
Received November 23, 2020, accepted December 20, 2020, date of publication December 28, 2020,
date of current version January 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3047870

The Effect of Code Smells on the Relationship
Between Design Patterns and Defects
TAREK ALKHAEIR AND BARTOSZ WALTER
Faculty of Computing and Telecommunications, Poznań University of Technology, 60-965 Poznań, Poland

Corresponding author: Tarek Alkhaeir (tarek.y.alkhaeir@doctorate.put.poznan.pl)

This work was supported by Poznań University of Technology under Grant 0311/SBAD/0702.

ABSTRACT The relationship between design patterns and defects was investigated in the literature, but with
mixed results. While the majority of studies found the presence of patterns to be positively correlated with
defects, other works reported the opposite conclusions. This may suggest that contextual factors affect this
relationship. In this study we analyze the role of code smells as a confounding variable in the relationship
between design patterns and defects in Java classes. To investigate this, we applied statistical tests to capture
the difference in the impact on defects between pattern classes with/without code smells in 10 Java systems
from the PROMISE dataset, with respect to 13 design patterns and 10 code smells. The presence of code
smells in patterns appears to be a valid factor affecting defect-proneness. Pattern classes with smells attract
more defects than non-smelly pattern classes, and in most systems smelly design patterns are positively
correlated with the presence of defects, while non-smelly patterns tend to have no impact, or a slightly
negative impact on the presence of defects. As a result, the presence of code smells in design pattern classes
appears to be a contextual factor affecting the defect-proneness of the subject code.

INDEX TERMS Code smells, design patterns, defect proneness.

I. INTRODUCTION
Design patterns are generic object-oriented solutions to fre-
quently occurring design problems. They were first intro-
duced in the Gang of Four’s (GOF) book [18], which
promoted design patterns as implementations of good prac-
tices that can improve re-usability, maintainability, and
understandability.

Over the years, the relationship between design patterns
and measurable quality attributes has attracted the interest
of many researchers. While several studies found patterns
to be positively correlated with various code characteristics,
such as maintainability [42], defects [52] or the absence of
code smells [53], other studies reported the negative impact
of patterns on software maintainability [54] and code evo-
lution [28]. Additionally, several other studies were incon-
clusive or attributed the observed effects to the nature of the
patterns, to the way they are used, or to other contextual
factors [6], [39]. Those findings not only conjecture that
the relationship between design patterns and code quality
attributes is not direct, but they also suggest that various
contextual factors may have played an important role in this
relationship. In the current study, we investigate whether the

The associate editor coordinating the review of this manuscript and

approving it for publication was Taehong Kim .

presence of code smells could be a contextual factor in the
relationship between patterns and defects.

Code smells [17] are surface-level indicators that may
correspond to deeper problems in software systems. The
relationship between smells and code quality attributes
drew researchers’ attention and several studies were con-
ducted to investigate this relationship. Some of these stud-
ies reported the negative impact of smells on change/fault
proneness [31], [41], defect proneness [11] and maintain-
ability [55]. On the other hand, other studies found that the
detrimental effect of smells on various quality characteris-
tics is limited or even positive, e.g., defect proneness [30],
changeability [38] and maintenance effort [47].

As in the case of design patterns, the relationship between
smells and quality attributes is not decisively defined, which
constitutes another reason for conducting this study. More-
over, besides the importance of researching the context in
which the defects may exist, another motivation drove our
study; the phenomena in question, i.e., patterns and smells,
are different in nature: while design patterns are intentionally
used to achieve specific design objectives, code smells are
inadvertent side effects of software development.

Defects, colloquially called bugs, are conditions in soft-
ware products which do not meet the requirements or the
customers’ expectations. Defects often arise because of an

3360 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-1212-2390
https://orcid.org/0000-0001-6246-6218


T. Alkhaeir, B. Walter: Effect of Code Smells on the Relationship Between Design Patterns and Defects

incomprehensive understanding of the code, a fault inter-
pretation of the business requirements, programmers’ mis-
takes or due to frequent code changes [2]. The process of
detecting and removing software defects is an important step
in guaranteeing the fulfilment of end user satisfaction [20]
and reducing the economic liability associated with releas-
ing flawed software products [26]. Furthermore, building
an efficient defect prediction model has raised increased
interest from researchers in their quest to learn from the
previous defects and to use this knowledge to predict future
ones [15]. Defects were also heavily investigated in the liter-
ature, with several studies considering defects as a dependent
variable affected by various independent variables, such as
patterns [6], [21], [52], bad design [57] and the presence
of code smells [30]. Defects should not be confused with
code smells. They refer to two distinct quality characteristics:
defect to reliability and smells to maintainability. In our study
we consider them separately.

This article focuses on the impact of smelly or non-smelly
design patterns as independent variables on defects, consid-
ered as binary variables (i.e., present/absent) or quantitative
variables (i.e., the number of defects). We seek to determine
the confounding effect of smells on code that contains design
patterns, in terms of the resulting defects.

The paper is structured as follows. In Sec. II we present
the literature review on the relationship between patterns and
smells, and their separate effect on defect-proneness. Next,
in Sec. III, we describe the design of the experiment and
formulate the research questions. The results are presented in
Sec. IV, then in Sec. V we discuss and interpret them. Finally,
in Sec. VII we provide conclusions and propose possible
directions for future investigation.

II. RELATED WORK
While the relationship between design patterns and code
smells is a relatively new topic, both smells and patterns have
been separate subjects of research for a long time. Below we
summarize the major findings concerning their relationship
with each other and their separate links with defects.

A. DESIGN PATTERNS AND DEFECTS
A number of studies investigated the relationship between
design patterns and defects. However, the results were
mixed and sometimes contradictory. Vokáč [52] observed
the evolution of a commercial product for three years in an
attempt to compare the defect ratios in classes with selected
design patterns, namely Observer, Singleton, Factory and
Template Method, with other classes. They concluded that
both Observer and Singleton are more defect-prone than
other patterns due to the larger code structures they con-
tain. On the other hand, the Factory pattern displayed a
lower number of defects than other classes, and the results
for Template Method were inconclusive. Moreover, Gatrell
and Counsell [19] examined a subset of a large commer-
cial software system written in C] and found that classes
implementing design patterns are more fault-prone than the

non-pattern classes. In particular, the authors found some
patterns, namely Adaptor, Template Method and Singleton to
be more defect-prone than others.

Elish and Mohammed [13] found no difference in the
fault density between classes participating in the cre-
ational or behavioural patterns and classes without patterns,
while structural patterns appeared to have a lower fault den-
sity than other classes. Furthermore, Onarcan and Fu [39]
presented a study of 26 open source software projects, show-
ing that there is a little correlation between the number of
pattern instances in those projects and the number of defects.
They also concluded that individual design patterns may have
either positive or negative impact on defect-proneness.

Additionally, Aversano et al. [6] reported an empirical
study involving three open source systems and concluded that
the defect density of pattern classes is higher if the imple-
mentation of those patterns includes crosscutting concerns.
The study also asserted that the relationship between design
patterns and defects varies depending on the type and the
nature of the pattern.

B. CODE SMELLS AND DEFECTS
The relationship between code smells and defects has also
attracted the attention of researchers. Li et al. [30] conducted
an experiment to investigate, at a class level, the correlation
between smells and defects. They reported that the presence
of some code smells, e.g., God Class and Shotgun Surgery,
is positively correlated with defects proneness, while there
is no correlation for other smells, such as Data Class and
Feature Envy. Furthermore, Olbrich et al. [37] monitored the
development of three open source systems for 7-10 years
and concluded that God and Brain classes tend to change
more frequently and have more defects than other classes.
However, after the values have been adjusted to the class size,
the findings were reversed.

Bán and Ferenc [7] also addressed the effect of code
smells on defects. Their study analyzed several systems
from the PROMISE dataset and their aggregated results
showed a positive correlation between the studied code
smells and defects. Furthermore, Jaafar et al. [25] stud-
ied three systems, Azureus, Eclipse and JHotDraw, and
reported that the majority of classes affected by code smells
tend to be more fault-prone than the smell-free classes.
Another large scale empirical investigation was performed by
Palomba et al. [41]. The results show that smelly classes have
a higher fault-proneness than non-smelly classes. A similar
conclusion was reported by Nascimento and Sant’Anna [35].

On the other hand, Hall et al. [23] argued that the presence
of code smells in some circumstances may indeed indicate
a fault-prone code. However, the effect of those smells on
the defects is rather minor. The authors also suggested that
refactoring smelly classes is unlikely to reduce the number
of defects in the affected code. A similar observation was
reported by D’Ambros et al. [11] who concluded that none
of the studied smells could be considered more harmful with
respect to software defects.

VOLUME 9, 2021 3361



T. Alkhaeir, B. Walter: Effect of Code Smells on the Relationship Between Design Patterns and Defects

Tufano et al. [51] addressed the issue from a different
perspective; they investigated the reasons behind the intro-
duction of smells, and to this end they studied the change
history of 200 open source projects, concluding that in many
cases the refactoring and bug-fixing activities lead to the
introduction of smells.

Finally, Cairo et al. [8] performed an SLR aimed at the
analysis of the impact of code smells on defects. They con-
cluded that the correlation between smells and defects is
weaker than had been conjectured, and that no individual
code smell could be identified as positively correlated with
increased defect frequency.

C. DESIGN PATTERNS AND CODE SMELLS
In our previous study [53], we investigated the relationship
between design patterns and code smells at a class level and
the results indicated that pattern classes are less frequently
affected by smells. The study also found that the strength
of the relationship varies among different patterns and
smells.

A study by Cardoso and Figueiredo [9] found two
pattern-smell links: Command with God Class and Template
Method with Code Duplication. The study also presented
a possible explanation of those co-occurrences and offered
guidelines on how to eliminate the smells from these patterns.
Additionally, a recent study by Alfadel et al. [4] found that
design pattern classes are less smell-prone than other classes.
However, Command pattern classes are associated with God
Class, Blob and External Duplication smells.

Furthermore, Sousa et al. [49] investigated if the use of
patterns is negatively correlated with occurrences of code
smells, and examined their collocations in the same classes.
They concluded that the use of patterns does not prevent code
smells. The study also reported that some patterns, such as
Composite, Factory Method and Singleton, are intrinsically
modular and they produce code of higher quality, while other
patterns, such as Adapter, Proxy and State/Strategy, are linked
with a higher frequency of code smells.

Finally, Sousa et al. presented a systematic mapping study
on the relationship between patterns and smells [48]. They
identified 16 papers and concluded that the misuse of certain
patterns is the main cause of their co-occurrence with code
smells. The paper also found that the Command pattern is
correlated with the greatest number of smells.

III. EXPERIMENTAL DESIGN
A. RESEARCH QUESTIONS
In the study we consider three research questions that exam-
ine the defect-proneness of pattern classes, depending on the
presence or absence of code smells in them.

1) RQ1 What is the impact of code smells on the pres-
ence/absence of defects in classes involved in design
patterns?

2) RQ2 What is the impact of code smells on the defect
distribution (number of defects) in classes involved in
design patterns?

3) RQ3 What is the effect of code smells on the relation-
ship between specific design patterns and defects?

B. VARIABLES
The definitions of variables we use in the analysis differ,
depending on the construct employed in a specific research
question.

1) INDEPENDENT VARIABLES (IVs)
For RQ1 and RQ2, we consider sets of classesC, with respect
to their involvement in any design pattern or if they are
affected by any code smells; this produces four values of
the IV: DP, nDP, SDP and nSDP;

In RQ3 the definitions are different: we consider classes
involved in specific patterns that are affected by any smell.
That also produces four values of IVs, but separately for
each DP. For example, for Decorator we have four values
of the IV: DPDecorator – all classes involved in Decorator,
nDP – classes not involved in any pattern, SDPDecorator –
smelly classes involved in Decorator, and nSDPDecorator –
non-smelly classes involved in Decorator.

2) DEPENDENT VARIABLES (DVs)
For RQ1 the DV is a binary value {0, 1} indicating the
presence or absence of defects in a class.

For RQ2 the DV is the count of defects in the class.
For RQ3 we use both definitions of DVs.
For RQ1 and RQ2 we consider each system separately.

All subject systems are developed by communities, with their
own habits, standards and routines, which cannot be directly
identified. As such, they should be considered latent variables
that could bias the results. For that reason, we decided to
report the results separately for each system. However, for
RQ3, due to the small size of data samples, we merged the
systems into a single dataset.

C. NOTATION
To describe the sets that define the variables, we use the
following notation:
• ALL: All analyzed classes
• DP: Classes involved in one or more design pattern,
in any role;

• nDP: Classes not involved in any design pattern;
• SDP: Classes simultaneously involved in design pat-
tern(s) and affected by code smell(s);

• nSDP: Classes involved in design pattern(s) and not
affected by code smell(s);

• SnDP: Classes not involved in design pattern(s) and
affected by code smell(s);

• nSnDP: Classes not involved in design pattern(s) and not
affected by code smell(s);

• DEF : Classes with at least one defect;
• DEF-DP: Classes involved in design pattern(s) and with
at least one defect;

• DEF-nDP: Classes not involved in design pattern(s) and
with at least one defect;

3362 VOLUME 9, 2021



T. Alkhaeir, B. Walter: Effect of Code Smells on the Relationship Between Design Patterns and Defects

TABLE 1. List of subject systems.

TABLE 2. Design patterns analyzed in the study. Category: C–Creational, B–Behavioral, S–Structural.

D. SUBJECT SYSTEMS
We performed our analysis on 10 small- and medium-size
Java systems coming from PROMISE [1], one of the largest
public repositories of empirical software data. In this study
we use one of the datasets that provides information about
defects. The original dataset includes 14 open source java
systems: Ant, Camel, Ckjm, Forrest, Ivy, JEdit, Log4J,
Lucene, PBeans, Poi, Synapse, Velocity, Xalan and Xerces.
We decided to exclude four systems: Ckjm, PBeans, Synapse
and Forrest, due to the negligible number of patterns (< 5) in
them.

The list of systems used in the study is presented in Table 1.

E. DESIGN PATTERNS
To identify the design patterns we used a pattern-detection
tool written by Tsantalis.1 This tool uses the Similarity Scor-
ing Approach (SSA), which calculates the similarity between
subject code and graphs representing canonical patterns.
If the score exceeds a defined threshold value, the pattern is
positively identified [50].

Specifically, we used the most recent version of the tool,
v4.12. It was verified against several Java systems with a

1https://users.encs.concordia.ca/~nikolaos/
pattern_detection.html

reported precision of 100% and a recall of 66.7-100 % [3],
whichmakes its performance comparable to other approaches
that use exact/inexact graph matching like Discovery Matrix
(DP-Miner) [12], the sub-patterns approach [56], or metrics-
based approaches, e.g., MAISA [40] and FUJABA [36].

Although the tool detects only selected GoF patterns, they
cover all three categories in the GoF taxonomy: creational,
structural and behavioral [18]. In Table 2 we present the list
of the analyzed design patterns.

To validate the effectiveness of the automatic pattern detec-
tion, wemanually verified a random sample of ca. 400 pattern
classes, which constitute ca. 10% of the cases identified by
the tool. The review reported no false positives.

F. CODE SMELLS
Initially, code smells were mostly subject to human intuition
and experience [17]. Today virtually all flaws can be detected
automatically, based on various properties of the subject
code or other artifacts. An SLR presented by Guéhéneuc and
Albin-Amiot [22], based on 60 studies investigating various
methods of smell detection, identified only four cases in
which no automated approach was used.

In this article, for detecting code smells we used inCode,
a proprietary Eclipse plugin that detects the smells based
on the static code analysis. The tool employs an approach

VOLUME 9, 2021 3363

https://users.encs.concordia.ca/~nikolaos/pattern_detection.html
https://users.encs.concordia.ca/~nikolaos/pattern_detection.html


T. Alkhaeir, B. Walter: Effect of Code Smells on the Relationship Between Design Patterns and Defects

TABLE 3. Code smells analyzed in the study. Categories: B–Bloaters, C–Couplers, D–Dispensables, CP–Change Preventers. Levels: C–Class, M–Method.

TABLE 4. Numbers of classes that belong to respective datasets.

called detection strategies [34], which relies on Boolean
expressions composed of selected code metrics and respec-
tive thresholds. As in any metrics-based approach, the chosen
threshold values play an important role in the accuracy of
the detected instances. For this study, we used the default
settings of inCode, following the recommendation by Lanza
and Marinescu [29].

inCode has several advantages. First, the approach it
implements for smell detection is commonly used in both
academia and industry; additionally, the detection strate-
gies were found to be fairly accurate in detecting smells
(≈ 70%, according to [34]), and a comparative study by
Arcelli Fontana et al. [16] found inFusion, a commercial
version of inCode that employs the same detection rules,
to report the lowest number of false positives among four
analyzed smell detectors.

In this study, we consider nine code smells (see Table 3)
that represent four out of five smell categories in the taxon-
omy proposed byMäntylä [33]: Bloaters,Couplers,Dispens-
ables, and Change preventers.

G. DEFECTS
The defect dataset which we analyze in the study was
acquired from the PROMISE repository. Data about defects
in PROMISE has been collected by the Buginfo tool. It
evaluates every commit in the repository of the analyzed
system. The tool labels the commit as a bug fix if it solves an
issue reported as a bug in the bug tracking system. For each
analyzed project, the bug fixes commenting guidelines were

TABLE 5. Results of the OR test and FET.

TABLE 6. Summarized findings from the OR test and FET.

discovered and formalized as regular expressions. Buginfo
compares the regular expressions with the comment associ-
ated with the commit. If the comment matches the regular
expression, Buginfo reports detecting a defect and increases
the defect count for every class modified in the commit [27].

The PROMISE dataset has been validated and used sev-
eral times in different research papers, e.g., concerning bug
prediction [14], [15].

H. IDENTIFICATION OF DATASETS
In the studywe analyzed classes with combinations of various
properties.

First, we collected the classes in the ALL dataset, by iden-
tifying the fully qualified class names inside specific system
releases within the source PROMISE dataset. Then, based on
the results of the design pattern and code smell detection,
described in III-E and III-F, we identified DP and S datasets.

3364 VOLUME 9, 2021



T. Alkhaeir, B. Walter: Effect of Code Smells on the Relationship Between Design Patterns and Defects

TABLE 7. The OR test and FET results, considering the effect of code smells.

TABLE 8. The findings from the OR test and FET, considering the effect of
code smells.

TABLE 9. Descriptive statistics for the number of defects inside pattern
and non-pattern classes.

Since the code smells can be attributed to classes or meth-
ods, while patterns involve classes, we had to adjust the
granularity of the datasets to the class level by re-assigning
the method-level smells to the enclosing classes.

In the next step we identified intersections of the sets
to produce SDP, SnDP, nSDP and nSnDP. The resulting
datasets were disjoint and complete, i.e., each class was
reported exactly once in all datasets, and no class was omitted.
However, defects in the PROMISE dataset are assigned to
files, which can contain one or more classes. To address
the issue of several classes being included in a single file,
but assigned to different datasets, we manually verified and
excluded such cases.

The replication package is available at https://
zenodo.org/record/3992730#.X2NZamgzY2x

TABLE 10. Results of the Shapiro-Wilk test.

TABLE 11. Results of WMW and Hedges’ g tests.

IV. RESULTS
A. RQ1: WHAT IS THE IMPACT OF CODE SMELLS ON THE
PRESENCE/ABSENCE OF DEFECTS IN CLASSES INVOLVED
IN DESIGN PATTERNS?
In this section we check if design pattern classes are asso-
ciated with the presence or absence (considered as a binary
value) of defects in them. For this purpose, we used the
Odds Ratio (OR) test [46] to find the associations between
the presence of patterns as an exposure and the presence
of defects as an outcome. The OR function is specified as
follows: OR = a/c

b/d where:
• a = number of exposed cases
• b = number of exposed non-cases
• c = number of unexposed cases
• d = number of unexposed non-cases

The result of the OR test is interpreted as follows:
• OR = 1 The exposure does not affect the odds of the
outcome,

• OR > 1 The exposure is associated with higher odds of
the outcome,

VOLUME 9, 2021 3365

https://zenodo.org/record/3992730#.X2NZamgzY2x
https://zenodo.org/record/3992730#.X2NZamgzY2x


T. Alkhaeir, B. Walter: Effect of Code Smells on the Relationship Between Design Patterns and Defects

TABLE 12. Results of the WMW test for specific patterns, considering the effect of code smells.

TABLE 13. The extracted rules from the WMW test results presented in Table 12 together with Hedges’ g results.

• OR < 1 The exposure is associated with lower odds of
the outcome.

Next, we use Fisher’s exact test (FET) to determine if the
OR results are significant [44]. The results are presented
in Table 5 and the extracted association rules are summarized
in Table 6.

The extracted rules indicate that patterns are positively
associated with the presence of defects. This is in line with the
results of other studies, e.g., [19], and in contradiction to the
common understanding of patterns in terms of their positive
impact on code quality [43]; on the other hand, they reinforce
our conjectures concerning contextual factors that may play
a role in this association. Our next step is to investigate the
role of code smells as a confounding factor. Table 7 presents
the results from the OR and FET tests and the extracted rules
are listed in Table 8.

B. RQ2: WHAT IS THE IMPACT OF CODE SMELLS ON THE
DEFECT DISTRIBUTION (NUMBER OF DEFECTS) IN
CLASSES INVOLVED IN DESIGN PATTERNS?
For this question we are interested whether the presence of
patterns in classes is associated with a higher/lower number
of defects, and what the effect of smells as a contextual factor
in this relationship is. To answer this, we first tested the nor-
mality of distributions in the subject datasets. In Table 9 we
present the descriptive statistics of the datasets and in Table 10
we report the results of the Shapiro-Wilk test [45]. They show
that both pattern and non-pattern values are not normally
distributed.
Since all values are not normally distributed, we used a
nonparametric Wilcoxon-Mann test (WMW) [32] to verify

if two populations have different medians of defect distri-
butions. In this section we verify the hypothesis that pattern
and non-pattern classes do not differ with respect to defects.
Analogously, similar hypotheses are used when comparing
any other two groups using WMW throughout this study.

1) H0: DP = nDP w.r.t. defects
2) Ha: DP 6= nDP w.r.t. defects
3) Ha1: DP < nDP w.r.t. defects
4) Ha2: DP > nDP w.r.t. defects

The results of the WMW test are presented in Table 11.
As follows from the results, DP > nDP for 9 out of the

10 analyzed systems, and the only remaining case is incon-
clusive. We repeated the same steps to measure the effect
of smells on these results. In Table 12 we summarize the
WMW test results between the smelly- and non-smelly pat-
tern classes, and between the classes in those two groups and
the non-pattern classes. We also present the extracted rules
from this analysis in Table 13.

To assess the significance of our extracted rules, we per-
formed an effect size analysis to measure the mean difference
between the different groups. We used the Hedges’ g [24] test
with a corresponding 95% confidence interval (CI). Hedges’
g provides a measure of the effect size weighted by the rela-
tive size of each sample. The results are interpreted according
to Cohen’s d conventions [10]:

• Negligible effect < 0.2
• Small effect = 0.2
• Medium effect = 0.5
• Large effect = 0.8

The results and interpretation are reported in Tables 11
and 13.

3366 VOLUME 9, 2021



T. Alkhaeir, B. Walter: Effect of Code Smells on the Relationship Between Design Patterns and Defects

TABLE 14. The total number of classes for each pattern in each group.

TABLE 15. Results of the OR test and FET for the specific patterns.

C. RQ3. WHAT IS THE EFFECT OF CODE SMELLS ON THE
RELATIONSHIP BETWEEN SPECIFIC DESIGN PATTERNS
AND DEFECTS?
1) THE BINARY RELATIONSHIP
In this section we investigate the binary relationship between
individual patterns and defects and how the presence of
smells impacts this relationship. As the number of specific
patterns is too low in each system, we merged the datasets.
In Table 14 we present the descriptive data on the resultant
dataset.

Next, we performed again the OR test for each pattern and
applied FET to measure the significance of the results (see
Table 15).

From the results we can conclude that the classes involved
in Adapter, Decorator, Proxy and State are more defect-prone
than non-pattern classes. The Visitor pattern appears to be
associated with the absence of defects, but due to a large
p-value we consider the result to be uncertain.

We followed these steps by measuring the effect of smells
on these extracted associations and for that we repeated
the same tests taking into consideration the effect of smells
(see Table 16). The results suggest that the positive associa-
tion between Adapter, State, and Visitor patterns with defects
exists only if they are affected by smells.

2) THE DISTRIBUTION OF DEFECTS
In this section we investigate whether specific patterns attract
more or fewer defects than non-pattern classes, and how the
introduction of smells affects this distribution.

In Table 17, we present the results of the WMW test that
compare the distribution of defects for specific patterns with
the distribution of defects in non-pattern classes.

According to the results, the Adapter, Decorator, Proto-
type, Proxy and State patterns are more defect-prone than
non-pattern classes, while the results for the other patterns
are inconclusive. We also performed a Hedges’ g test and
the results show that the extracted rules have a different
significance depending on the pattern type. They report that
none of the extracted rules has a large effect size and that
the significance varies between medium, small or negligible,
depending on the type of the pattern.

To investigate the effect of smells on the previous rules,
we performed a similar analysis for the classes with code
smells. In Table 18 we present the results of the WMW
test that compares the defects distribution in the smelly
and non-smelly classes involved in patterns, with a distribu-
tion of defects in non-pattern classes. Table 19 reports the
extracted rules from the WMW test and the significance of
those extracted rules based on yhe results of the Hedges’ g
test.

V. DISCUSSION
A. RQ1: WHAT IS THE IMPACT OF CODE SMELLS ON THE
PRESENCE/ABSENCE OF DEFECTS IN CLASSES INVOLVED
IN DESIGN PATTERNS?
If we consider the binary relationship between patterns and
defects (i.e., defective and defect-free classes) the results
show that in five of the analyzed systems (Ant-1.7, JEdit-4.2,
Camel-1.6, Ivy-2.0 andVelocity-1.6), the presence of patterns
is positively associated with the presence of defects. For the
other five systems we could not find any significant rules.
It is also important to point that no rule that contradicts the
extracted rules was identified, so in no system could we relate
patterns to the absence of defects. After the introduction of
the effect of smells to the analysis, we found that three out of
five systems that were found to have a positive relationship
between patterns and defects exhibit this relationship only
if the patterns are affected by smells (JEdit-4.2, Camel-1.6,
Ivy-2.0 and Velocity-1.6), and for the other two (Ant-1.7 and
Camel-1.6) the relationship exists regardless of the presence
of smells in the patterns.

In the remaining five systems, for which we initially could
not reject the null hypothesis, patterns in Poi-3.0 were found
to be positively related with defects only if they were smelly;
in Xerces-2.0 the effect was even more evident: smelly pat-
terns have been positively associated with defects, while the
association for non-smelly patterns was negative.

By including code smells we did not only extract more
rules, but we also found that in the majority of systems,
patterns are positively associated with defects only when they
are smelly. On the other hand, the results for non-smelly pat-
terns are mixed, so while they are positively associated with
defects in a couple of systems, they also have negative or no
relationship with defects in other systems. This observation
provides a possible explanation for the mixed [52] or small

VOLUME 9, 2021 3367



T. Alkhaeir, B. Walter: Effect of Code Smells on the Relationship Between Design Patterns and Defects

TABLE 16. Results of OR test and FET for specific patterns, considering the effect of code smells.

TABLE 17. Results of the WMW test for specific patterns, together with Hedges ’g results.

TABLE 18. Results of WMW test for specific patterns, considering the effect of code smells.

relationship [39] reported in the literature between design
patterns and defect-proneness. The presence of code smells
appears to be a factor that interacts with design patterns
and has a decisive impact on defects in the subject code by
amplifying the previously existing defect-proneness. Conse-
quently, it has a practical consequence for software develop-
ers. The intense use of patterns can lead to their interactions
and the proliferation of cross-cutting effects [6], resulting in
some types of code smells. That, in turn, could effectively
diminish or revert the expected advantages of applying design
patterns, even if the pattern classes attract fewer smells than
the non-pattern ones [53].

B. RQ2: WHAT IS THE IMPACT OF CODE SMELLS ON THE
DEFECT DISTRIBUTION (NUMBER OF DEFECTS) IN
CLASSES INVOLVED IN DESIGN PATTERNS?
The results for nine out of ten of the analyzed systems indicate
that design pattern classes are linked with a higher number
of defects than the non-pattern classes. Only in the case of
Xalan-2.7 no significant rules were identified. The effect

size analysis reported that the mean difference between the
smelly and non-smelly patterns in terms of defects is between
[0.2-0.5] of standard deviation, which entails that the signif-
icance of those extracted rules are either small or medium,
depending on the system.

By introducing information about code smells into the
analysis, we obtained new insights into those results. First,
in the majority of systems (seven out of ten), smelly patterns
have a higher number of defects than the non-smelly patterns,
and no system produced contradictory results. The effect size
for the majority of those extracted rules is large, indicating
that the difference between the two groups is of a large
significance.

With regard to the effect of smells on the relation-
ship between pattern vs. non-pattern classes with defects,
the extracted rules were difficult to interpret, because while
smelly patterns are associated with more defects than
non-pattern classes in eight systems, the non-smelly pat-
terns also have more defects than non-pattern classes in six
systems. Those results initially suggested that the smelliness

3368 VOLUME 9, 2021



T. Alkhaeir, B. Walter: Effect of Code Smells on the Relationship Between Design Patterns and Defects

TABLE 19. The conclusions from the WMW test results presented in Table 18, together with the Hedges’ g effect size test results.

TABLE 20. The extracted rules from the WMW test, together with the effect size interpretation of the Hedges’ g test.

of a pattern is not a valid contextual factor for analyzing
defect-proneness. A thorough analysis of the extracted rules
shows that the extracted rules for the relationship between
smelly patterns and defects are stronger than those which
show the relationship between non-smelly patterns and
defects. All the rules extracted for the smelly patterns are
significant at α = 0.01, while only two rules are significant
at the same level for the non-smelly patterns. The effect size
analysis also strengthens this conclusion, since for the smelly
pattern rules the mean difference is large enough to be of a
practical significance, while the effect size for the non-smelly
pattern rules is either small or even negligible.

To have amore comprehensive understanding of the results
and to isolate the effect of smells, we again performed a
WMW test to compare the smelly vs. non-smelly patterns
with smelly vs. non-smelly non-pattern classes. The results
are summarized in Table 20.

The results confirm our initial observations that smelly pat-
terns, in themajority of systems, have a higher defect distribu-
tion than the non-pattern classes, regardless of whether those
classes are smelly or not. On the other hand, the comparison
of non-smelly patterns with smelly and non-pattern classes
showed that they have similar defect distribution in themajor-
ity of the systems and that non-smelly patterns have a higher
defect distribution only in case of Camel, while they have a
lower number of defects in case of Xalan and Xerces. This
may suggest that the effect of smells and patterns on defects
is cumulative and the results of comparing data that belong
to only one group (smells or patterns) could be attributed to
other contextual factors. It is also worth mentioning that the
effect size analysis of the relationship between nSDPvs.SnDP
shows that the significance of the mean difference between

those two groups is small or even negligible. The results also
suggest that classes which are not participating in a pattern
and are not affected by smells tend to attract fewer defects
than pattern classes.

Finally, the results of the effect size analysis strengthen
our conclusion, as they show the large significance of the
extracted rules related to smelly design patterns, while they
demonstrate the small significance of the rules related to the
non-smelly patterns.

C. RQ3: WHAT IS THE EFFECT OF CODE SMELLS ON THE
RELATIONSHIP BETWEEN SPECIFIC DESIGN PATTERNS
AND DEFECTS?
In the subsequent sections we discuss the binary and
the cumulative relationships between specific patterns and
defects, and the effect of smells on these relationships.

1) THE BINARY RELATIONSHIP
We are interested in analyzing the binary relationship
between specific patterns and defects, and in describing how
the presence of smells affects this relationship. However,
the dataset has a very small number of instances for some
patterns, e.g., Chain of Responsibility (3 instances, all of
them are smelly), Bridge (18 instances, only three of them
are smelly), Observer and Prototype (14 instances each, only
2 instances in each case are smelly). Because of the small
sample size, FET reported the insignificance of the extracted
rules even if they were supported in 100% of cases. Neverthe-
less, the detailed analysis reported some significant associa-
tions such as the Adapter, Decorator, Proxy and State patterns
are positively related with the presence of defects, while the
presence of the Visitor pattern is associated with the absence

VOLUME 9, 2021 3369



T. Alkhaeir, B. Walter: Effect of Code Smells on the Relationship Between Design Patterns and Defects

of defects. The Visitor case contradicts our findings reported
in Sec. IV-A and contradicts our findings for all other patterns
in this section.

The case of Visitor is unique: among 38 instances, 12 of
them are defective and 26 are defect-free. All of them come
from a single system, velocity-1.6, and are located in a single
packageorg.apache.velocity.runtime.parser.
node. All instances represent objects that visit and parse a
specific type of a node. As the amount of the code inside the
Visitor pattern is minimal, and its logic is clear and simple,
no defect was reported for the majority of those instances.
In the remaining classes, defects were cosmetic or related to
special cases which have not been covered.

After introducing the effect of smells to our analysis,
the results showed that in the case of Adapter, State and
Visitor, smelly patterns are positively associated with the
presence of defects. However, the Decorator and Proxy pat-
terns require the investigation to be replicated on a larger
dataset: although the presence of smells in the pattern classes
was associated with defects in 100% of the cases, the small
number of smelly classes (1 for Decorator and 3 for Proxy)
invalidated the FET results. Furthermore, we found that the
non-smelly Visitor classes are associated with the absence of
smells. These results are consistent with our findings reported
in Sec. IV-A.
On the other hand, for both the Decorator and Proxy pat-

terns, the results suggest that smell-free pattern classes are
also associated with the presence of defects, which compels
us to conduct further investigation. For the other patterns,
the small number of detected instances prevented us from
extracting any rules.

For the Decorator pattern, the majority of defective
non-smelly instances belong to two systems, Xalan-2.7 and
Camel-1.6. In both systems the evolution of the Decorator
pattern scattered its functionalities into many small objects
representing crosscutting concerns, which in turn became
hard to comprehend and maintain, and as a consequence,
produced defects.

With regards to the Proxy pattern, there are 23 defective
non-smelly instances, and 16 of them belong to Xalan-2.7.
Almost all the Visitor instances in this system belong to a sin-
gle package org.apache.xalan.xsltc.compiler.
Those instances parse specific types of instructions before
passing the parsed segments to a converter object. Those
instances extend a single parent class, Instruction, and
their tight couplingwith this shared parent causes them to also
share the same defects.

2) THE DISTRIBUTION OF DEFECTS
The results of the detailed analysis are consistent with our
findings reported in IV-B. They indicate that the Adapter,
Decorator, Prototype, Proxy and State patterns are linked
with more defects than non-pattern classes. While we
could not extract any rules for other patterns, no extracted
rules in any of the patterns contradicted our findings.
The introduction of smells into our analysis resulted in the

observation that, in case of the Adapter, Bridge, Observer,
Singleton, State and Visitor patterns, smelly patterns attract
more defects than non-smelly patterns. For all other pat-
terns, we could not extract any rules that contradict our
findings.

With respect to the effect of smells on the relationship
between patterns and defects we found that for the major-
ity of pattern types (Adapter, Bridge, Observer, Prototype,
Proxy, Singleton, State and Visitor), the smelly design pat-
terns attracted more defects than non-pattern classes. The
effect size analysis reported that the mean difference between
those smelly patterns and non-pattern classes is greater than
the 0.8 of standard deviation, which indicates the large signif-
icance of those extracted rules. For the non-smelly patterns,
we found that only in the case of Adapter, Decorator, Proxy
and State did the non-smelly patterns attract more smells
than the non-pattern classes and those extracted rules have a
small significance. Moreover, in case of the Visitor pattern,
we concluded that non-smelly patterns have fewer defects
than non-pattern classes.

The defect proneness of specific smells and patterns has
also been studied in the literature. Our findings partially
confirm the results reported by Aversano et al. [6], Vokáč [52]
and Onarcan and Fu [39] with respect to the Singleton and
Observer patterns and their positive association with defects.
Our results show that for both of them the presence of smells
additionally amplified the defect proneness of the affected
classes. For other patterns, the results differ, which may also
indicate the confounding role of code smells addressed in
our work.

VI. THREATS TO VALIDITY
A. CONSTRUCT VALIDITY
Due to limitations related to the granularity of the PROMISE
dataset, our analysis had to be performed at the class level.
This inevitably affected the results, as some code smells have
been reassigned from methods to classes.

The other issue concerns the detection tools used to detect
both patterns and smells. Although those tools were cho-
sen for their high precision, recall and accuracy compared
to other detection tools [3], [16], we have not performed
cross-validation with other tools, just manual verification for
a sample of detected patterns. Our results are as accurate as
those tools are.

Finally, in our analysis we consider the presence of smells
as a binary variable, regardless of their types and number.
Research on relationships among various code smells shows
that collocated smells seem to have more detrimental impact
on quality than individual smells [5]. This issue could be
further elaborated in replication studies.

B. EXTERNAL VALIDITY
Our exploratory analysis was performed on 10 small- and
medium-size Java systems, and our findings should be inter-
preted accordingly. Furthermore, for some patterns we have

3370 VOLUME 9, 2021



T. Alkhaeir, B. Walter: Effect of Code Smells on the Relationship Between Design Patterns and Defects

only a small number of detected instances, which limits
extrapolating the results beyond the scope of the study.

C. CONCLUSION VALIDITY
Most of our findings were driven and validated statistically,
so our conclusion is highly related with the accuracy of the
statistical tests which we used. The non-normal distribution
dictated that we use non-parametric tests which have a lower
statistical power than parametric tests. Additionally, the size
of the subject projects makes us cautious when evaluating the
impact of the results.

VII. CONCLUSION
In the paper we investigated the links between design pat-
terns and defects, and how the presence/absence of smells
affects these relationships. Our analysis included 10 small-
and medium-size Java systems. The findings suggest that pat-
tern classes are associated with more defects than non-pattern
classes, and that smells could be considered as a contextual
factor in this relationship since smelly pattern classes attract
more defects than both non-smelly pattern and non-pattern
classes.

The paper findings are three-fold:
• Investigating the binary relationship between patterns
and defects showed that patterns are positively associ-
ated with the presence of defects, thus validating the
results reported in previous studies. However, by includ-
ing the presence of smells as a confounding vari-
able in this relationship, our results indicate that only
smelly patterns have a unanimously positive association
with defects, while non-smelly patterns delivered mixed
results.

• Our results show that pattern classes have a greater
number of defects than non-pattern classes. Introducing
the effect of smells into the analysis reveals that smelly
classes attract more defects than non-smelly classes,
and that both smelly- and non-smelly pattern classes
have, in a different rate, a higher defect distribution than
non-pattern classes. The findings also suggest that the
relationship between smelly patterns and defects is more
significant than the relationship between non-smelly
patterns and defects.

• The relationship between specific patterns and defects
varies, both in terms of the binary and quantitative rela-
tionships. This variation still holds true if smells are
introduced into this relationship.
Nevertheless, there are some common findings between
all the patterns. For example, our analysis did not reveal
a pattern that attracts a lower number of defects than
non-pattern classes. In contrast, the Adapter, Decora-
tor, Prototype, Proxy and State patterns tend to have
a higher defect distribution than non-pattern classes.
The introduction of smells into the analysis showed
that the majority of smelly pattern classes attract more
defects than non-pattern classes, and that non-smelly
patterns attract more or fewer defects, depending on their

type. For example, the non-smelly Adapter, Decorator,
Proxy and State classes attract more defects than the
non-pattern classes. On the other hand, smelly Visitor
classes are linked with a lower defect distribution than
non-pattern classes.
What is also noticeable in our results is that no
non-smelly pattern attracts a higher defect number than a
smelly pattern. On the contrary, smelly Adapter, Bridge,
Observer, Singleton, State and Visitor classes tend to
have more defects than non-smelly pattern classes.
Furthermore, the binary association between different
patterns and defects also varies between patterns. The
Adapter, Decorator, Proxy and State patterns are asso-
ciated with the presence of defects, while the Visitor
pattern is associated with the absence of defects. Taking
into consideration the effect of smells on the previous
findings showed that themajority of smelly patterns tend
to have positive associations with defects, but with a
different confidence and significance.

The results, albeit preliminary, can inspire and foster
further research on the contextual factors that affect defect-
proneness, changeability and other important software prop-
erties. Understanding their role may help in isolating their
individual impact and the interactions they play a role in.

Our findings can have an impact on the development of
practice. Design patterns promote good practices. However,
if pattern classes are affected by code smells, the advan-
tages of patterns could be challenged by defects resulting
from their interaction with smells. Therefore, we conclude
that preventing and removing code smells may reduce the
defect-proneness of the code, so we advise programmers to
take this possibility into account.

In the future, we plan to replicate this experiment on a
larger scale and to investigate the individual effect of specific
smells on the relationship between patterns and defects.

REFERENCES
[1] J. S. Shirabad and T. J. Menzies, ‘‘The PROMISE repository of

software engineering databases,’’ School Inf. Technol. Eng., Univ.
Ottawa, Ottawa, ON, Canada, Tech. Rep., 2005. [Online]. Available:
http://promise.site.uottawa.ca/SERepository

[2] P. Afric, L. Sikic, A. S. Kurdija, G. Delac, and M. Silic, ‘‘REPD:
Source code defect prediction as anomaly detection,’’ in Proc. IEEE
19th Int. Conf. Softw. Qual., Rel. Secur. Companion (QRS-C), Jul. 2019,
pp. 227–234.

[3] M. Al-Obeidallah, M. Petridis, and S. Kapetanakis, ‘‘A survey on design
pattern detection approaches,’’ Int. J. Softw. Eng., vol. 7, pp. 41–59,
Dec. 2016.

[4] M. Alfadel, K. Aljasser, and M. Alshayeb, ‘‘Empirical study of the rela-
tionship between design patterns and code smells,’’ PLoS ONE, vol. 15,
no. 4, Apr. 2020, Art. no. e0231731.

[5] V. Ferme, A. Marino, F. A. Fontana, ‘‘Is it a real code smell to be removed
or not,’’ in Proc. Int. Workshop Refactoring Test. (RefTest), Co-Located
Event XP Conf. SN, 2013.

[6] L. Aversano, L. Cerulo, and M. D. Penta, ‘‘Relationship between design
patterns defects and crosscutting concern scattering degree: An empirical
study,’’ Software, IET, vol. 3, pp. 395–409, Nov. 2009.

[7] D. Bán and R. Ferenc, ‘‘Recognizing antipatterns and analyzing their
effects on software maintainability,’’ in Proc. Int. Conf. Comput. Sci. Appl.,
Jun. 2014, pp. 337–352.

[8] A. Cairo, G. Carneiro, and M. Monteiro, ‘‘The impact of code smells on
software bugs: A systematic literature review,’’ Information, vol. 9, no. 11,
p. 273, Nov. 2018.

VOLUME 9, 2021 3371



T. Alkhaeir, B. Walter: Effect of Code Smells on the Relationship Between Design Patterns and Defects

[9] B. Cardoso and E. Figueiredo, ‘‘Co-occurrence of design patterns and
bad smells in software systems: An exploratory study,’’ in Proc. Anais
do Simpósio Brasileiro de Sistemas de Informação (SBSI), May 2015,
pp. 347–354.

[10] J. Cohen, ‘‘Statistical power ANALYSIS for the behavioral sciences,’’
SERBIULA, Sistema Librum 2.0, vol. 2nd, Jan. 1988, doi: 10.1016/B978-
0-12-179060-8.50012-8.

[11] M. D’Ambros, A. Bacchelli, and M. Lanza, ‘‘On the impact of design
flaws on software defects,’’ in Proc. 10th Int. Conf. Qual. Softw., Jul. 2010,
pp. 23–31.

[12] J. Dong, D. S. Lad, and Y. Zhao, ‘‘DP-miner: Design pattern discovery
using matrix,’’ in Proc. 14th Annu. IEEE Int. Conf. Workshops Eng.
Comput.-Based Syst. (ECBS), Mar. 2007, pp. 371–380.

[13] M. O. Elish and M. A. Mohammed, ‘‘Quantitative analysis of fault density
in design patterns: An empirical study,’’ Inf. Softw. Technol., vol. 66,
pp. 58–72, Oct. 2015.

[14] E. Erturk and E. Akcapinar Sezer, ‘‘Iterative software fault prediction
with a hybrid approach,’’ Appl. Soft Comput., vol. 49, pp. 1020–1033,
Dec. 2016.

[15] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T. Gyimóthy, ‘‘A public unified
bug dataset for java,’’ in Proc. 14th Int. Conf. Predictive Models Data Anal.
Softw. Eng., Oct. 2018, pp. 12–21.

[16] F. Arcelli Fontana, P. Braione, andM. Zanoni, ‘‘Automatic detection of bad
smells in code: An experimental assessment.,’’ J. Object Technol., vol. 11,
no. 2, p. 5:1, 2012.

[17] M. Fowler, Refactoring: Improving Design Existing Code. Reading, MA,
USA: Addison-Wesley, 1999.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Read-
ing, MA, USA: Addison-Wesley, 1994.

[19] M. Gatrell and S. Counsell, ‘‘Design patterns and fault-proneness a study
of commercial C# software,’’ in Proc. 5th Int. Conf. Res. Challenges Inf.
Sci., May 2011, pp. 1–8.

[20] R. B. Grady, Practical Software Metrics for Project Management and
Process Improvement. Upper Saddle River, NJ, USA: Prentice-Hall, 1992.

[21] Y.-G. Gueheneuc and H. Albin-Amiot, ‘‘Using design patterns and con-
straints to automate the detection and correction of inter-class design
defects,’’ in Proc. 39th Int. Conf. Exhib. Technol. Object-Oriented Lang.
Syst. TOOLS, 2001, pp. 296–305.

[22] A. Gupta, B. Suri, and S. Misra, ‘‘A systematic literature review: Code
bad smells in java source code,’’ in Proc. Int. Conf. Comput. Sci. Appl.,
Jul. 2017, pp. 665–682.

[23] T. Hall, M. Zhang, D. Bowes, and Y. Sun, ‘‘Some code smells have a
significant but small effect on faults,’’ ACM Trans. Softw. Eng. Methodol.,
vol. 23, no. 4, pp. 1–39, Sep. 2014.

[24] L. V. Hedges, ‘‘Estimation of effect size from a series of independent
experiments.,’’ Psychol. Bull., vol. 92, no. 2, pp. 490–499, 1982.

[25] F. Jaafar, A. Lozano, Y.-G. Gueheneuc, and K. Mens, ‘‘On the analysis of
co-occurrence of anti-patterns and clones,’’ in Proc. IEEE Int. Conf. Softw.
Qual., Rel. Secur. (QRS), Jul. 2017, pp. 274–284.

[26] C. C. Jones, Software Quality: Analysis and Guidelines for Success, 1st ed.
Boston, MA, USA: Thomson Learning, 1997.

[27] M. Jureczko and L. Madeyski, ‘‘Towards identifying software project
clusters with regard to defect prediction,’’ in Proc. 6th Int. Conf. Predictive
Models Softw. Eng., vol. 9, Dec. 2010, p. 9.

[28] F. Khomh and Y.-G. Gueheneuc, ‘‘Do design patterns impact software
quality positively?’’ in Proc. 12th Eur. Conf. Softw. Maintenance Reeng.,
Apr. 2008, pp. 274–278.

[29] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer, 2007.

[30] W. Li and R. Shatnawi, ‘‘An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution,’’
J. Syst. Softw., vol. 80, no. 7, pp. 1120–1128, Jul. 2007.

[31] H. Liu, B. Li, Y. Yang, W. Ma, and R. Jia, ‘‘Exploring the impact of code
smells on fine-grained structural change-proneness,’’ Int. J. Softw. Eng.
Knowl. Eng., vol. 28, no. 10, pp. 1487–1516, Oct. 2018.

[32] H. B. Mann and D. R. Whitney, ‘‘On a test of whether one of two ran-
dom variables is stochastically larger than the other,’’ Ann. Math. Statist.,
vol. 18, no. 1, pp. 50–60, Mar. 1947.

[33] M. V. Mantyla, ‘‘An experiment on subjective evolvability evaluation of
object-oriented software: Explaining factors and interrater agreement,’’ in
Proc. Int. Symp. Empirical Softw. Eng., Nov. 2005, pp. 277–286.

[34] R. Marinescu, ‘‘Detection strategies: Metrics-based rules for detect-
ing design flaws,’’ in Proc. 20th IEEE Int. Conf. Softw. Maintenance,
Sep. 2004, pp. 350–359.

[35] R. Nascimento and C. Sant’Anna, ‘‘Investigating the relationship between
bad smells and bugs in software systems,’’ in Proc. 11th Brazilian Symp.
Softw. Compon., Archit., Reuse SBCARS, 2017, pp. 1–10.

[36] J. Niere, W. Schafer, J. P. Wadsack, L. Wendehals, and J. Welsh, ‘‘Towards
pattern-based design recovery,’’ in Proc. 24th Int. Conf. Softw. Eng. ICSE,
2002, pp. 338–348.

[37] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjoberg, ‘‘Are all code smells
harmful? A study of god classes and brain classes in the evolution of
three open source systems,’’ in Proc. IEEE Int. Conf. Softw. Maintenance,
Sep. 2010, pp. 1–10.

[38] S. Olbrich, S. D. Cruzes, V. Basili, and N. Zazworka, ‘‘The evolution
and impact of code smells: A case study of two open source systems,’’
in Proc. 3rd Int. Symp. Empirical Softw. Eng. Meas. (ESEM), Oct. 2009,
pp. 390–400.

[39] M. O. Onarcan and Y. Fu, ‘‘A case study on design patterns and software
defects in open source software,’’ J. Softw. Eng. Appl., vol. 11, no. 05,
pp. 249–273, 2018.

[40] J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and A. Verkamo,
‘‘Software metrics by architectural pattern mining,’’ in Proc. Int. Conf.
Softw., Theory Pract. (16th IFIP World Comput. Congr.), Jan. 2000.

[41] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, and A. D. Lucia,
‘‘On the diffuseness and the impact on maintainability of code smells: A
large scale empirical investigation,’’ Empirical Softw. Eng., vol. 23, no. 3,
pp. 1188–1221, Aug. 2017.

[42] L. Prechelt, B. Unger, W. F. Tichy, P. Brossler, and L. G. Votta, ‘‘A con-
trolled experiment in maintenance: Comparing design patterns to simpler
solutions,’’ IEEE Trans. Softw. Eng., vol. 27, no. 12, pp. 1134–1144,
Dec. 2001.

[43] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F. Tichy, ‘‘Two
controlled experiments assessing the usefulness of design pattern docu-
mentation in program maintenance,’’ IEEE Trans. Softw. Eng., vol. 28,
no. 6, pp. 595–606, Jun. 2002.

[44] G. Shan and S. Gerstenberger, ‘‘Fisher’exact approach for post hoc
analysis of a chi-squared test,’’ PLoS ONE, vol. 12, no. 12, pp. 1–12,
Dec. 2017.

[45] S. S. Shapiro and M. B. Wilk, ‘‘An analysis of variance test for nor-
mality (complete samples),’’ Biometrika, vol. 52, nos. 3–4, pp. 591–611,
Dec. 1965.

[46] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, 4th ed. London, U.K.: Chapman & Hall/CRC, 2007.

[47] D. I. K. Sjoberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dyba,
‘‘Quantifying the effect of code smells on maintenance effort,’’ IEEE
Trans. Softw. Eng., vol. 39, no. 8, pp. 1144–1156, Aug. 2013.

[48] B. Sousa, M. Bigonha, and A. M. K. Ferreira, ‘‘A systematic literature
mapping on the relationship between design patterns and bad smells,’’ in
Proc. 33rd Annual ACM Symp. Appl. Comput., Apr. 2018, pp. 1528–1535.

[49] B. Sousa, M. Bigonha, and K. Ferreira, ‘‘An exploratory study on cooccur-
rence of design patterns and bad smells using software metrics,’’ Softw.,
Pract. Exper., May 2019, doi: 10.1002/spe.2697.

[50] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. Halkidis, ‘‘Design
pattern detection using similarity scoring,’’ IEEE Trans. Softw. Eng.,
vol. 32, no. 11, pp. 896–909, Nov. 2006.

[51] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, ‘‘When and why your code starts to smell bad,’’
in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., May 2015,
pp. 403–414.

[52] M. Vokac, ‘‘Defect frequency and design patterns: An empirical study of
industrial code,’’ IEEE Trans. Softw. Eng., vol. 30, no. 12, pp. 904–917,
Dec. 2004.

[53] B. Walter and T. Alkhaeir, ‘‘The relationship between design patterns
and code smells: An exploratory study,’’ Inf. Softw. Technol., vol. 74,
pp. 127–142, Jun. 2016.

[54] P. Wendorff, ‘‘Assessment of design patterns during software reengineer-
ing: Lessons learned from a large commercial project,’’ in Proc. 5th Eur.
Conf. Softw. Maintenance Reeng., Mar. 2001, pp. 77–84.

[55] A. Yamashita, ‘‘Assessing the capability of code smells to explain mainte-
nance problems: An empirical study combining quantitative and qualitative
data,’’ Empirical Softw. Eng., vol. 19, no. 4, pp. 1111–1143, Aug. 2014.

[56] D. Yu, Y. Zhang, and Z. Chen, ‘‘A comprehensive approach to the recovery
of design pattern instances based on sub-patterns and method signatures,’’
J. Syst. Softw., vol. 103, pp. 1–16, May 2015.

[57] X. Zhang, Y. Zhou, and C. Zhu, ‘‘An empirical study of the impact of bad
designs on defect proneness,’’ in Proc. Int. Conf. Softw. Anal., Test. Evol.
(SATE), Nov. 2017, pp. 1–9.

3372 VOLUME 9, 2021

http://dx.doi.org/10.1016/B978-0-12-179060-8.50012-8
http://dx.doi.org/10.1016/B978-0-12-179060-8.50012-8
http://dx.doi.org/10.1002/spe.2697


T. Alkhaeir, B. Walter: Effect of Code Smells on the Relationship Between Design Patterns and Defects

TAREK ALKHAEIR received the master’s degree
in computing from the Poznań University of
Technology, Poznań, Poland, and the master’s
degree in web science from Syrian Virtual Uni-
versity, Syria. He is currently pursuing the Ph.D.
degree with the Poznań University of Technol-
ogy. He is currently a Software Engineer and a
Researcher. He also works as a Senior Software
Engineer with Roche Poland. His research inter-
ests include code quality, design patterns, and code
smells.

BARTOSZ WALTER received the Ph.D. degree
from the Poznań University of Technology,
Poland. He is currently affiliated to his Alma
Mater, where he is also an Assistant Professor,
and also works as a Senior Researcher with the
Poznań Supercomputing and Networking Center,
Poznań, Poland. His research interests include
software maintenance and evolution, as well as
several aspects of object-oriented design and soft-
ware testing.

VOLUME 9, 2021 3373


