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ABSTRACT Considering the successful application of deep reinforcement learning (DRL) on tasks of
moving objects, this paper innovatively applies deep deterministic policy gradient algorithm (DDPG) to
complete the cognition task on multi-dimension and continuous communication emitter motion behavior.
First, we propose a DDPG-based behavior cognition algorithm (DDPG-BC). It chooses direction, velocity,
and communication frequency as state space, gains experience from interaction between network and
environment and outputs deterministic cognition results. Second, under the condition of sufficient prior
information such as geographic information, we further propose a novel algorithm named DDPG-based
behavior cognition with Attention algorithm (DDPG+A-BC). It introduces attention mechanism into
DDPG-BC which limits exploration scope and the randomness of initial state and improves the exploration
efficiency and accuracy. The simulation experiments verify that DDPG-BC and DDPG+A-BC show good
cognition ability on two different data set. And the algorithms are all superior to other DRL algorithm and
existing cognition method with higher cognition accuracy and less time. In addition, we also discuss the
influence of episode, reward function, and added attention mechanism on algorithm performance.

INDEX TERMS Communication emitter, motion behavior cognition, deep reinforcement learning, DDPG,

attention mechanism.

I. INTRODUCTION

Nowadays, with the help of various positioning technologies,
we can quickly obtain a large amount of moving object data.
However, when mining the information carried by the moving
objects, simple observation and tracking no longer meet our
goals and needs. Instead, we hope to explore what happens
behind the movement to enrich the information content of
objects for better control and decision support. Therefore,
the cognition of people, animals, vehicles and other moving
objects has become a research hotspot at present.

The purpose of this paper is to analyze and cognize the
motion behavior of communication emitter and its carrier
in motion and find out the corresponding possible causes.
For example, as shown in FIGURE 1, when communication
emitter and its carrier or platform goes through this area,
the original plan is to go straight (planned route). But near the
interference, communication performance may degenerate.
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For example, obstacles like buildings will cause the signal
propagation refraction and diffraction, or the place like air-
ports will add too much noise to communication channel.
The emitter may choose diversion (angle change), accel-
eration (velocity change), or changing the communication
frequency in order to avoid interference and maintain the
communication ability (actual route). The cognition process
of emitter motion behavior is to discover the corresponding
possible causes or determine whether interference or strike
has occurred on the premise of mastering the changes of
direction, velocity and communication frequency.

The data of communication emitter motion behavior are
usually multi-dimension, continuous, and limited. However,
recent research on motion behavior cognition prefer to clas-
sify discrete behaviors and analyze the category which each
behavior belongs to. It is obviously inconsistent with the
emitter’s characteristics and increases the workload of pre-
processing. Zitouni et al. [1] proposed a probabilistic for-
mulation of different categories of socio-cognitive crowd
behavior and a framework which can be considered as
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FIGURE 1. Schematic diagram.

a mid-level layer between detection and detailed seman-
tics. But it aimed to evaluate probabilities of various
socio-cognition behaviors and compared the model outputs
to manually annotate ground-truth data. Goldberg et al. [2]
used meta-cognitive model (MCM) for future hurricane evac-
uation with combination of past behavior and subjective
confidence. [3] proposed a conceptual framework named
experience-oriented intelligent things (EOIT) to extract driv-
ing behavior fingerprints which needs enough experience
obtained by catching driving data in advance. At the same
time, Hornischer et al. [4] believed the spatial information
is minimal definition of a cognitive map and developed a
minimal model of agents to explore environment by means
of sampling trajectories. That means the formation of internal
cognition are related to the spatial overlap of cognitive maps,
so the introduction of geographic information can effectively
support the cognitive process.

In process of cognizing communication emitter motion
behavior, we hope that: 1) specific cognition results will
be obtained directly rather than the probability of different
results; 2) experience can be gained after interaction between
network and environment of the cognition model without
requirement for a lot of subjective experience; 3) the explo-
ration efficiency of the network are able to be improved; 4) the
cognitive results will be more objective, only according to
the physical parameters of the emitter. By implementing the
above effects, the algorithm proposed in this paper not only
conforms to the characteristics of emitter motion data, but
also can realize the control of cognition with the pursuit of
rewards. And DDPG in DRL may become a good choice to
solve the problem.

Therefore, this paper proposes a cognition method of com-
munication emitter motion behavior based on DDPG. The
main contributions are as follows:

1. Two cognition algorithms of communication emitter
behavior — DDPG-BC and DDPG+A-BC. DDPG-BC cog-
nizes communication emitter motion behavior based on
DDPG algorithm. With attention mechanism introduced,
it further transforms into DDPG+A-BC, which explores in
attention position and results in better cognition effect.

2. Verification and related discussion on the performance
and effect of DDPG-BC and DDPG + A-BC.
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Il. RELATED WORK

In order to realize the cognition of communication emitter
motion behavior and combine with the information charac-
teristics provided by the moving emitter, this paper aims to
explore the autonomous learning ability of DRL algorithm
in the cognition of emitter behavior and observe whether the
introduction of attention mechanism can help improve the
learning efficiency of the network.

A. BEHAVIOR COGNITION
Behavior modelling and activity interpretation are of increas-
ing interest in the information society [S]. The research
on behavior cognition mainly focuses on computer science
and network and social psychology, and the research targets
mainly include human [6], animal [7], traffic [8], [9] and
robot [10]. The Google team proposed in 2006 that the motion
behavior cognition system should be composed of four mod-
ules of “‘sensor-identification-transformation-controlled sys-
tem (SITR)” [11]. When the sensor receives the raw data
of moving objects, it will classify and process the raw data
corresponding to various behaviors, then translate all kinds
of data into behaviors, and finally realize the cognition and
control of behaviors. Pei et al. [5] proposed Context Pyramid
when cognize human behavior using smartphone sensors and
divided it into six levels: raw sensor data, physical parameter,
features/patterns, simple contextual descriptors, activity-level
descriptors, and rich context.

The basic idea of motion behavior cognition is that, given
a tracked feature or object, its time series should provide
a descriptor that can be used in a general cognition frame-
work [12]. Whether it is the known features or the raw
physical data to be processed, correct cognition requires that
the behavioral parameters we are faced with are sufficiently
descriptive and will be a general element when a certain
behavior occurs. [13] and [14] described human behavior
using Wi-Fi channel state information (CSI) and modelled
CSI data based on body movement. With the development
of science and technology, it means that, as long as relevant
data can be obtained, motion parameters such as velocity and
direction and emitter signal parameters such as communica-
tion frequency can participate in the target’s motion behavior
cognition.

B. DEEP REINFORCEMENT LEARNING

It is not difficult to find that the cognition of motion behavior
puts forward higher requirements for the selection of fea-
tures. The features acquired by deep learning (DL) often
have certain semantic features and strong discriminative
ability, which can more effectively represent the behavior
characteristics [15].

The generation and development of reinforcement learn-
ing (RL) are inspired by behavioral psychology. States and
actions in RL network interact with each other in the envi-
ronment. However, RL can only deal with low-dimensional
state and action space, so the success of deep neural network
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on large training data sets motivated the generation of DRL,
which can be directly applied on data and process training
samples by using stochastic gradient updates [16].

Mnih et al. [17] developed a novel agent, deep Q networks
(DQN), to create a single algorithm that is able to develop a
wide range of competencies on a varied range of challenging
tasks. DQN interacts with the environment through a series
of observations, actions, and rewards and can be used for
RL tasks with discrete action. Actions are selected in a way
that maximizes the accumulation of future rewards, and deep
neural networks are used to approximate optimal value action
functions. Although DQN algorithm has an excellent per-
formance in various applications [18], it still has limitations
such as overestimation of the model and inability to handle
continuous action problems. Due to the DQN algorithm has
difficulty in calculating the probability of each action or the
corresponding Q values in large continuous action space,
Lillicrap et al. [19] proposed DDPG algorithm in 2015 for
applying DRL on tasks with continuous action space. DDPG
algorithm is a kind of widely used DRL algorithm which can
study “end-to-end” strategy in higher dimensional, continu-
ous action space [20].

DDPG provides a model-free algorithm based on deter-
ministic policy gradient (DPG), which has both Actor and
Critic systems and combines two RL algorithms based on
value (such as Q-learning) and action probability (such as
policy gradient, PG). In addition to the Actor-Critic frame-
work, DDPG algorithm uses the same learning algorithm,
network structure, and hyperparameters as DQN. Hausknecht
and Stone [21] focused on using deep neural network in struc-
tural (parameterized) continuous action spaces, represented
a successful extension of DRL to the class of parameter-
ized action space MDPs and prepared for the learning in
the continuous and bound action spaces. Silver et al. [22]
proposed an off-policy Actor-Critic algorithm that learned
a deterministic target policy from an exploratory behavior
policy and used DPG for RL algorithm with continuous
action. DPG obtains expected gradients of action value by
learning approximation of action-value function (Q func-
tion) and updates deterministic strategy via chain-rule to
make the estimation more effective [23]. While DPG algo-
rithm can solve the problem of high-dimensional continuous
action space and combine the advantage of DQN which takes
high-dimensional state space as input with an Actor-Critic
framework, DDPG algorithm has the ability to handle con-
tinuous action control tasks.

C. ATTENTION MECHANISM

Attention mechanism is to select specific inputs which are
a methodology derived from human attention. It enables
practitioners to adjust attention direction and weight
model according to specific task and objects to achieve
the goal of reducing sequential computation costs [24].
Attention mechanism realizes via adding attention weight
in the hidden layer so that the content that does not con-
form to the attention model will be weakened or forgotten.

VOLUME 9, 2021

Attention mechanism mainly applies to learning weight dis-
tribution and task focus. Task focus is to design different
network structures (or branches) through task decomposition
to reduce the training difficulty of the original task. Learning
weight distribution is to pay different attention to different
parts of input data, which can act on the original image,
spatial scale and historical features of different moments.
[25] explained that the attention mechanism is to use standard
back-propagation techniques and to stochastically maximize
a variational lower bound, and they divided attention into two
variants: ‘“‘hard” attention mechanism and “‘soft” attention
mechanism. ‘“Hard” attention takes hard decisions when
choosing parts of the input data, and “‘soft” attention takes the
entire input into account, weighting each part of observations
dynamically [26].

One of the long-standing challenges for RL agents is to
deal with noisy environments [27]. Inspired by human per-
ception, it can use two basic concepts of machine learning,
attention and memory, to better cope with the noisy environ-
ment and deal with a more complex task. It is coincided with
the design principle and processing power of DRL algorithm
and makes the combination of DRL and attention mecha-
nism have research and application in the field of robots and
unmanned driving. Sorokin et al. [28] presented an exten-
sion of DQN by “soft” and ‘“hard” attention mechanisms
and proposed deep attention recurrent Q network (DARQN)
to directly monitor the training process online through the
built-in attention mechanism.

To sum up, in this paper, we choose to combine
DDPG algorithm with attention mechanism in order to com-
plete the motion behavior cognition task of communication
emitter. We propose the motion behavior cognition algo-
rithms DDPG-BC and DDPG+A-BC and verify the feasibil-
ity and performance of the algorithms.

1ll. DDPG-BASED BEHAVIOUR COGNITION FOR
COMMUNICATION EMITTER

A. PROBLEM ANALYSIS

The analysis of the motion behavior of communication emit-
ter is based on the motion trajectory and signal characteristic
parameters of the emitter. These parameters of target emitter
can be extracted as the raw data, from which valid physical
parameters are selected, and the motion state is obtained after
preprocessing. Motion state will be the input of DDPG-based
behavior cognition module. When prior knowledge meets
the conditions, specific attention can be added into cognition
module to help the cognition process (strategy learning pro-
cess) explore and learn. Finally, cognitive results are obtained
to judge the working status of the emitter and its platform
or carrier. The cognition process of communication emitter
behavior is shown in FIGURE 2.

B. DDPG-BC
One of the main challenges of learning in continuous action
spaces is exploration, and one of the great advantages of
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FIGURE 2. Cognition process of communication emitter.

algorithms like DDPG is that it can handle the exploration
independently from the learning algorithm. DDPG algorithm
is an improvement of DPG algorithm. On the basis of PG,
DPG takes the state space as the algorithm model’s input,
but the output is no longer the probability of a certain action.
Determinist action value, corresponding to a specific action,
will be obtained through optimal action policy function g(s),
where s is state and 0 is policy parameter.

Compared with DPG algorithm, deep neural network is
added into DDPG, and DDPG takes Actor-Critic as the basic
framework. DDPG imitates the idea of DQN. It uses mem-
ory tank and two neural networks with the same structure
but different parameter update frequency of DDPG network
to approximate policy function u(s, 6#) and value function
Q(s, a; 69) respectively, which makes the learning process
more effective and stable. In the function above, a is action,
6" is policy network parameter, and 6< is value network
parameter. Meanwhile, Actor can easily select appropriate
actions in the continuous action space, while Critic can update
step by step and evaluate actions selected by learning the
relationship between environment and rewards.

In addition, DDPG introduces the experience replay to
remove correlation and dependency between samples when
Actor interacts with the environment. Experience pool stores
the state in ¢, action, reward, and state in t + 1 (sy, a;, 7, Sr41)
as experience and, each time, samples small batches of data
from experience pool as training samples for policy and value
network. On the one hand, let O, u and Q’, u’ be Critic
network, Actor network, and target network respectively, then
target Q value can be expressed as

targetQ = ri +yQ'(sev1, /(51413 6):69) (D)
By minimizing loss function
1 2
Loss =+ ) (targetQ — O(sy, ar; 69)) )
Critic network will be updated via policy gradient
1
Vo <5 37 V005, 05 69) s ampits) Vousa(s: 0 fo=
3)

On the other hand, define target function as expectation of
discount accumulative rewards

Jp(W) = Eylri +yra+---+y" ] 4)
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and finding optimal deterministic behavior policy w* is
equivalent to maximize target function

W = argmax,,Jp (1) ®)
Finally, update target network
09 « 109 + (1 — )09, 6" «— 76" + (1 — 1)6"  (6)

FIGURE 3 shows the Actor-Critic network structure in this
paper. The Actor network has three layers and can choose the
optimal action. The Critic network has four layers, including
an input layer, two hidden layers and an output layer, which
are used to train and generate Q values and update the Actor
network. The Actor network selects action and sends into the
environment, and the experience obtained after interaction is
stored in the experience pool. Each time, bs training sample
are sampled from the experience pool and sent to the dual
network. The whole learning process is more stable and
converges faster. Activation function and how modules work
are shown in the diagram. The network parameters are shown
in TABLE 1.

( Envir \ '-/ Experience pool )
/‘(s,.n,.lj,. s.,i)\
lSampling
a, ( Mini Iatcn )
Actor network \ / Critic network \

i@ a (2]
Af o \\Pe
xE@-
RELU tanh
Input Hidden | Output

layer layer | layer

FIGURE 3. DDPG network structure for cognition.

TABLE 1. Network parameters.

Hyperparameters ~ Value  Description

o 0.9 Discount factor for Q-learning
T 0.001  Update rate of target network
LR 4 0.001  Learning rate of Actor network
LRc 0.001  Learning rate of Critic network
mc 1000  Memory capacity of neural network
bs 32 number of samples in each training

DDPG-BC sends state space of emitter into DDPG net-
work, explores steps times in each episode of training, learns
the optimal cognition strategy, and realizes the correct cogni-
tion of communication emitter behavior. The pseudocode of
DDPG-BC is summarized in TABLE 2.
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TABLE 2. DDPG-BC pseudocode.

Algorithm 1 DDPG-BC

1 Input state/observation space from emitter data;

2 Input action space from environment, exploration noise N,
and threshold for reward;

3 Initialize Actor network, Critic network, target network and
experience pool;

4 for 1 to episodes:

5 get initial state so;

6 for 1 to steps:

7  choose current action a; (in time ¢ );

8  add randomness to action selection with IV;

9  execute and store transition experience [s¢, at, r't, St+1];

10  randomly sample bs experience samples;

11 calculate target Q value;

12 update Actor network and Critic network;

13 update target network with 7;

14 s¢ St+15

15 end for

16 compare total reward with threshold;

17 output cognition result, total reward;

18 end for

C. DDPG+A-BC

When observing the real world, a human usually focuses on
some fixation points at first glance of the scene [6]. When
the prior information meets the conditions, the introduction
of attention mechanism is considered as the help for solving
the problem in this paper. If we know the trajectories or
the geographic activity area or other relevant information of
the moving communication emitter, we can build attention
model, which participates in the learning process of DDPG,
reduces computing cost, improves learning efficiency and
accuracy, and better cognizes the motion behavior of the
emitter.

According to the normal activity experience, hot spots
or related areas concerned by moving objects will become
a major factor affecting behavior. Because ‘“hard” atten-
tion mechanism is generally considered a non-differentiable
approach, it is not as widely used as ““soft” attention. But [29]
believed that feature magnitudes correlate with semantic
relevance and provide a useful signal for our mechanism’s
attentional selection criterion. Therefore, compared with the
“soft” attention mechanism, we hope to introduce an addi-
tional and explicable hyperparameter based on the ‘“hard”
attention mechanism in the training process. Then we use
this built-in attention mechanism to focus on attention regions
when making selections so as to improve the training speed
and accuracy.

Suppose that the attention region model decides to focus
on in ¢ is M;, which totally has L positions. If we hope model
to extract features on i-th position (from L), attention position
M; ; will be considered as the start of exploration. Schematic
diagram of attention mechanism based on geographic infor-
mation is demonstrated in FIGURE 4.

‘When a communication emitter travels along a given route
(blue dotted line), it will pass over an attention region (shaded
area) that will affect the normal operation of the emitter or
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FIGURE 4. Geographic information-based attention mechanism
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the movement of its platform/carrier. Therefore, geographic
information can be added into cognition process as the atten-
tion module in Fig. 2. It delimits the scope of network explo-
ration and changes to focus cognition on the attention route
(solid red line) for better cognition efficiency and accuracy.

It should be noted that geographic information is not the
only background information that can function as an atten-
tion mechanism. Other information can also be applied to
set the scope of attention and act on network learning and
exploration.

After analyzing DDPG-BC, we believe that the algorithm
may have some problems with cognition tasks. One is too
wide selection range of actions and too strong randomness.
According to the idea elaborated above, this paper proposes
DDPG+A-BC. Based on DDPG -BC, attention mechanism
is added before the exploration process to determine atten-
tion positions according to geographic information. We are
intended to get initial state in or near attention positions and
to keep exploration in attention region after any action oper-
ation. It will limit exploration scope (action selection) and
improve exploration efficiency. DDPG+A-BC’s pseudocode
is summarized in TABLE 3.

IV. EXPERIMENTS RESULTS

Because there is no publicly available data set of com-
munication emitter, we apply two simulation experimental
data sets on verifying the performance of DDPG-BC and
DDPG+A-BC, which are mainly divided into two
parts: spatio-temporal data and signal parameter data.
Spatio-temporal data is derived from actual data set, and
we add communication frequency data for each sampling
points to construct the data set for simulation. Python 3.6 and
Tensorflow 2.0 are used to complete the programming
implementation.
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TABLE 3. DDPG+A-BC pseudocode.

TABLE 5. Cognition results definition.

Algorithm 2 DDPG+A-BC

Cognition results  Definition

Input state/observation space from emitter data;

Input action space from environment;

Input attention position, exploration noise /N, and threshold for reward;
Initialize Actor network, Critic network, target network and
experience pool;

5 for 1 to episodes:

6 get initial state so of attention positions;

7

8

BN =

for 1 to steps:
choose current action a¢ (in time t) with N ;

9  execute a; and store transition experience [s¢, at, T't, St+1];
10 randomly sample bs experience samples;
11  calculate target Q value;
12 update Actor network and Critic network;
13 update target network with taw;
14 s¢ < s¢415
15 end for
16 compare total reward with threshold;
17 output cognition result, total reward;
18 end for

A. DATA AND ENVIRONMENT

We define < Av, Ap, Af > as the state space for com-
munication emitter behavior’s cognition network. Av, Ag,
Af represent velocity, direction(angle), and communication
frequency change values sequence between sampling points
respectively. The Agent will continuously select the action
to be performed, analyze the corresponding state parameters
and output cognition results. Definition of parameter in time
t and cognition results are shown in TABLE 4 and TABLE 5.
We assume that the working mode of the radio is abnormal
when it exists communication frequency conversion. The
cognition criterion of the frequency conversion in detail is
shown in the demonstration of data sets below. And the
definition of cognition results can be adjusted according to
the model settings.

TABLE 4. Parameter definition (in time ) of network state space.

State Raw physical parameters Mathematical representation
. . (wt—wr—1)2+(ye—yr—1)?
Av Position coordinates x, y v = \/ L Ty tTYL
Sampling interval T' Avg = |vg41 — v
. . t —yi
Ay Position coordinates z, y ot = tan(lye—yea]
[zt—ze_1])
Apr = |1 — i
Af  Communication frequency f Aft = |ft+1 — fil

(1)The spatio-temporal data of data set 1 are obtained
from publicly available flight trajectory data provided
by Flightradar24. The simulation data set consists of
5 categories, each representing the motion trajectory of the
same communication emitter. There are 140 groups of data
with 150-300 sampling points in each group.

In data set 1, according to the characteristics of the sim-
ulation data set, when A3 occurs, Av, Ag, and Af of the
emitter is greater than 35, 150, and 500kHz respectively at
same position/region. In the motion data of the same emitter,
if the motion state of A3 only happens occasionally in a
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Al Normal work
(little change in velocity and direction, no
frequency conversation)

A2 Probably abnormal work
(existing changes in velocity and direction or
frequency conversation, but cannot be determined
as the abnormal)

A3 Abnormal work or be disturbed/struck
(velocity and direction change greatly with
frequency conversation)

certain place, it will be judged as A2. At this time, sharp and
large changes in state parameters usually occur. The rest are
all determined as Al.

(2)The spatio-temporal data of data set 2 comes from
the Geolife project [30]-[32] of Microsoft Research Asia.
In order to increase the diversity and complexity of motion
states in the simulation data, nine groups of pedestrian tra-
jectories from the Geolife Trajectory 1.3 dataset are adopted,
with a total of 6,862 sampling points.

In data set 2, according to the characteristics of the sim-
ulation data set, when A3 occurs,Av, Ag, and Af of the
emitter is consecutively greater than 10, 100, and 500kHz
respectively at a certain region. In the motion data of the
same emitter, if the motion state of A3 only happens once
in a certain place, it will be judged as A2. The rest are all
determined as Al.

B. EXPERIMENTS RESULTS OF DDPG-BC

FIGURE 5 shows the cognition result of DDPG-BC, which
is displayed by highlighting the experimental results (the red
represents A3, and the blue represents A2). For all the sim-
ulation data graphs in this paper, coordinates of all positions
have been expressed as longitude and latitude coordinates.
To measure the performance of the algorithm, we use accu-
racy which can be calculated by

3
Y. PGl
> PG

i=1j=1

Accuracy =

(N

Mm

P(i|j) represents the number of samples when actual sam-
ple is i, while cognition result is j, i, j = Al, A2, A3.

By observing FIGURE 5 and TABLE 6, it can be found
that DDPG-BC is able to realize cognition task of emitter
behavior, and the accuracy is 90.434%. However, A2 and
A3 cannot be well differentiated.

Cognition results of data set 2 with DDPG-BC are demon-
strated in FIGURE 6. Combining FIGURE 6 and TABLE 7,
we find that the cognition results of DDPG-BC roughly
conform to the experimental setting, and the accuracy is
85.427%. The accuracy is reduced due to the complexity of
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FIGURE 5. Cognition results of data set 1.

TABLE 6. Sample truths and cognition results.

Sample truths Total
Al A2 A3
Al 25011 191 0 25202
Cognition results A2 427 2565 1813 4805
A3 0 938 4275 5213
Total 25438 3694 6088 35220
Accuracy 90.434%

TABLE 7. Sample truths and cognition results.

Sample truths Total
Al A2 A3
Al 3218 11 0 3229
Cognition results A2 30 380 288 698
A3 0 671 2264 2935
Total 3248 1062 2552 6862
Accuracy 85.427%

the data, and it also cannot be able to distinguish A2 and
A3 well.

C. EXPERIMENT RESULTS OF DDPG+A-BC

In data set 1, considering data characteristic and situation,
we define the same region as exploration region (marked
by box) for three groups to limit the scope of exploration,
as shown in FIGURE 7. And then, A3 will be regarded as
attention position where will be randomly selected as the
initial state of the network. It should be noted that the addi-
tion of attention mechanism depends on whether the effect
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FIGURE 6. Cognition results of data set 2.

of attention is good or bad. For example, the cognition for
A2 will be left out because of the limitation of the attention
region in experiment.

3
> PAili)
Accuracya, a;) = % 8)
2 2 PGl
i=2j=2
From TABLE 8, it is obvious that the cognition accuracy
has been greatly improved compared with DDPG-BC, reach-
ing 99.029%, and the discrimination effect of A2 and A3 has
increased from 71.317% to 93.153% according to Eq.(8),
indicating that the cognition process of using geographic
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(b)

(©
FIGURE 7. Cognition results of data set 1.

TABLE 8. Sample truths and cognition results.

Sample truths Total
Al A2 A3
Al 16360 14 0 16374
Cognition results A2 52 383 69 504
A3 0 40 1100 1140
Total 16412 437 1169 18018
Accuracy 99.029%

information as attention for communication emitter behavior
can effectively improve the cognition performance.

FIGURE 8 shows the final cognition results of data set 2
with DDPG+A-BC. Combining with TABLE 9, it can be
found that the cognition accuracy increased by about 7%
compared with DDPG-BC, reaching 92.495%, and the dis-
crimination effect of A2 and A3 increased from 73.383%
to 81.876%.

TABLE 9. Sample truths and cognition results.

Sample truths Total
Al A2 A3
Al 1503 3 0 1506
Cognition results A2 12 175 59 246
A3 0 132 861 993
Total 1515 310 920 2745
Accuracy 92.495%

V. DISCUSSION

A. DISCUSSION FOR TRAINING EPISODE

Emitter behavior’s cognition network is trained for 200 and
500 episodes, respectively. Each round explores for 200 steps.
Losses, Qvalues, and TotalRewards in Figure 9 are used to
observe the training results of the network, and the dotted
line in TotalRewards represents the threshold to determine
whether the network learns correctly.
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FIGURE 8. Cognition results of data set 2.

The training goal of DDPG network is to maximize target
function (rewards) and minimize loss of value network. The
loss of 200 episodes of training (FIGURE 9(a)) is approxi-
mate zero without convergence, and action value (Q value)
is unstable. After 500 episodes (FIGURE 9(b)), losses and
cumulative rewards converge, correct cognition is achieved
after 235 episodes, and Q value tends to be stable.

B. DISCUSSION ON REWARD FUNCTION

Another problem of DDPG-BC is that the reward function

may make the difference between cumulative rewards of

A2 and A3 is too small after training in steps times, leading

to Agent’s inability to accurately distinguish two situations.
In this article, two reward functions are applied on cog-

nition network to discuss the influence of reward function
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FIGURE 9. Training effect in 200 and 500 episodes.

during cognition process. We have referred to the reward
function of "MountainCarContinuous-vQ’, a continuous con-
trolling environment from gym and of automated vehi-
cle behavior decision making proposed in [8]. Eq.(9) and
Eq.(10) are used to observe the influence of reward functions.
r2 changes the reward for A3 in rl from the fixed to the
associated with state value. During the training, the reward
will be continuously provided.

—0.1 for Al

rl =141 for A2 ©)]
100 for A3
—0.1 for Al

r2 =41 for A2 (10)
100 % |Av — Ap — Af| for A3

FIGURE 10 shows the average cumulative reward of
rl and 12 at DDPG-BC and DDPG+A-BC, respectively.
In any algorithm, r1 achieves correct cognition effect faster
than r2, and attention fails to have a beneficial effect on
cognition process with r2. In addition, it indicates that the
reward with state values is not conducive to network learn-
ing and may even reduce the efficiency of the cognition
process.
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C. COMPARISON BETWEEN DDPG-BC AND DDPG+A-BC

Figure 11 shows the average cumulative reward after
500 episodes. DDPG+A-BC has been able to correctly cog-
nize in the first 18 episodes and performs stably after the
19th episode, while DDPG-BC does not have such abil-
ity until after the 235 rounds. In addition, as shown in
TABLE 10, the average training time of DDPG+A-BC is

400

T T T
——DDPG-BC
——DDPG+A-BC

200

TotalRewards

. . . . .
250 300 350 400 450 500
Episodes

0 50 100 150 200
FIGURE 11. Comparison in TotalRewards.
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TABLE 10. Training time.

DDPG-BC  DDPG+A-BC

Average training time(s) 217.326 156.161

—— DDPG-BC

Average Loss

L T v PN AN Y e W it
0 50 100 150 200 250 300 350 400 450 500
Exploration steps

FIGURE 12. Average loss of DDPG and Double-DQN.

TABLE 11. Training time.

DDPG  Double-DQN

Average training time(s) ~ 89.608 177.183

about 60s shorter than that of DDPG, which proves that
DDPG+H-A-BC can improve the efficiency of cognition.

D. COMPARISON WITH DQN

Due to the limitation of DQN algorithm in practical
application, researchers proposed a Double-DQN algo-
rithm [33], [34] to solve the overestimation problem of DQN.
Double-DQN also has two Q network structures. By decou-
pling the selection of target Q value action and the calculation
of target Q value, the network can avoid overestimation while
approaching the optimal target as soon as possible.

In Section 3.2, we have mentioned that the value network
of DDPG is based on Q network, and the experience replay
of DQN algorithm is adopted to eliminate the correlation
between samples. Therefore, it is possible to observe whether
the algorithm in this paper has a better performance by
comparing the behavior cognition results based on DDPG
and Double-DQN. Since DQN can only deal with discrete
actions, the selection of actions is limited to a certain range,
divided equally into 11 actions (refer to ’Pendulum-v0’ in
gym) to be selected by the network.

FIGURE 12 and Table 11 respectively show the average
loss and average training time of DDPG and Double-DQN
network. It can be intuitively seen that the loss of DDPG
converges faster, and DDPG has shorter average training
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TABLE 12. Training time(s).

DDPG+A-BC EOIT
data set 1 156.161 177.183
data set 2 39.720 116.892

time. The training time required for DDPG is reduced due to
the reduction of action space in the comparison experiment.

DDQN-BC and DDQN+A-BC represent the methods
based on Double-DQN algorithm by imitating DDPG-BC
and DDPG+A-BC algorithms. The accuracy of cogni-
tion results under four algorithms are compared on dif-
ferent experiment data sets respectively, as shown in
FIGURE 13. (a), (c) show the comparison of the accuracy
of cognition results of DDPG-BC and DDQN-BC on the
data sets 1 and data set 2 respectively; (b), (d) compare that
of DDPG+A-BC and DDQN+A-BC on two data sets with
attention. After comparison and synthesis, it is found that:
1) the accuracy of cognition results based on DDQN is about
75% of that based on DDPG, and the cognition effect of
DDPG-BC and DDPG+A-BC is better; 2) regardless of any
of the algorithms, the introduction of attention mechanism
can improve the cognition accuracy; 3) in general, the more
complex the cognitive sample, the lower the cognitive accu-
racy, and vice versa.

E. COMPARISON WITH EOIT
EOIT is a conceptual framework and an experience-based
approach [3]. According to EOIT’s idea, the first 70% of each
group of data set in data set 1 is taken as experience. For data
set 2, 27 pedestrian trajectories from Geolife Trajectory 1.3
are reselected to constitute simulation experimental data as
experience. Cognition results are obtained based on experi-
ence, and accuracy is used to measure performance.
FIGURE 14 demonstrates the cognition accuracy of EOIT
and the algorithms in this paper. It can be found that the
cognition accuracy of DDPG-BC and DDPG+A-BC is on
average 31.27% higher than that of EOIT. Since the acqui-
sition of experience requires consideration of all data in the
specified range, EOIT will take longer time than DDPG+
A-BC as shown in TABLE 12.

VI. CONCLUSION

In order to cognize the motion behavior of communication
emitter, DDPG-BC and DDPG+A-BC are innovatively pro-
posed in this paper. Firstly, considering the characteristics
of emitter in multiple dimensions, large data and continuity
and DRL’s good learning ability and wide application in
motion problems, we propose DDPG-BC based on DDPG for
cognition tasks and set change values of velocity, direction,
and communication frequency as state space. DDPG-BC will
obtain specific cognition results directly and gain experience
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from the interaction between network and environment. And
then, we further propose a novel cognition algorithm named
DDPG-+A-BC with the introduction of attention mechanism.
In addition to emitter’s physical parameters, it uses geo-
graphic information (but not limited) to focus on attention
positions in the process of DDPG network exploration, which
can limit exploration scope and initial randomness of network
to improve cognition efficiency.

The simulation results show that DDPG-BC can complete
the cognition task on two different data sets with accuracy
reaching 90.434% and 85.427% respectively. The addition
of attention mechanism increased the cognition accuracy
by 8.311% and 7.068%, leading to more precise cogni-
tion results and less cognition time. And compared with
Double-DQN algorithm and existing cognition method EOIT,
the algorithms proposed are all superior with less time and
higher accuracy. In addition, the influence of training episode,
reward function, and data complexity on cognition results are
discussed respectively.
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