). A classifier
consists of a fully connected layer, in addition to the same
elements as ConvBlocks. We represent the output of each
classifier as yb = Classifierb(xb). Finally, an ensemble of
classifiers is obtained from the aggregation of multiple clas-
sifiers by a simple accumulation as

y∗b =
1
b

b∑
1

yb. (1)

Note that yb is the value before applying the softmax function.
As y∗b can be computed in sequence from a former block, this
ensemble method is a family of adaptive inference [7], [20].

C. ENTIRE FINE-TUNING METHOD
An entire fine-tuning process retrains all intermediate classi-
fier parameters, as shown in Figure 3(a).

As DT and DI are distinct, it is necessary to recover the
accuracy by retraining the intermediate classifier using DI .
The goal of the entire fine-tuning process is to obtain the
optimal parameter θ̂ for DI as

θ̂ = arg minθ⊂Classifier
∑
zI∈DI

L(zI , θ ). (2)

The parameters are updated via the optimization problem for
the entire fine-tuning.

FIGURE 3. Two fine-tuning approaches in a classifier ensemble of a
multi-exit network: Ensemble method is the same as Figure 2. In the
entire fine-tuning process, all intermediate classifiers (represented as red
blocks) are updated via a backpropagation process. In contrast, the
parameters of the remaining layers (represented as blue blocks) were
fixed. In selective fine-tuning, only selected intermediate classifiers are
updated using dedicated preprocessed training data. Each intermediate
classifier finally has a different characteristic according to the applied
training data with distinct preprocessing.

D. SELECTIVE FINE-TUNING METHOD
We propose selective fine-tuning, which applies to only
selected intermediate classifiers with dedicated training data
with distinct preprocessing. This method aims to obtain
higher accuracy of the classifier ensemble at low additional
computation cost, as shown in Figure 3(b). Compared to
the ordinary entire fine-tuning shown in Figure 3(a), the
proposed selective fine-tuning picks one or more interme-
diate classifiers to be fine-tuned with data in DI , while the
unselected classifiers are fixed. Each intermediate classifier
trained using the dedicated preprocessed data can obtain
different characteristics.

Let T ⊂ T = {1, ..,B} be the index set of intermediate
classifiers. The parameters of subset T are fine-tuned via the
optimization problem as

θ̂ = arg minθ⊂ClassifierT
∑
zI∈DI

L(zI , θ). (3)

Selective fine-tuning requires less computation cost than the
entire fine-tuning as only the partial classifiers are updated.

We must choose the subset T carefully. We could identify
the highest accuracy subset by fine-tuning all the classifiers
and exploring all the combinations of classifiers to be fine-
tuned. However, this approach does not reduce the number of
training operations. Thus, we propose amethod for predicting
a subset to be fine-tuned to achieve high accuracy with a low
computational cost. The method utilizes the training param-
eters of fine-tuning classifiers based on the experimental
results that intermediate accuracy is closely related to the final
one, as shown in Section IV-C2. The changes between DT
and DI are similar across classes, although it depends on the
preprocessing. Therefore, classifiers can learn the changes
without data input from all classes; it is thus possible to
predict the superior T in small step fine-tuning.

Let θ0 be the parameter before fine-tuning, and θs the
parameter after fine-tuning s steps on the preprocessed
dataset DI . We can predict T to achieve high accuracy by
computing y∗ for all subsets as

y∗B,T =
T∑
b

yθsb +
T̄∑
b

yθ0b , (4)

T̂ = arg max t∈2T Accuracy(y
∗
B,t , y). (5)
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TABLE 1. Customized VGG 11 Architecture (3 blocks) for CIFAR-10
Dataset.

This method selects the subset T that has the highest inter-
mediate accuracy of y∗. After determining the subset, T
classifiers are fine-tuned, and the remaining T̄ classifiers are
reset to θ0 and fixed. In this article, we adopt single-epoch
step size s. In general, if a subset continues to achieve the
highest accuracy, you can select it.

The memory requirement for storing the parameter θ0 of
each intermediate classifier is small compared with the entire
model. The computation amount of predicting the subset is
also small compared with a single step of fine-tuning.

IV. EXPERIMENTS
We evaluate the validity of the proposed method on a multi-
exit network. This section describes the basic settings for
training and presents the performance of selective fine-
tuning. We will show the effectiveness of exploiting the indi-
viduality of each classifier in amulti-exit network through the
experimental results.

A. BASELINE MODEL TRAINING AND DATASET
The baseline models are a customized VGG-like model and
two types ofmulti-scale dense networks (MSDNet) [5] imple-
mented with PyTorch. We adopt MSDNet as it can achieve
higher accuracy than the multi-exit ResNet described as [5].

1) CUSTOMIZED VGG MODEL
In the VGG architecture, we adopted an 11-layers model,
which has three exits, as presented in Table 1. The train-
ing dataset is CIFAR-10 [25], which contains 50 000 train-
ing images and 10 000 test images. We used 500 training
images as validation data. The training process adopts the
standard data augmentation techniques described in [9]. For
training the baseline model, we used the following constant
hyperparameters: the mini-batch size of Momentum SGD
is 256; the training epoch is 200; the learning rate starts
from 0.1 and is reduced to 0.01 and 0.001 at 100 and
150 epochs, respectively. For fine-tuning, we use the same
hyperparameters.

FIGURE 4. The preprocessed dataset of CIFAR-100.

2) MULTI-SCALE DENSE NETWORK
In MSDNet, we adopted the seven-exit and five-exit models
for CIFAR-100 [26] and ImageNet [27], respectively. The
network architectures are similar to the original model [5].

CIFAR-100 contains 50 000 training images and 10 000
test images. The training process adopts standard data aug-
mentation techniques described in [9] and uses 500 of the
training images as validation data. For the initial training of
the baseline model, the loss function of the classifier at each
exit includes both regular loss and distillation loss [19]. For
the training baseline seven-exit model, we used Optuna [28]
to optimize hyperparameters: learning rate, distillation loss
rate, distillation temperature multiplier rate τ∗, and upper
bound for the desired teacher confidence µ. For fine-tuning,
the hyperparameters are constant as follows: The mini-batch
size of Momentum SGD is 64 without distillation loss;
the training epoch is 300; the learning rate starts from 0.1
and is reduced to 0.01 and 0.001 at 150 and 225 epochs,
respectively.

ImageNet contains 1.2million training images and 100 000
test images. The training process adopts the standard data
augmentation techniques described in [9] and uses 50 000 of
the training images as validation data.We used the pre-trained
model [5] as a baseline five-exit model. For fine-tuning, the
hyperparameters are constant as follows: the mini-batch size
of Momentum SGD is 256, the training epoch is 90, the
learning rate starts from 0.1, and is reduced to 0.01 and 0.001
at 45 and 67 epochs.

B. PREPROCESSING TYPES
Preprocessing was introduced to represent data distortions or
variations that are expected to exist in edge environments. We
applied preprocessing methods to the original training dataset
DT to obtain DI mentioned in Section III. In this study,
we examined six different preprocessing methods. Figure 4
shows an example of each preprocessing:

1) Cutout erases a random rectangle region of images.
We assume a scene where the object is obscured by an
obstacle.

2) Jitter randomly changes the brightness, contrast, and
saturation of images.We assume a scenewhere the light
intensity on the object changes.
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FIGURE 5. Top-1 accuracy on customized VGG11 (3 blocks) using the
preprocessed CIFAR-10 test dataset: We fine-tuned the classifiers using
the preprocessed training dataset. Each graph shows the inference
accuracy(y-axis)-computation cost(x-axis) trade-off for the corresponding
preprocess. Here, ‘‘E’’ indicates ensemble.

FIGURE 6. Top-1 accuracy on MSDNet (7 blocks) using the preprocessed
CIFAR-100 test dataset: We fine-tuned the classifiers using the
preprocessed training dataset. Each graph shows the inference
accuracy(y-axis)-computation cost(x-axis) trade-off for the corresponding
preprocess. Here, ‘‘E’’ indicates ensemble.

3) Resize crops images to random size and aspect ratio.
We assume a scene where the distance between the
object and the camera changes.

4) Rotate rotates images by an angle of 0, 90, 180, or 270
degrees. We assume a scene where the camera angle
changes.

5) Grayscale converts images to monochrome. Although
we do not assume a specific scene, we use grayscale as
one of the various preprocessing steps.

6) Random selects a preprocessing listed above randomly.

C. SELECTIVE FINE-TUNING EVALUATION USING THE
PREPROCESSED TEST DATA
We evaluate the ensemble of intermediate classifiers tuned
by the entire fine-tuning described in Section III-C and the
selective fine-tuning described in Section III-D. It fine-tunes
the intermediate classifiers with the preprocessed training

FIGURE 7. Top-1 accuracy on MSDNet (5 blocks) using the preprocessed
ImageNet test dataset: We fine-tuned the classifiers using the
preprocessed training dataset. Each graph shows the inference
accuracy(y-axis)-computation cost(x-axis) trade-off for the corresponding
preprocess. Here, ‘‘E’’ indicates ensemble.

dataset and validates the preprocessed test dataset. We also
compare its computation/accuracy trade-off with a baseline
model.

1) ACCURACY OF EACH CLASSIFIER
Figures 5, 6, and 7 show the trade-off between inference
computation and top-1 accuracy of each model against each
preprocessed test dataset.

For CIFAR-10, selective fine-tuning outperforms the base-
line model and the entire fine-tuning in cutout, jitter, resize,
and random. However, in rotate and grayscale, the selective
fine-tuning trains all classifiers; hence, its accuracy is the
same as that of the entire fine-tuning. The small number of
exits suggests that it is challenging to take advantage of the
diversity with an ensemble.

For CIFAR-100 and ImageNet, the selective fine-tuning
accuracy of the last block is higher than the entire fine-
tuning accuracy in each preprocess. The results show that the
selective fine-tuning method utilizes the diversity among the
classifiers.

2) PREDICTION METHOD OF CLASSIFIERS TO BE
FINE-TUNED
We evaluate the prediction method using CIFAR-100 and the
MSDNet (7 blocks). Figure 8 shows the relevance between
the accuracy after fine-tuning one step and the accuracy of
having completed fine-tuning. The highest accuracy subset
at step 1 is higher than the entire fine-tuning in cutout,
jitter, resize, and random. We then present the accuracy
of the following steps in jitter and grayscale as a sample
of strong and weak predictions in Figure 9. This shows
that we can predict a superior subset as the training steps
progress and find a subset that achieves accuracy similar to
the best accuracy within one epoch (= 762 steps). Therefore,
we adopted s steps equal to one epoch considering the training
cost.
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TABLE 2. Selective Fine-Tuning Accuracy and Training Operations Relative to the Entire Fine-Tuning Using the Preprocessed Test Dataset: We Fine-Tuned
the Classifiers Using the Preprocessed Training Dataset. Accuracy Refers to the Value of the Last Block.

TABLE 3. Best Accuracy of Selective Fine-Tuning in the Last Block Using the Original Test Dataset: We Fine-Tuned the Classifiers Using the Preprocessed
Training Dataset. Here, ‘‘E’’ Indicates Ensemble. 1 is Calculated as selective finetuning E acc.− max(baseline acc.,baseline E acc.). The Patterns
Consisting of B or F Show the Selection of Baseline or Fine-Tuning in the Blocks. From the Left, the First Letter Represents the First Block, the Second to
Seventh Letters Represent the Second to Seventh Blocks.

FIGURE 8. Top-1 accuracy of the last block on MSDNet (7 blocks) using
the original CIFAR-100 test dataset: The X-axis indicates accuracy after
fine-tuning one step, and the Y-axis indicates accuracy after having
completed fine-tuning. The legend shows how many blocks have been
fine-tuned. Here,‘‘0’’ and ‘‘7’’ correspond to the baseline model and the
entire fine-tuned model, respectively.

3) ACCURACY AND TRAINING OPERATIONS
Figures 10, 11, and 12 show the last classifier accuracy of all
combinations to fine-tune classifiers and its training opera-
tions for fine-tuning. We summarized these results in Table 2.
Based on this result, we can confirm the effectiveness of the
selective fine-tuning method as it requires much less com-
putation and achieves higher accuracy than the entire fine-
tuning, except for the VGGmodel, which has a small number

FIGURE 9. Top-1 accuracy on following steps of Figure 8:: The X-axis
indicates accuracy after fine-tuning 10, 50, 200, and 700 step, and the
Y-axis indicates accuracy after having completed fine-tuning. The legend
shows how many blocks have been fine-tuned. Here,‘‘0’’ and ‘‘7’’
correspond to the baseline and the entire fine-tuned models, respectively.

of intermediate classifiers. In addition, the prediction method
achieves higher accuracy than the entire fine-tuning in most
cases. Although some accuracies are below the entire fine-
tuning, it achieves a higher accuracy than picking a subset at
random. Note that training operations include feedforward,
backward, and weight update.

D. SELECTIVE FINE-TUNING EVALUATION USING THE
ORIGINAL TEST DATA
Thus far, we have evaluated the ensemble of intermediate
classifiers fine-tuned with the preprocessed training dataset
on the preprocessed test dataset. We do not know the infer-
ence performance on the original test dataset after fine-tuning
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FIGURE 10. Top-1 accuracy of the last block and its training operations
on customized VGG11 (3 blocks) using the preprocessed CIFAR-10 test
dataset: Each graph shows the inference accuracy of the last
block(y-axis)-training computation cost(x-axis) trade-off for the
corresponding preprocess. A dot indicates a subset to be fine-tuned.

FIGURE 11. Top-1 accuracy of the last block and its training operations
on MSDNet (7 blocks) using the preprocessed CIFAR-100 test dataset:
Each graph shows the inference accuracy of the last block(y-axis)-training
computation cost(x-axis) trade-off for the corresponding preprocess. A
dot indicates a subset to be fine-tuned.

FIGURE 12. Top-1 accuracy of the last block and its training operations
on MSDNet (5 blocks) using the preprocessed ImageNet test dataset:
Each graph shows the inference accuracy of the last block(y-axis)-training
computation cost(x-axis) trade-off for the corresponding preprocess. A
dot indicates a subset to be fine-tuned.

with the preprocessed training dataset. Figures 13, 14, and
15 answer to our question. It shows the inference accuracy

FIGURE 13. Top-1 accuracy on customized VGG11 (3 blocks) using the
original CIFAR-10 test dataset: We fine-tuned the classifiers using the
preprocessed training dataset.

FIGURE 14. Top-1 accuracy on MSDNet (7 blocks) using the original
CIFAR-100 test dataset: We fine-tuned the classifiers using the
preprocessed training dataset.

FIGURE 15. Top-1 accuracy on MSDNet (5 blocks) using the original
ImageNet test dataset: We fine-tuned the classifiers using the
preprocessed training dataset.

of each method on the original test dataset, and Table 3
summarizes the best accuracies in the last block. Despite the
difference between the original data and the preprocessed

VOLUME 9, 2021 6185



K. Hirose et al.: Selective Fine-Tuning on a Classifier Ensemble

data, the selective fine-tuning achieved a 2.2% higher accu-
racy than the accuracy of the baseline model on CIFAR-
100. This experiment shows that the ensemble of classifiers
trained with different preprocessing may be useful even for
the original dataset in the case of baseline model training.

V. CONCLUSION
This article proposed a selective fine-tuning method for an
ensemble of intermediate classifiers in amulti-exit neural net-
work. The proposed method diversifies selected classifiers by
fine-tuning on preprocessed datasets with different attributes
from the original training dataset. With this approach, the
proposed method exploits the individuality of each interme-
diate classifier of multi-exit neural networks. The experi-
ment showed that the diversity intentionally generated by the
proposed method improved the inference accuracy of multi-
exit neural networks against the preprocessed test dataset. It
also showed that the proposed selective fine-tuning achieved
better accuracy with a smaller computation amount than the
entire fine-tuning. Our future work will include determin-
ing appropriate preprocesses, and developing a lightweight
model for actual edge environments.
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