
Received November 9, 2020, accepted December 23, 2020, date of publication December 28, 2020, date of current version January 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3047813

SOTPM: Software One-Time Programmable
Memory to Protect Shared Memory
on ARM Trustzone
DONGWOOK SHIM AND DONG HOON LEE , (Member, IEEE)
Graduate School of Information Security, Korea University, Seoul 02841, South Korea

Corresponding author: Dong Hoon Lee (donghlee@korea.ac.kr)

This work was supported by the Korea University Grant.

ABSTRACT In ARM TrustZone-based architecture, shared memory is one of the most useful schemes to
enable isolated execution environments supported by TrustZone to communicate between environments.
However, it is already known that shared memory is vulnerable to man-in-the-middle attacks since mech-
anisms to check integrity or authenticate callers for the shared memory payload are not supported in
TrustZone. While an encryption-based method that resolves this limitation does exist, there are some
architectural limitations. Indeed, even with key protection countermeasures applied, there is a risk that
encryption keys may be leaked, as they are placed in insecure user memory during communication.
Moreover, countermeasures for key leakage cause system performance overhead. In this paper, we propose
a lightweight and secure scheme for shared memory, called Software One-Time Programmable Memory
(SOTPM). SOTPM is a software-implemented, one-time programmable shared memory. It is based on the
idea that payload encryption in the shared memory layer is unnecessary because sensitive data is already
encrypted in the application layer before being written to the shared memory. SOTPM is set to read-only
after data is written into SOTPM due to the one-time programmable characteristic. Therefore, attackers are
unable to manipulate content in SOTPM during communication. Since it is not necessary for SOTPM to
encrypt the payload in order to prevent malicious payload manipulation, it is possible to remove the risk
of key leakage posed in previous studies. Additionally, in contrast with the existing method, our method
can dramatically reduce system performance overhead. We implemented our prototype on an open-source
hardware board with an Armv8-A processor and performed a security analysis and performance evaluation.
The results show that SOTPM provides a sufficient level of security and less than 1% performance overhead,
implying that SOTPM is a reasonable solution for current commercial products.

INDEX TERMS ARM TrustZone, secure communication, shared memory.

I. INTRODUCTION
ARM TrustZone [1], a security hardware extension for ARM
architecture, has been widely adopted for use in various
smart or IoT devices. This technology divides an execution
environment into two isolated domains: a rich execution envi-
ronment (REE) for hosting a rich OS and a trusted execution
environment (TEE) for a secure OS. Isolated from the REE,
the TEE executes security-critical services such as payment,
banking, authentication, and signing without disclosing sen-
sitive data to the REE. Since the two domains are isolated,

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Aljawarneh .

a communication scheme is necessary to send large volumes
of data from one domain to the other. The shared memory
is one of the most useful schemes to enable the isolated
domains to communicate with each other on TrustZone-based
architecture, owing to its performance and usability. Many
studies have widely adopted a shared memory scheme on
TrustZone-based TEE to provide trusted computing features
like security-critical services, end-to-end secure communica-
tion, and TEE virtualization.

TrustZone-related studies assume that TEE is secure and
an attacker is unable to infiltrate a TEE. However, these
assumptions can be dismantled since an attacker can infil-
trate a TEE by exploiting weaknesses of the shared memory.

4490 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4615-9546
https://orcid.org/0000-0003-0692-2543
https://orcid.org/0000-0001-5748-4921


D. Shim, D. H. Lee: SOTPM to Protect Shared Memory on ARM Trustzone

Indeed, attackers frequently exploit the various weaknesses
of the shared memory scheme to infiltrate TEE, and there
are already many reports on a variety of common vulnerabil-
ities and exposures (CVE) (e.g. CVE2013-3051, CVE2015-
4421, CVE2015-6639, CVE2015-6647, CVE2016-0825, and
CVE2016-2431). Among the critical weaknesses of the
shared memory scheme, a noteworthy point is that the ARM
TrustZone does not support integrity-checking mechanisms
and caller authentication for shared memory as related to
communication between the REE and the TEE. In other
words, an invoked trusted application (TA) in TEE cannot
know whether or not the content in the shared memory has
been manipulated or which client application (CA) in an REE
invokes the corresponding TA. In more detail, an attacker
can analyze the message structure of an objective TA with
several methods, including hijacking the TEE client library
or TEE driver, using a custom kernel, or reverse engineering,
given that each TA may have own message structure for
communication. After this analysis, the attacker creates an
arbitrary process or hijacks the TEE client library or TEE
driver in order to send messages. The attacker then sends
falsifiedmessages to the objective TA to locate vulnerabilities
in the objective TA. If the attacker succeeds in finding effec-
tive vulnerabilities after analyzing the responses for falsified
messages, they can invoke a TA with messages exploiting
identified vulnerabilities and gain access to sensitive data in
the TEE or manipulate TEE functions.

SeCReT [2] is the first proposed framework that aimed
to protect shared memory from these vulnerabilities, and it
introduced symmetric encryption for payloads in the shared
memory and active process contexts for session key man-
agement. However, SeCReT has two problems: a security
risk due to encryption key leakage and system performance
overhead. Since a symmetric key for encryption is located
in the user memory space of an REE, it is possible that
the key may be leaked by attacks out of the system pro-
tection boundary, such as a zero-day attack. In addition to
this security risk, the key protection countermeasures that are
added to most exception handlers and the hash verification
on every step cause performance overhead on the exception
handler. SeCReT optimization [3] largely mitigates these two
problems, but there is still the possibility of key leakage
via various attacks, since the REE is an insecure execution
environment.

Through analyzing payloads, we discovered that a pay-
load at the shared memory layer is not necessarily han-
dled as confidential data. Considering generic-use cases of
TEE services such as payments, all sensitive data is first
encrypted at the application layer in external service provider
and TEE, and then placed in the shared memory. Addition-
ally, the payload structure can be readily disclosed through
reverse engineering or API documents. These characteristics
are similar to payload wrapping on the general network com-
munication model, and given this fact, we know that one
main objective of channel encryption in previous research
has prioritized checking communication channel integrity

over confidentiality. Based on our discovery, we suggest a
lightweight and secure scheme that is different from exist-
ing technologies, called Software One-Time Programmable
Memory (SOTPM). A one-time programmable (OTP) mem-
ory is a special type of non-volatile memory (NVM) that
permits data to be written only once. SOTPM implements
this characteristic of OTP memory at the software level
through precise permission control of the Memory Manage-
ment Unit (MMU) for pages of physical memory.

SOTPM has two distinct features: channel protection and
caller process authentication. Channel protection switches
the SOTPM property between read-writable and read-only.
SOTPM is initially set to read-writable like random access
memory, but after data is written into SOTPM, the property is
switched to read-only to ensure data integrity. This switching
procedure is implemented in software and called activation.
We also introduce Triggering memory (TM), which acts as
a toggle switch that can perform activation securely without
kernel interference. Caller process authentication, the second
feature of SOTPM, checks whether or not the invoking CA
is allowed to send messages to the TA by verifying the
cryptographic hash value of the caller process. Specifically,
hash verification is performed against a static region of the
caller process by 4KBgranularity during both registration and
activation phases. Authentication is successful if the compile
time-generated hash value matches the one generated at run-
time. As more operations within the exception handler have
a more significant effect on system performance, SOTPM is
designed tominimize operations related to SOTPMwithin the
exception handler.

We implemented the prototype of SOTPM on an
open-source hardware board based on Armv8-A and per-
formed a security analysis and performance evaluation. In
our model, we assume that a secure boot [4] and kernel
integrity monitor [5]–[7] have already been applied to protect
the static region of the REE kernel. Our results show that
SOTPM is sufficiently secure compared with previously pro-
posed technologies and produces less than 1% performance
overhead.

In summary, the main contributions of this paper are:
• We introduce SOTPM, an innovative, yet lightweight
and secure shared memory scheme designed to protect
the communication channel between the REE and the
TEE. SOTPM provides a level of security that is com-
parable to previous works, while removing the risk of
key leakage. Moreover, SOTPM scheme prevents mali-
cious attempts to communicate with the TA for analysis
purposes.

• SOTPMmay be easily integrated into commercial prod-
ucts thanks to its lower implementation burden and low
performance overhead of less than 1%. In addition,
SOTPM does not interfere with any other security pro-
cesses in the system by minimizing the involvement to
exceptions within exception handlers.

• SOTPM can be extended to a cheaper A-series ARM
architecture-based system, such as small sensors or IoT

VOLUME 9, 2021 4491



D. Shim, D. H. Lee: SOTPM to Protect Shared Memory on ARM Trustzone

devices. Since SOTPM only utilizes TrustZone and
MMU, additional hardware extensions are not required.

The remainder of this paper is organized as fol-
lows: Section II introduces the required background informa-
tion. Section III describes our assumptions and attack model.
Section IV presents the design of SOTPM in detail. Section V
describes the implementation of SOTPM. Section VI details
our security analysis and performance evaluation. Section VII
discusses the limitations of SOTPM. Section VIII presents
related work. Section IX concludes this paper.

II. BACKGROUND
In this section, we provide background information on ARM
TrustZone and Armv8-A AArch64 page descriptor to aid
with understanding of our model. We briefly introduce the
TrustZone-based kernel integrity monitor, since we assume
in our model that a kernel integrity monitor is already applied
to protect the kernel static region in an REE.

Note that the Exception levels first introduced with the
Armv8 architecture replaces execution modes of Armv7 and
is represented as ‘‘ELx,’’ where x is a digit that describes
the privilege level from 0 to 3. EL0 is the lowest level of
privilege, where applications are executed, while OS kernel
runs in EL1, hypervisor in EL2, and secure monitor in EL3,
which is the highest level of privilege.

A. ARM TrustZone
ARM TrustZone [1], [8] is a security hardware extension
on ARM architecture that divides an execution environment
logically into an REE and TEE. The Non-secure (NS) bit of
the Secure Configuration Register (SCR_EL3) [9] indicates
whether the access is Secure or Non-secure, and it is added
to all memory system transactions including cache tags and
access to systemmemory and peripherals. TrustZoneAddress
Space Controller (TZASC), TrustZone Memory Adapter
(TZMA), and TrustZone Protection Controller (TZPC) are
hardware libraries that control access to DRAM, SRAM, and
peripherals. These libraries ensure that each TEE asset can be
accessed from the REE by checking the NS bit. As a result,
ARMTrustZone effectively provides a physical address space
for the TEE and a completely separate physical address space
for the REE.

By invoking a trusted application (TA) in the TEE, a client
application (CA) in the REE first opens the TEE device of
kernel, and then requests shared memory allocation to the
kernel. After shared memory is allocated, the CA writes pay-
loads for command ID, length, and other data into the shared
memory, and subsequently requests the kernel to invoke the
Secure Monitor Call (SMC) instruction. When the REE ker-
nel invokes the SMC instruction upon request, the Exception
level changes to EL3. EL3 is the gatekeeper of each execution
environment, and it saves and restores the context of each
domain in terms of every context switch between the REE
and the TEE. On invoking a TA, EL3 invokes the TEE kernel
after saving the REE context and restoring the TEE context.

The TEE kernel thus refers to payloads in the shared memory
and invokes the dedicated TA with arguments from payloads.
The TA performs the requested operation and returns after
writing the result into the shared memory. Upon returning a
result to CA, invoking procedures are executed in reverse.
Figure 1 illustrates the generic communication scheme of
ARM TrustZone.

FIGURE 1. Generic ARM TrustZone communication scheme: REE EL0 and
TEE EL0 pass payloads and results by referring to a shared memory.
A man-in-the-middle attack is possible in an REE at the points indicated.

B. Armv8-A AArch64 MMU AND DESCRIPTOR
Armv8-A architecture supports Virtual Memory System
Architecture (VMSA) [10], which uses multi-level paging
in order to manage page tables efficiently. Each process has
its own virtual address space and can access the physical
memory through address translation. Address translation is
the procedure in which a virtual address (VA) is translated to
a physical address (PA) by referring to the page table on each
level in multi-level paging [11]. The address of the page table
(a.k.a. table base address), the start address to be translated,
is held in the Translation Table Base Registers (TTBR0_EL1,
TTBR1_EL1). TTBR0_EL1 is for applications in EL0, and it
is selected when the upper bits of the VA are all set to 0. On
the other hand, TTBR1_EL1 for kernel space is selectedwhen
the upper bits of the VA are all set to 1. EL2 and EL3 each
have a TTBR0, but no TTBR1.

A Memory Management Unit (MMU) is dedicated hard-
ware that translates a VA to a PA automatically in order to
support VMSA.Note that anymemory access is only possible
via MMU if VMSA is supported and MMU is enabled. In
addition to address translation, MMU decides whether or
not to allow access to the physical address of the next level
by referring to attributes of a descriptor on each level in
multi-level paging. Next, there are two AArch64 descriptor
types: table or block. A table descriptor contains the physical
address of the next level page table, while a block descriptor
contains the physical address of the actual block or page in
the memory. Each descriptor has entry attributes, such as
execution permission, access permission, and shareable and
non-secure access. The MMU verifies that the access request
is equivalent to the descriptor attributes, then executes address
translation continuously or makes translation faults.

C. TrustZone-BASED KERNEL INTEGRITY MONITOR
The TrustZone-based kernel integrity monitor [5]–[7] resides
in the TEE as a service that is aimed at protecting the static

4492 VOLUME 9, 2021



D. Shim, D. H. Lee: SOTPM to Protect Shared Memory on ARM Trustzone

region of the kernel in the REE. The main features of a
kernel integrity monitor are kernel de-privileging, emula-
tion of system control instructions, and trapping translation
table updates. The kernel integrity monitor removes privilege
from the kernel by configuring the properties of kernel static
regions and page tables as read-only. A de-privileged kernel is
unable to alter any content or property of a specified memory
region, as this privilege is reserved for the kernel integrity
monitor. In order to prevent any attempt at disabling the
MMU or manipulating the TTBR register to force the MMU
to refer to other falsified page tables, the kernel integrity
monitor emulates all system control instructions. An emu-
lation is implemented by replacing system control instruc-
tions, such as MRS and MSR, to SMC instruction. Since
all system instructions are verified by the kernel integrity
monitor through instruction emulation, an attacker is unable
to manipulate an MMU into referring to falsified page tables.
In addition, all page table updates are trapped within the
kernel integrity monitor, such that only verified modifica-
tions are updated. Since trapping translation table updates are
non-bypassable due to the fixed exception vectors, it is impos-
sible for attackers to remap arbitrary page tables, double map
kernel data, or manipulate memory properties. Moreover,
the execution of malicious code with privilege is prevented
by setting a Privileged eXecute Never (PXN) bit for all
user-space memory besides the code section. By combining
these features, the kernel integrity monitor ensures integrity
of the kernel static region in the REE.

III. ASSUMPTIONS AND ATTACK MODEL
A. WEAKNESSES OF SHARED MEMORY SCHEME IN
TrustZone
Shared memory can be allocated from free memory in
user-space or an additionally allocated memory mapped from
the kernel. The address of the shared memory should be
aligned since that address is re-mapped to the address space of
EL3 or TEE EL1. In order to obtain an easily aligned address,
allocation through the kernel is mainly used, since the kernel
manages memory as aligned page granularity.

The invocation procedure involving the shared memory
scheme has two weaknesses. The first is that it is difficult
to know whether an SMC invocation has been executed by
an authenticated CA in a TA or TEE OS because anyone
with privileges can invoke SMC instruction since there is no
caller tracing mechanism in TrustZone. Due to this weakness,
an attacker with kernel privileges can create an arbitrary
process and send falsified messages with crafted parameters.
The other is that a TA or TEE OS cannot know whether the
shared memory address or content has been manipulated. An
attacker with kernel privileges can hijack either an address or
data in the shared memory via the TEE library or TEE driver.
Moreover, the attacker can directly map the shared memory
region to the kernel address space and therefore manipulate
it. Figure 1 illustrates the parts vulnerable to attack in a
communication scheme.

B. TRUSTED COMPUTING FEATURES
In our model, we assume that the secure boot and kernel
integrity monitor, which are commercially available solu-
tions, has already been applied. Secure boot [4] is a method
that verifies the integrity and authenticity of a next boot stage
image before handing over execution upon boot. Since the
root of trust (RoT) should exist in read-only memory (ROM)
to verify image authenticity, we also assume that RoT has
already been inserted during factory processing and saved
in ROM. In addition to secure boot, almost all platforms,
including Android, iOS, and Tizen, ensure an application has
not been compromised on initial load through verification of
integrity and authenticity via signature. In other words, only
a verified OS and legitimate applications in the REE and TEE
are loadable through the secure boot. The static region of the
REE kernel and page tables are protected on run-time by the
kernel integrity monitor. Therefore, the kernel static region
is always protected by secure boot and the kernel integrity
monitor. Our assumptions for trusted computing features are
realistic given that all mentioned solutions have been actually
applied to commercial products such as Samsung Galaxy
devices powered by KNOX [12].

C. ATTACK MODEL
In our model, we assume a realistic attacker and commer-
cial device. Generally, the manufacturers of smart devices
(Samsung Galaxy devices, Google Nexus, so on) release
commercial products after disabling hardware-based debug
features like JTAG, breakpoints, and watchpoints for security.
Disabling hardware-based debug features makes it difficult
to perform a single step execution of an application or direct
manipulation against the application memory in commercial
products. However, it does not mean that it is impossible
to control-flow hijacking against the application or direct
manipulation of the application memory. We discuss these
limitations in section VII. Considering commercial device
environments, we assume that an attacker can’t hijack the
control flow of an application by utilizing hardware-based
debug features in our model.

We determine that the goal of an attack is to access, dis-
close, and misuse sensitive data like signing key, bio-metrics
data, or encrypted contents in the TEE. To accomplish the
goal, an active attacker is able to use debug bridge utilities
supported a shell like adb (Android Debug Bridge), and
they may have REE kernel privileges with exploiting kernel
vulnerabilities in run-time. We consider the attacker with
REE kernel privileges who can accomplish everything except
manipulating the kernel static region or page tables that are
protected by the secure boot and kernel integrity monitor or
utilizing hardware-based debug features. The attacker is also
able to bypass both authentication mechanisms that check
the Universal Unique IDentifier (UUID) of the requester and
access control mechanisms such as Security-Enhanced Linux
(SELinux). These are realistic assumptions since there are
bypassing cases [13], [14].

VOLUME 9, 2021 4493



D. Shim, D. H. Lee: SOTPM to Protect Shared Memory on ARM Trustzone

Direct access to TEE resources by the attacker can be
prevented because ARM TrustZone protects the resources
via TZASC, TZMA, and TZPC. Hence, the attacker tries to
access TEE resources indirectly by exploiting the weaknesses
of the shared memory scheme in TrustZone [15], [16]. In this
scenario, the attacker with REE kernel privilege can passively
observe payloads on sharedmemory via the kernel page table.
The attacker analyzes the message structure of an objec-
tive TA by observation, hijacking the TEE libraries, using
a custom kernel, or reverse engineering. The attacker can
also observe data in shared memory via kernel page tables.
After analysis, the attacker may create a malicious process
that continuously invokes the SMC instructions with various
crafted parameters to uncover TEE service or application
vulnerabilities or access sensitive data in the TEE. Moreover,
the attacker may manipulate the shared memory by double
mapping to kernel space, or alternatively, sending falsified
messages or shared memory addresses after hijacking the
TEE library or TEE driver. If the attacker succeeds in finding
effective vulnerabilities after analyzing the responses for fal-
sified messages, they can invoke a TA with messages exploit-
ing identified vulnerabilities and gain access to sensitive data
in the TEE or manipulate the TEE function.

The MMU is at the core of our scheme, and therefore,
we assume that the system supports VMSA (and has enabled
MMU on boot. Additionally, our model rests on the assump-
tion that the REE processes permitted to access the TEE
and hash values of their corresponding static regions are
predefined as a list, which is maintained in EL3. The list
is created in compile-time and it may be included in the
EL3 image on build-time or may be delivered to EL3 on
boot with signature. We exclude Denial-of-Service (DoS)
attacks aiming to disrupt TEE services as these are not in
line with the goal of an attack that we present in this paper.
Finally, we do not consider Direct Memory Access (DMA)
attacks in this paper, as we assume that the Input-Output
Memory Management Unit (IOMMU) is secure. Note that
side-channel attacks are outside the scope of this paper since
they are beyond the coverage of ARM TrustZone protection.

IV. SOTPM DESIGN
A. OVERVIEW
In previous works, there was a remaining issue involving the
risk of encryption key leakage on communication and perfor-
mance overhead caused by key protection countermeasures.
In response to this, we specifically designed our model to
match or surpass the security level of previous models and
minimize performance overhead.

First, we considered the most efficient method for channel
protection. Channel encryption is a satisfactory choice to
preserve confidentiality and integrity simultaneously, but it
also has security risk of encryption key leakage. In order to
minimize this security risk, we analyzed payloads and discov-
ered that payload is not necessarily handled as confidential
data. Looking at end-to-end communication for TEE services

like payment or banking, all sensitive data such as session
key or payment transactions are encrypted at the application
layer in the external service provider and TEE, then written
into the shared memory. A CA is just worked as a bridge on
communication between an external service provider and a
TA, so that encryption is not necessary in the CA.Meanwhile,
the payload structure and its values such as command ID
can be easily obtained from the binary codes of an applica-
tion, library, or API documents. These payload properties are
similar to payload wrapping on a generic network commu-
nication model. Given that payload property, we designed a
channel protection process that minimizes overhead through
precise permission control of the Memory Management Unit
(MMU).

Next, we considered the caller process authentication. It
is a difficult problem to define the scope of a target pro-
cess for authentication. Generally, caller process authenti-
cation represents whether or not process integrity, which
is classified into static or dynamic integrity, has been pre-
served on verification time. Static integrity verifies values
of pre-defined sections on compile-time and mainly targets
a code section, while dynamic integrity mainly verifies Con-
trol Flow Integrity (CFI) or variables on run-time. Dynamic
integrity has the advantage of detecting advanced attacks
such as return-oriented programming (ROP) or code injection
attacks, but it also results in partial performance loss and
requires more storage. Unfortunately, given the other sup-
ported trusted computing features in our system, we deemed
it too expensive to apply simultaneous control flow tracing
along with static region verification. As a result, we ulti-
mately decided to check static integrity only for read-only
segments of a targeted application, including the program
header and codes, in order to enhance performance. Of
course, this decision pertains specifically to our system, and
the integrity scope can certainly be adjusted in view of secu-
rity requirements for a dedicated embedded system.

Figure 2 shows a conceptual overview of our proposal,
called Software One-Time ProgrammableMemory (SOTPM).
SOTPM consists of two features and four phases: the two
features encompass channel protection and caller process
authentication, and the four phases are registration, activa-
tion, invocation, and deregistration. We describe these fea-
tures and phases in detail in the next section.

FIGURE 2. SOTPM conceptual overview: SOTPM manager in
EL3 authenticates CA and sets the access permission for the shared
memory to read-writable or read-only.

4494 VOLUME 9, 2021



D. Shim, D. H. Lee: SOTPM to Protect Shared Memory on ARM Trustzone

B. CHANNEL PROTECTION
An OTP memory property is automatically switched to
read-only at the hardware level when data is written once.
Unlike OTP memory, the SOTPM property switches to
read-only when MMU alters the access permissions for page
descriptors of the shared memory at the software level.
This switching procedure is called activation. As shown in
Figure 3, the AArch64 descriptor contains a physical address
as well as upper and lower attributes. Access permissions
for a memory page are managed at low attributes of blocks
or page descriptors, which can be separately configured for
unprivileged level and privileged level. In detail, access per-
mission (AP) bits consist of two bits, which are placed at
bits 6 and 7 of the descriptor lower address. Bit 7 indicates
access permissions for privileged levels (EL1, EL2, EL3),
which is represented as read-writable (0) or read-only (1).
Bit 6 indicates access permissions for the unprivileged level
(EL0), which is represented as no-access (0) or the value
of privileged level (1) by the AP upper bit. When the value
is 1, it means either read-writable or read-only. Configurable
values of access permissions are summarized in Table 1. The
referring access permission level is determined by the excep-
tion level on accessing to the memory page. For example,
access permission for the unprivileged level is referred if
page access is done by TTBR0_EL0. Channel protection in
SOTPM is set by activation that alters access permission bits
for page descriptors to 11, which indicates that all access to
SOTPM at all exception levels is only permitted to read-only
after activation. This means that an attacker is not able to
indiscriminately manipulate data at all exception levels.

FIGURE 3. ARMv8 AArch64 page descriptor format: the descriptor has
upper and lower attributes. An unused bit in upper attributes is used for
caller process authentication, while access permission bits are used for
channel protection.

Thus, activation is critical to the implementation of channel
protection. Access permissions for the page descriptor are
controlled by the kernel integrity monitor and the SOTPM
manager in EL3. After a CA writes data into SOTPM, the CA
should securely send an activation request to the SOTPM
manager, prompting the activation of SOTPM. However,
the activation request can be manipulated in EL1 by an
attacker with kernel privileges. This is because all requests
from EL0 to EL3 pass through EL1 since Exception lev-
els increase stepwise. In order to prevent the request from
attacker interference or manipulation in REE EL1 during
activation, we introduce Triggering Memory (TM) to function
as a switch that securely sends an activation request to EL3 in
the form of a data abort exception.

TABLE 1. Configurable values of access permissions in page descriptors.

The SOTPM property is switched to read-only when a CA
writes data into SOTPMand touches (reads) the TM. In detail,
the TM is additionally allocated during the registration phase,
and its access permission is set to ‘‘no access’’ (10) in EL0.
If a CA reads the TM, a reading permission fault occurs due
to the EL0 access permission for TM. A reading permission
fault is a type of data abort that is produced during address
translation. A data abort handler is placed in the exception
vector table of the REE EL1 static region, which contains
codes that invoke an SMC instruction immediately for a
reading permission fault. After the Exception level is changed
to EL3 by SMC instruction, the SOTPM manager in EL3 is
invoked. The SOTPM manager changes access permissions
for TM and the shared memory for EL0 and EL1 to read-only
after verifying data abort related registers. The reason that the
access permission for EL1 changes additionally is because
the shared memory can be double mapped in EL1 since
EL1 has its own virtual memory space. As a result, both
REE EL0 and REE EL1 are unable to manipulate shared
memory values after activation. Each step of the changes in
access permissions for the sharedmemory and TM is outlined
in Table 2. Note that the reading permission fault for the TM,
caused by no-access, only occurs in the unprivileged level
(EL0), but it does not occur in any privileged level. Therefore,
an attacker is neither able to activate SOTPM directly at the
kernel level, even if they had kernel privileges, normanipulate
the exception vector table protected via the kernel integrity
monitor. The attacker may attempt to activate SOTPM at the
user level by creating an arbitrary process, but that attack can
be prevented by applying caller process authentication.

TABLE 2. Access permission values for each memory region by procedure.

In order to reduce SMC invocations caused by data abort
exceptions, the data abort handler only invokes an SMC
instruction if a level 3 reading permission fault occurs.
Level 3 indicates the third level of address translation. More-
over, the SOTPMmanager is placed in front of the TEE entry
point as a gatekeeper, to avoid context switching. Through

VOLUME 9, 2021 4495



D. Shim, D. H. Lee: SOTPM to Protect Shared Memory on ARM Trustzone

FIGURE 4. SOTPM procedure overview: SOTPM is made up of four phases. Here, generic communication and activation
flows are shown. The flows of the registration, invocation, and deregistration are the same as the generic communication
flow. SOTPM is activated via a data abort against the Triggering memory. Writing data into SOTPM is prohibited after the
access permissions of SOTPM in EL0 and EL1 are changed from read-writable to read-only.

minimizing SMC invocation and context switching, perfor-
mance overhead can be minimized for channel protection.
In addition, the integrity of the return value from TEE is
guaranteed up to SOTPM deregistration, since REE EL0 and
EL1 are unable to modify any content in the shared memory
after SOTPM is activated, while EL3, TEE EL1, and TEE
EL0 can write data into shared memory through address
remapping.

C. CALLER PROCESS AUTHENTICATION
The caller process authentication in our system verifies the
static region of the caller process via a cryptographic hash
function. The hash values of each page are pre-generated by
4KB granularity on compile-time, and they are included in the
EL3 image. Direct pagemanipulation can be detected through
static region hash verification. However, an attacker with
kernel privileges may directly compromise the original static
region after copying the valid static region to another location,
thus making EL3 verify the copied address by manipulat-
ing range values to the copied address during registration.
Unfortunately, these spoofing attacks cannot be detected by
a simple hash verification. In order to prevent these attacks,
we applied an address dependent hash that includes the virtual
address of each page to our design. If a caller process is
Position Independent Executable (PIE), the virtual addresses
utilizing the address dependent hash should be relative values
that are identical with the Executable Linkable Format (ELF).
The SOTPM manager performs an additional procedure to
calculate relative addresses in this case.

Holding a processor in the interrupt handler for extended
periods causes degradation of overall system performance.
Therefore, authentication may cause system performance
degradation since the verification for the caller process static

region should be performed in the interrupt handler during
activation. In order to minimize processing time for veri-
fication in the interrupt handler, we divide authentication
over the registration phase and activation phase. During the
registration phase, all loaded pages of a static region are
verified, and only additional loaded pages are verified during
the activation phase. In order to distinguish additional loaded
pages, memory storage is required to store a verification flag
indicating whether the page has been checked or not. As
shown in Figure 3, we located an unused bit among bits
reserved for software use. Additional memory references can
be minimized if an unused bit is used as a verification flag,
and as such, we decide to use the unused bit as a verification
flag. The SOTPM manager marks a verification flag as 1 if
the page is verified during the registration phase. During the
activation phase, the SOTPMmanager checks the verification
flag and verifies only pages whose verification flag is 0. As
a result, we minimize the performance overhead of caller
process authentication by utilizing the unused bit.

D. OVERALL PROCEDURES
The overall procedures are shown in Figure 4. The SOTPM is
made up of four phases: registration, activation, invocation,
and deregistration. All phases except activation are identical
with generic communication flow. Each phase is described in
the next paragraph.

1) REGISTRATION
The main jobs of the registration phase are SOTPM initializa-
tion, first caller process authentication among divided authen-
tication processes, and registration of essential information
to the SOTPMmanagement table. Essential information con-
sists of process names, current virtual memory regions, and

4496 VOLUME 9, 2021



D. Shim, D. H. Lee: SOTPM to Protect Shared Memory on ARM Trustzone

so on. A CA allocates the shared memory and Triggering
Memory (TM), which are aligned regardless of whether or not
the allocated shared memory from free space originates from
its own address space or a kernel address space. However,
4KB of aligned memory should be allocated since the MMU
handles memory as a page or block, and the minimum page
granularity is 4KB. If this does not occur, unused pages
among those allocated are unnecessarily affected during the
activation phase. The caller process passes virtual addresses
of the allocated shared memory and TM to the kernel (REE
EL1), where the corresponded process name and addresses of
static regions are added to pass parameters from EL0, which
then passes these to the SOTPMmanager in EL3 via the SMC
instruction.

The SOTPM manager performs a first caller process
authentication that verifies the information and static regions
of the caller process with a pre-defined list. If verification
is successful, the SOTPM manager reads TTBR0_EL1 and
stores it as an identifier with the relevant TM address together
in the SOTPM management table. It is reasonable to use the
TTBR0_EL1 value as an identifier because TTBR0_E1 indi-
cates the base address of a translation table for initial lookup
of the running process, and this table is unique for each pro-
cess. After storing values, the SOTPM manager changes TM
access permissions to no-access for EL0 and invalidates the
Translation Look-aside Buffer (TLB). Note that the kernel is
unable to make a reading permission fault exception since the
least privileged kernel is designated as read-only. Completing
these jobs, the SOTPM manager returns to the REE EL1.

2) ACTIVATION
In this phase, channel protection for SOTPM is performed.
The CA writes data into SOTPM and reads the TM to
activate SOTPM before invoking TA. Since the access per-
mission is no-access at EL0, data abort exceptions caused
by a level 3 reading permission fault occurs, and the pro-
cess state is changed to EL1. Entering EL1 via data aborts,
the kernel jumps to the exception vector table and executes
the data abort handler. We added a hooking function related
to SOTPM into the data abort handler on compile time so
that the hooking function would be executed earlier than the
original data abort handler. Note that it is possible to obtain
an exception type from the Exception Syndrome Register
(ESR_EL1) [9], which indicates syndrome information for
an exception taken to EL1. The hooking function checks that
the type of data abort exception is a level 3 reading permission
fault by referring to ESR_EL1. If the type is verified as a level
3 reading permission fault, the hooking function executes an
SMC instruction to change the process state to EL3. Other-
wise, it exits the hooking function and executes the original
data abort handler.

The SOTPM manager in EL3 reads information related
to the data abort exception from TTBR0_EL1, Fault
Address Register (FAR_EL1), and Exception Link Register
(ELR_EL1) [9]. The SOTPM manager finds a tuple with an
identifier that is same as the value of TTBR0_EL1 from the

SOTPM management table and runs a second caller process
authentication. If such a tuple is not found or authentication
fails, this indicates that that exception is unrelated to SOTPM,
or that an arbitrary process tried to activate SOTPM. In
these cases, SOTPM does nothing and simply returns to EL1.
The FAR_EL1 indicates the faulting virtual address for all
synchronous instruction or data aborts, PC alignment faults,
andwatchpoint exceptions that are taken to EL1. The SOTPM
manager checks whether the value of FAR_EL1 is the same
as the TM address. It is deemed that a page fault occurs
during the allocation of a new page if the values are different,
in which case the SOTPM manager does nothing and, again,
simply returns to EL1. The ELR_EL1 holds the address to
which it will return when taking an exception to EL1. The
SOTPM manager reads the next instruction address of the
data abort caused instruction from ELR_EL1. If the value
of ELR_EL1 is not within the range of the code section,
the SOTPM manager considers the request as one sent by
an attacker through a hijacking library or via modification of
control flow, and thus, it returns an error.

If all conditions are satisfied, the SOTPMmanager changes
access permissions of the shared memory and TM to
read-only and invalidates the TLB. Note that the shared mem-
ory can be double mapped to EL0 and EL1, in which case
permission changes must be executed for each level. After
completing the operations, the SOTPM manager returns to
REE EL0 via REE EL1. The CA is able to read the TM
value since its access permission is read-only. Hence, the CA
executes the next instruction after reading the TM value.

3) INVOCATION
The caller application invokes a TA with an API that has
already been used, and REEEL1 also runs the same as before.
However, the difference is that the verification procedure is
added to EL3. The SOTPM manager in EL3 checks whether
or not the current TTBR0_EL1 and shared memory address
match the registered values in the SOTPMmanagement table.
At the same time, the SOTPMmanager verifies that the access
permissions of the shared memory and TM are read-only.
The SOTPM manager passes the message to TEE EL1 if
the verification is successful. Otherwise, it returns an error.
Through the verification procedure, SOTPM ensures that
only permitted CA using SOTPM communicates with TA.

4) DEREGISTRATION
This is the last phase of SOTPM, in which the access permis-
sions of the shared memory and TM revert to read-writable
and corresponding tuples are removed from the SOTPM
management table. In detail, the caller process requests the
kernel to revert SOTPM to its original read-writable mem-
ory, and the kernel passes the request to the SOTPM man-
ager. SOTPM finds the tuple which has a corresponding
TTBR0_EL1 from the SOTPMmanagement table and reverts
access permissions to read-writable for both the shared mem-
ory and TM. Finally, the SOTPMmanager removes the corre-
sponding tuple and returns to REE EL1. After deregistration

VOLUME 9, 2021 4497



D. Shim, D. H. Lee: SOTPM to Protect Shared Memory on ARM Trustzone

is complete, the caller process deallocates the shared memory
and TM, and closes the TEE device of the kernel.

These procedures are repeated for each TA invocation, and
it is possible to send multiple messages for specific TA using
this same method.

V. IMPLEMENTATION
We implemented a prototype of SOTPM on a Raspberry
3 Model B board, which is made up of Broadcom BCM2837
(4x Cortex-A53 based on Armv8-A 1.2GHz) and 1GB RAM.
REEOS is Linux 4.14.56 and OPTEE 3.6.0 [17] is used as the
TEE OS. Trusted Firmware-A 2.0 [18] for EL3 is included
in OPTEE, and it is used as a secure monitor. In the REE,
about 310 LoC for Linux kernel and 130 LoC for TEE client
library were added. In the TEE, about 1070 LoC for SOTPM
components and 1390 LoC for hash functions were added to
Trusted Firmware-A, and no changes were made to OPTEE
in TEE EL1.

A. REE CHANGES
1) MMU
Generally, the Linux kernel intends to map a memory region
to a larger block descriptor wherever possible if the physical
and virtual addresses are aligned. This mapping policy effec-
tively reduces page table reference andmanagement overhead
as aspects of performance, while precise controls per page
granularity are impossible. Indeed, shared memory allocated
by the kernel is mainly mapped as a block descriptor for
2MB. The remaining memory may be wasted given that only
tens of kilobytes are used as allocated memory. In order to
minimize memory waste, we modified MMU codes to be
forcibly allocated into a page descriptor of 4KB granularity
on shared memory allocation.

2) DATA ABORT HANDLER
In our model, unlike previous studies, the type of data abort
exception can be checked within the data abort handler during
the activation phase without needing to remap the exception
vectors. To achieve this, we only added a hooking function
in front of the data abort handler instead of remapping the
exception vectors. The hook function checks a type of data
abort exception and invokes SMC instruction if a data abort
exception is a level 3 reading permission fault. As a result,
we successfully reduced performance overhead by minimiz-
ing SMC calls to EL3.

3) TEE DRIVER AND TEE CLIENT LIBRARY
Two system calls and two APIs are respectively added for
registration and deregistration to the kernel TEE driver and
TEE client library. It is not required at this point to add system
calls for activation or invocation since activation uses a data
abort mechanism, and invocation uses a prior system call and
API. The activation API is implemented as a static inline
function in the header file, which is included in the code
section of the caller process. An attack that activates SOTPM

by hijacking the TEE client library can also be prevented,
as the SOTPM manager checks that activation is performed
in the code section of the caller process.

B. TEE CHANGES - TRUSTED FIRMWARE-A
1) SOTPM MANAGER
The SMCCalling Conventions (SMCCC) [19] is the standard
mechanism to format SMC instruction. Especially, the func-
tion identifier determines which service or function to invoke
with options such as a calling convention (e.g., 32 or 64bit)
and call type (e.g., fast or yielding). Three function identifiers
are added to registration, activation, and deregistration in
SOTPM, and these share the same values as the OPTEE
function identifiers, except for the function number. As a
gatekeeper of OPTEE services in EL3, the SOTPM manager
pre-handles all OPTEE requests included in SOTPM function
identifiers. The SOTPM manager also manages the contexts
bound to each SOTPM request and inspects the shared mem-
ory in invocation.

InAArch64 ofArmv8-A architecture, each Exception level
has its own virtual address space and TTBR0. Therefore,
address remapping should be done at each Exception level
to access the memory of other Exception levels. This is
particularly relevant to EL1 or EL0 address spaces that are
entirely different from that of EL3 since EL3 uses linear map-
ping. Thus, we performed memory address remapping from
the required regions with virtual addresses, namely EL0 or
EL1, to the virtual memory space of EL3. Virtual address
translation in reference to TTBR0_EL1 or TTBR1_EL1 is
required to locate page tables in channel protection and caller
process authentication in EL3. Hence, we implemented the
virtual address translation function in the SOTPM manager
in EL3.

Context switching between the REE and the TEE is an
expensive procedure that causes performance overhead. In
order to minimize context switching for SOTPM, the SOTPM
manager is executed without context switching in the REE
context. This approach calls for EL0 or EL1 to perform
address remapping and access the EL3 address space since
the virtual address space of EL3 is independent. How-
ever, as address remapping is impossible because the kernel
integrity monitor traps the translation table update, the mem-
ory used by SOTPM in EL3 is secure, even though it runs in
the REE context without switching to the TEE. In addition,
the SOTPM manager is able to access protected memory via
TZASC by setting the NS bit to 0 at SCR_EL3. As a result,
we can remove the cost of context switching and obtain a
sufficient level of security in EL3 when the SOTPMmanager
is executed.

2) CRYPTOGRAPHIC HASH FUNCTIONS
The hash function is one major factor that affects perfor-
mance. Even though the latest algorithmmay be more secure,
the system designer must be able to choose the hash algo-
rithm in view of a practical system environment. In order

4498 VOLUME 9, 2021



D. Shim, D. H. Lee: SOTPM to Protect Shared Memory on ARM Trustzone

to select the algorithm, we ported the MD5, SHA-1, and
SHA256 from OpenSSL 1.1.1d to the SOTPM manager.
Even though MD5 is not recommended to use, we ported
it to compare performance with other algorithms. These are
subsequently utilized for caller process authentication during
the registration and activation phases.

VI. EVALUATION
A. SECURITY ANALYSIS
There are two major attack surfaces against SOTPM. One of
these surfaces regards channel protection, and the other con-
cerns caller process authentication. The details are described
as below.

1) ATTACK SURFACE AGAINST CHANNEL PROTECTION
An attacker can obtain the address of the shared memory
by hijacking the TEE client library or TEE driver upon the
invocation of the TA. However, direct manipulation of the
shared memory at the TEE client library or TEE driver is
impossible after activation is complete since access permis-
sions to the shared memory are switched to read-only during
SOTPM activation. The attacker may then attempt to allocate
the shared memory at another location and invoke TA via
an arbitrary creation process. These invocations, though, are
also blocked by the SOTPM manager, as the property of
the allocated shared memory used by the attacker are not
read-only. Additionally, the attacker is unable to manipulate
the shared memory property because the page tables for the
shared memory are protected by the kernel integrity monitor.

The attacker is unable to activate SOTPM via a process
created by the attacker since the process is not registered on
the allow list. Moreover, SOTPM activation is impossible in
the TEE driver even though the attacker has kernel privileges.
Note that a reading permission fault cannot be generated in
EL1 because the configurable, least privileged kernel is read-
only. An attack that manipulates payloads in shared memory
after double mapping to other processes is also impossible
because the kernel integrity monitor policy does not allow
double mapping. At this point, an attacker may try to replace
the shared memory address from registration or invocation in
the TEE driver or TEE client library. However, an attempt to
replace the address during registration ismeaningless because
any replaced memory becomes set as read-only during acti-
vation. Therefore, since the SOTPM manager can detect any
replacement of shared memory addresses during activation
by comparing a passing address with one from the SOTPM
management table, the replacement of an address during
activation is effectively blocked. In summary, SOTPM can
prevent various attempts to manipulate the shared memory.

The mprotect API has been originally designed to des-
ignate a specific region as a protected region, but it is fre-
quently misused as an attack method to disable memory
protection. The mprotect is ultimately a changing request of
access permissions for calling process memory pages, so that
the request reaches the kernel integrity monitor, where the

translation table is managed. The kernel integrity monitor
checks that the request is proper and determines whether or
not to allow the request. As a result, an improper changing
request via an mprotect system call is also prevented by the
kernel integrity monitor.

A CA activates SOTPM immediately through a data abort
after writing data into the shared memory. The attacker is
unable to hijack control flow in the middle even if they had
kernel privileges. This is because the data abort handler is
protected by the kernel integrity monitor, and the data abort
handler merely checks the exception type and invokes SMC
instructions immediately. Meanwhile, theMMU generates an
exception for all REEEL0 or EL1 attempts that write data into
the shared memory after activation. Therefore, the attacker is
not able to manipulate the shared memory this way. In order
to disable channel protection, the attacker may try to turn off
memory protection by disabling the MMU. However, system
privileged instructions to disable the MMU are emulated
by the kernel integrity monitor, which blocks such requests
precisely to render an attacker unable to disable the MMU.

2) ATTACK SURFACE AGAINST CALLER PROCESS
AUTHENTICATION
The REE kernel sends the static region virtual addresses of
a caller process, called range values, as essential information
during registration. The SOTPM manager has a pre-defined
list that has addresses and hash values per page for each static
region. Therefore, any direct manipulation of the static region
can be easily detected by comparing hash values calculated on
run-time against the list value.

However, range values can be manipulated by an attacker
with kernel privileges. The attacker may copy a valid static
region to another location and subsequently compromise the
original static region directly. Then, the attacker could pass
this copied location address on as essential information to the
SOTPMmanager in EL3 during registration. In this scenario,
it is possible for caller authentication to be bypassed since
the SOTPM manager verifies the static region at the copied
location. This type of spoofing attack can be prevented by
utilizing an address dependent hash that includes a dedicated
position address. The address dependent hash uses a virtual
address since virtual addresses of all sections are determined
at compile time.

The Time-of-check-to-time-of-use (TOCTOU) attack is a
method that exploits a timing gap between verification and
the use of the verification result. In order to succeed with
this attack, the attacker should first place compromised codes
somewhere in the memory and manipulate a page table to ref-
erence compromised codes after authentication is completed.
However, this can all be prevented because unauthorized
change requests for page tables are rejected by the kernel
integrity monitor.

B. PERFORMANCE EVALUATION
We evaluated our proposal in two different test environ-
ments: ‘‘Pure Linux,’’ in which no solutions are applied, and

VOLUME 9, 2021 4499



D. Shim, D. H. Lee: SOTPM to Protect Shared Memory on ARM Trustzone

TABLE 3. The results of the LMBench latency benchmark.

TABLE 4. Performance by payload size for test application using SHA256 in a static region about 8KB in size.

‘‘SOTPM-enabled Linux,’’ in which our scheme is applied.
Since the test board we used is more powerful and different
from the board used in SeCReT or SeCReT optimization,
it is not suitable to directly compare elapsed time between
the experiments. However, comparing overhead ratios may be
helpful to determine the overhead incurred by each solution.
Therefore, we run a comparison with SeCReT or SeCReT
optimization only in terms of overhead ratio. Note that SHA-
1 is used for caller authentication in SeCReT and SeCReT
optimization.

1) LMBench
The LMbench is a series of micro-benchmarks intended
to measure basic operating system metrics, such as system
call invocation, fork, open/close, and signal handling. Using
LMBench, we are able to evaluate theOS performance impact
of SOTPM. The benchmark was run 10 times in each test
environment.

Table 3 represents the results of LMBench performed, with
each value showing the average value after running 10 times.
Null call indicates system call invocation, where null I/O
means reading and writing 1 byte to /dev/null and the stat,
open and close represents the result of each system call on a
temporary file. The results show that the overhead for various
system calls remains under 1%. In the case of open and
close in pure Linux, one of the 10 results took additionally
about 400ms. That causes that performance looks enhanced
in SOTPM-enabled Linux, but we have to consider that it is
within an error range on the running system environment.
Consequently, even considering the error, SOTPM hardly
affects the performance of system calls.

Next, the operations that the signal handler installs along
with signal handling mean that a signal handler has been
inserted and is running. The results related to signal handling
even suggest an improvement in performance after enabling

SOTPM, but it is caused by the same reason with the case of
open and close - one of the results took a little time in pure
Linux. Hence, we can conclude that SOTPM also does not
significantly affect signal handling. Even though system calls
and signal handling are types of software exceptions, the hook
function added to the data abort handler skips handling them
since these are executed only for the reading permission fault
exception. Therefore, the results showing low-performance
overhead are reasonable and confirm that our hook function
works well as per our design.

Finally, fork related operations such as fork and exec rep-
resent the creation of a new process. The results show that
a small amount of processing time is increased compared
with other operations like system calls. This is to be expected
because the permission faults for new pagesmay occur during
page table initialization or the page table walk portion of
process initialization. However, the overheads for fork related
operations still remain under 1% due to minimized involve-
ment of the exception handler.

Our proposal incurs significantly lower system overhead
for all system APIs than SeCReT or SeCReT optimization.
In addition, the results of LMbench benchmark indicate that
the performance overhead of SOTPM is quite low, so that it
can be easily applied to commercial products.

2) OVERALL SOTPM OVERHEAD
In order to measure overall overhead resulting during com-
munication due to the addition of SOTPM, we implemented
a test application in which a CA copies data into the shared
memory as a defined size and the corresponding TA returns
a pre-defined string. We performed measurements 10 times
on a pure system and a SOTPM-enabled system, holding the
hash algorithm as SHA256 and static region size of the caller
process at 4KB. As shown in Table 4, the test results illustrate
that SOTPM overhead is under 0.5% regardless of message

4500 VOLUME 9, 2021



D. Shim, D. H. Lee: SOTPM to Protect Shared Memory on ARM Trustzone

size, unlike SeCReT and SeCReT optimization, which are
largely affected by message size. Moreover, the results show
that our proposal has a lower overhead ratio than either
SeCReT or SeCReT optimization, even though SHA256 is
used instead of SHA-1, which was used in SeCReT. Conse-
quentially, the overhead caused by increasing payload size in
SOTPM hardly has an impact on system performance.

Next, we ran the test 10 times with the payload size fixed
at 8KB to measure overhead by the static region size of
CA and determine the impact of various algorithms. Table 5
represents performance results with the hash algorithm and
the static region size. The results show mild increments of
growing overhead correlating to incrementally larger static
region sizes and more secure algorithms. In detail, it shows
that about 150ms is increased by a page when SHA256 is
used, and SHA256 is a little more burden than SHA1 or
MD5. However, the overhead increments are an acceptable
level given that SHA256 security strength. We know that
a caller authentication hash calculation majorly affects per-
formance, but our results indicate that the impact is quite
limited. However, the system designer should consider that
these results may vary with each hardware environment of
a targeted board, given that hash calculation time largely
depends on CPU performance and whether or not there is
support for hardware cryptographic engine.

TABLE 5. Hash algorithm performance for test application using 8KB
payload.

In summary, our performance test results show that our
proposal produces an insignificant increase in performance
overhead, making it suitable to integrate into commercial
products.

VII. DISCUSSION
In this section, we discuss the limitations of our proposal. We
assume that our model is robust against the following attacks
due to its high difficulty to run, but nevertheless, the attempts
at these attacks may still occur. We describe detailed scenar-
ios and suggest countermeasures for each attack.

A. OVERFLOW ATTACK AGAINST SHARED MEMORY
An attacker can perform an overflow attack to manipulate
payloads in an activated SOTPM environment if all con-
ditions below are satisfied: 1) The physical addresses are
continuously mapped to a virtual address. 2) An attacker can
access any virtual address lower than the SOTPM address

with write permission, 3) The distance between the lower
address and SOTPM address is close enough to perform the
attack.

The first condition depends on the kernel address mapping
policy for the shared memory. Generally, the kernel makes
multiple memory blocks and maps physical addresses to
virtual addresses continuously within a memory block. Espe-
cially, a memory pool, which is a pre-allocated memory set,
is used to minimize allocation overhead. If the shared mem-
ory uses a memory pool made up of one memory block, two
allocated addresses may be physically contiguous. The sec-
ond condition may be satisfied if an attacker obtains a low
address as a dangling pointer by repeating allocation and
deallocation. This method exploits the policy of allocating
kernel memory that tends to reuse prior allocated memory
regions. In addition, the attacker should have kernel privileges
to locate the address of SOTPM, and other SOTPMs should
not exist between the obtained lower address and the objective
SOTPM address. The third condition is essential to success-
fully stage an overflow attack. The attacker should know the
structures between the obtained lower address and SOTPM to
overwrite data at a specific position in SOTPM. If the distance
is too far, the analysis of memory structure becomes difficult,
so that overflow attack becomes difficult to perform.

Therefore, we recommend not allocating any already used
addresses for the shared memory so that the third condition
cannot be satisfied. Although a random allocation policy
may be a better choice than ‘‘first-fit’’ or ‘‘best-fit’’ policies
in terms of security, this may increase allocation overhead.
Moreover, applying to defend techniques, such as stack guard
against stacks or heap overflow attacks, it may be a reasonable
solution despite the additional burden of the memory alloca-
tor implementation for shared memory. Note that system per-
formance may decrease when additional defend techniques
are applied.

B. CONTROL-FLOW HIJACKING ATTACK AGAINST
APPLICATIONS
Generally, the allocation of memory, writing data, activation,
and invocation are sequentially executed as continuous exe-
cution flow. An attacker is unable to change control flow
through direct code manipulation before execution since the
framework authenticates the signature of the application on
load. However, control flow hijacking at some point between
writing data and activation is possible, even though this is
very difficult to accomplish. The attacker may exploit vulner-
abilities of the application and manipulate payloads in front
of the activation API through control flow hijacking with
an overflow attack, code injection attack, or return-oriented
programming (ROP) attack. Moreover, the attacker may try
to interfere in the control-flow of writing data into shared
memory by running the thread on a different CPU core in
parallel to the main CA thread before the activation.

A control-flow interference by a thread on a different CPU
core can be prevented by applying a locking mechanism
like a spinlock to shared memory at the application-level.

VOLUME 9, 2021 4501



D. Shim, D. H. Lee: SOTPM to Protect Shared Memory on ARM Trustzone

Mitigation for control flow hijacking attacks generally
involves applying Control Flow Integrity (CFI). There are
many techniques to CFI, which are categorized accord-
ing to correctness (fine-grained, coarse-grained), verifica-
tion objects (forward-edge, backward-edge), and information
(static, dynamic). Therefore, it is required to apply appropri-
ate CFI techniques in view of application security require-
ments. However, this subject is the topic of other major
research domains and out of scope for this paper. As such,
we assume that a CA is robust against control-flow hijacking
attacks.

VIII. RELATED WORK
A. TrustZone-BASED TRUSTED EXECUTION
ENVIRONMENT
The TEE supported by ARM TrustZone is utilized to manage
sensitive data on end-to-end communication with an exter-
nal service provider like banking, payment, and authentica-
tion. In addition, a TrustZone-based TEE may be used to
obtain reliable data from internal peripherals through Trust-
Zone Protection Controller (TZPC), which controls access to
peripherals. In order to source reliable and secure data from
sensors, some researchers have proposed the use of a trusted
sensor [20]. TrustedUI [21] and TrustedOTP leverage Trust-
Zone to protect sensitive input in a user interface and support
software-based one-time passwords. Moreover, a TrustZone-
based TEE is used to provide various security-enhancing
services for a device. TZ-RKP [5], [6] and Sprobes [7], for
example, are kernel integrity monitors that reside in the TEE
and monitor the static region of the kernel. TrustDump [22],
TrustShadow [23], and Ninja [24], on the other hand, lever-
age TrustZone to acquire information about and protect the
system from malware. C-FLAT [25] and OAT [26] utilizes
the TEE to remotely attest the control flow integrity of an
application. Through TEE virtualization, the openness of a
TrustZone-based TEE can be improved. To this end, vTZ [27]
and PrivateZone [28] leverage hypervisor to virtualize a
TrustZone-based TEE. Sanctuary [29] also supports multiple
isolated, virtualized compartments based on an REE that are
able to execute a TA by assigning a dedicated CPU. In order
to expand the protection scope of TrustZone, SecTEE [30]
proposes a TEE-based architecture that is robust against cer-
tain side-channel attacks. Meanwhile, TrustZone-based com-
munication channels also have a critical security weakness
that is used to leverage attacks against a TEE. SeCReT [2]
and SeCReT optimization [3] prevent attacks exploiting these
weakness through channel encryption. SOTPM leverages
precise permission controls of MMU to prevent attacks on
communication channels.

B. KERNEL INTEGRITY MONITOR
Various approaches have also been proposed to monitor
kernel integrity. One representative approach is to keep the
monitor in a secure area, such as a hypervisor, external

hardware, or secure monitor, to protect the monitor from
attacks. Secvior [31] implements a tiny hypervisor-based
hardware memory protection and CPU virtualization in order
to shield the kernel from attackers. Lares [32] places hooks in
a guest virtual machine (VM) and performs security verifica-
tion on guest VM in security VM on the hypervisor in order
to monitor the guest VM. Next, although SIM [33] adopts
the same architecture as Lares, it utilizes hardware mem-
ory protection and hardware virtualization while minimizing
the involvement of the hypervisor. HookSafe [34] relo-
cates and protects thousands of kernel hooks with hardware-
based, page-level protection from hijacking attacks. As a
hardware-based approach, HyperCheck [35] and HyperSen-
try [36] leverage the system management mode supported
on x86 to monitor the hypervisor and kernel integrity.
KI-Mon [37] and Vigilare [38] are implemented via indepen-
dent hardware based on system bus monitoring. Meanwhile,
a secure monitor-based approach utilizes ARM TrustZone.
TZ-RKP [5], [6] and Sprobes [7] reside in TEE and monitor
the static regions of the kernel. A TrustZone-based kernel
integrity monitor performs kernel de-privileging, system con-
trol instruction emulation, and page table update trapping.
SOTPM should protect the exception vector and page tables
in EL1, which can be achieved with a TrustZone-based kernel
integrity monitor.

C. MEMORY INTEGRITY VERIFICATION
Caller process authentication is based on memory integrity
verification in an application, and the scope of memory
may be codes, data, or both. Since software-only integrity
verification methods are proven insufficient in terms of
reliability, previous studies focused on hardware-assistant
verification methods. XOM [39], Palladium [40], and cor-
rected XOM [41] are secure processor-based memory ver-
ification methods that use encryption, cryptographic hash,
and message authentication code (MAC). Several different
approaches have been studied for memory integrity verifi-
cation in secure processors. A MAC-based scheme [39] and
log hash [42], [43] write the MAC or hash into memory
and verify the value upon reading from memory. A Merkle
Tree-based scheme proposes the structural use of the MAC or
hash [41] for efficient verification, while one Bonsai Merkle
Tree [44] focuses on reducing calculation overhead of the
original Merkle Tree. Overshadow [45] is implemented on
a hypervisor and utilizes memory encryption and decryption
within an application. We restricted our verification scope
in SOTPM to the static region, which is comprised of codes
and constants, to reduce the performance overhead. However,
the scope can be expanded to dynamic data, such as variables
in view of system security requirements. Since TrustZone can
also act as a secure processor, caller process authentication
can take advantage of previously proposed approaches to
ensure data integrity. In addition to memory integrity verifi-
cation, it is possible to apply additional control-flow integrity
verification when required.

4502 VOLUME 9, 2021



D. Shim, D. H. Lee: SOTPM to Protect Shared Memory on ARM Trustzone

IX. CONCLUSION
A shared memory scheme is the most widely used commu-
nication technique between isolated execution environments
in ARM TrustZone architecture. However, this approach has
weaknesses in that it is impossible to check the integrity of
a message or authenticate a sender. Our proposed SOTPM
is a practical and secure communication scheme that aims
to resolve these weaknesses through channel protection and
caller process authentication. It can be easily integrated into
commercial products since it is uncomplicated and does
not significantly increase performance overhead. Moreover,
SOTPMcan be extended to a cheaper A-series ARMarchitec-
ture, as it does not require additional H/W extensions except
TrustZone and VMSA.

REFERENCES
[1] ARM Security Technology : Building a Secure System using TrustZone

Technology (PRD29-GENC-009492C), ARM, Cambridge, U.K., 2009.
[2] J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, ‘‘SeCReT: Secure

channel between rich execution environment and trusted execution envi-
ronment,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., Feb. 2015, pp. 1–15.

[3] J. Jang and B. B. Kang, ‘‘Securing a communication channel for the trusted
execution environment,’’ Comput. Secur., vol. 83, pp. 79–92, Jun. 2019.

[4] W. A. Arbaugh, D. J. Farber, and J. M. Smith, ‘‘A secure and reliable
bootstrap architecture,’’ in Proc. IEEE Symp. Secur. Privacy, May 1997,
pp. 65–71.

[5] A. Azab and P. Ning, ‘‘Methods, systems, and computer readable medium
for active monitoring, memory protection and integrity verification of
target devices,’’ U.S. Patent 9 483 635, Nov. 1, 2016.

[6] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and
W. Shen, ‘‘Hypervision across worlds: Real-time kernel protection from
the ARM TrustZone secure world,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Nov. 2014, pp. 90–102.

[7] X. Ge, H. Vijayakumar, and T. Jaeger, ‘‘Sprobes: Enforcing kernel code
integrity on the TrustZone architecture,’’ 2014, arXiv:1410.7747. [Online].
Available: http://arxiv.org/abs/1410.7747

[8] ARM Cortex—A Series Progmammer’s Guide for ARMv8-A (DEN0024A),
ARM, Cambridge, U.K., 2015.

[9] Arm Architecture Registers Armv8, for Armv8-A architecture profile (DDI
0595), ARM, Cambridge, U.K., 2018.

[10] Architecture Reference Manual: Armv8, for Armv8-A Architecture Profile
(DDI 0487E.a), ARM, Cambridge, U.K., 2019.

[11] ARMv8-A Address Translation Version 1.0 (ARM 100940_0100_en),
ARM, Cambridge, U.K., 2017.

[12] S. R. America, Whitepaper: Samsung Knox Security Solution. Suwon-si,
South Korea: Samsung Electronics Cooperation, 2017.

[13] Cve-2018-9488. MITRE Corporation. Accessed: Aug. 1, 2020. [Online].
Available: https://www.cvedetails.com/cve/CVE-2018-9488

[14] D. Shen,Defeating Samsung Knox With Zero Privilege. Seattle, WA, USA:
BlackHat, 2017, pp. 13–14.

[15] bits please.blogspot.com. (2016). Trustzone Kernel Privilege Escalation.
[Online]. Available: http://bits-please.blogspot.com/2016/06/trustzone-
kernel-privilege-esca%lation.html

[16] Q. Blog. (2018). Attacking the Arm’s Trustzone. [Online]. Available:
https://blog.quarkslab.com/attacking-the-arms-trustzone.html

[17] Op-Tee Documentation. Linaro. Accessed: Aug. 1, 2020. [Online]. Avail-
able: https://optee.readthedocs.io/en/latest/

[18] Trusted Firmware-A Documentation. ARM Limited and Contributors.
Accessed: Aug. 1, 2020. [Online]. Available: https://trustedfirmware-
a.readthedocs.io/en/latest/

[19] SMC Calling Convention: System Software on ARM Platforms (DEN
0028B), ARM, Cambridge, U.K., 2016.

[20] H. Liu, S. Saroiu, A. Wolman, and H. Raj, ‘‘Software abstractions for
trusted sensors,’’ in Proc. 10th Int. Conf. Mobile Syst., Appl., Services -
MobiSys, 2012, pp. 365–378.

[21] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li, ‘‘Building
trusted path on untrusted device drivers for mobile devices,’’ in Proc. 5th
Asia–Pacific Workshop Syst. - APSys, 2014, pp. 1–7.

[22] H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia, ‘‘Trustdump: Reliable
memory acquisition on smartphones,’’ in Proc. Eur. Symp. Res. Comput.
Secur. Springer, 2014, pp. 202–218.

[23] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
‘‘TrustShadow: Secure execution of unmodified applications with ARM
TrustZone,’’ in Proc. 15th Annu. Int. Conf. Mobile Syst., Appl., Services,
Jun. 2017, pp. 488–501.

[24] Z. Ning and F. Zhang, ‘‘Ninja: Towards transparent tracing and debugging
on ARM,’’ in Proc. 26th USENIX Secur. Symp. (USENIX Secur.), 2017,
pp. 33–49.

[25] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,
A.-R. Sadeghi, and G. Tsudik, ‘‘C-FLAT: Control-flow attestation for
embedded systems software,’’ in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., Oct. 2016, pp. 743–754.

[26] Z. Sun, B. Feng, L. Lu, and S. Jha, ‘‘OAT: Attesting operation integrity
of embedded devices,’’ 2018, arXiv:1802.03462. [Online]. Available:
http://arxiv.org/abs/1802.03462

[27] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, ‘‘vtz: Virtualizing
ARM trustzone,’’ in Proc. 26th USENIX Secur. Symp. (USENIX Secur.),
2017, pp. 541–556.

[28] J. Jang, C. Choi, J. Lee, N.Kwak, S. Lee, Y. Choi, andB. B.Kang, ‘‘Private-
Zone: Providing a private execution environment using ARM TrustZone,’’
IEEE Trans. Depend. Sec. Comput., vol. 15, no. 5, pp. 797–810, Sep. 2018.

[29] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, ‘‘SANC-
TUARY: ARMing TrustZone with user-space enclaves,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2019, pp. 1–15.

[30] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng, ‘‘Sectee: A software-
based approach to secure enclave architecture using tee,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2019, pp. 1723–1740.

[31] A. Seshadri, M. Luk, N. Qu, and A. Perrig, ‘‘Secvisor: A tiny hypervisor to
provide lifetime kernel code integrity for commodity oses,’’ in Proc. 21st
ACM SIGOPS Symp. Operating Syst. Princ., 2007, pp. 335–350.

[32] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, ‘‘Lares: An architecture
for secure active monitoring using virtualization,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), May 2008, pp. 233–247.

[33] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, ‘‘Secure in-VM monitoring
using hardware virtualization,’’ in Proc. 16th ACM Conf. Comput. Com-
mun. Secur. CCS, 2009, pp. 477–487.

[34] Z. Wang, X. Jiang, W. Cui, and P. Ning, ‘‘Countering kernel rootkits with
lightweight hook protection,’’ in Proc. 16th ACM Conf. Comput. Commun.
Secur. CCS, 2009, pp. 545–554.

[35] J. Wang, A. Stavrou, and A. Ghosh, ‘‘Hypercheck: A hardware-assisted
integrity monitor,’’ in Proc. Int. Workshop Recent Adv. Intrusion Detection.
Berlin, Germany: Springer, 2010, pp. 158–177.

[36] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky,
‘‘HyperSentry: Enabling stealthy in-context measurement of hypervisor
integrity,’’ in Proc. 17th ACM Conf. Comput. Commun. Secur. CCS, 2010,
pp. 38–49.

[37] H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek, and B. B. Kang,
‘‘Ki-mon: A hardware-assisted event-triggered monitoring platform for
mutable kernel object,’’ in Proc. 22nd USENIX Security Symp. (USENIX
Secur.), 2013, pp. 511–526.

[38] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang, ‘‘Vigilare:
Toward snoop-based kernel integrity monitor,’’ in Proc. ACM Conf. Com-
put. Commun. Secur. CCS, 2012, pp. 28–37.

[39] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz, ‘‘Architectural support for copy and tamper resistant soft-
ware,’’ ACM SIGARCHComput. Archit. News, vol. 28, no. 5, pp. 168–177,
Dec. 2000.

[40] A. Carroll, M. Juarez, J. Polk, and T. Leininger, ‘‘Microsoft pal-
ladium: A business overview,’’ Microsoft Content Secur. Bus. Unit,
pp. 1–9, Aug. 2002. [Online]. Available: http://download.microsoft.com/
documents/australia/corporateaffairs/palladium_white_paper_public.pdf

[41] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas,
‘‘Caches and hash trees for efficient memory integrity verification,’’ in
Proc. 9th Int. Symp. High-Perform. Comput. Archit. HPCA, Feb. 2003,
pp. 295–306.

[42] D. Clarke, S. Devadas, M. Van Dijk, B. Gassend, and G. E. Suh, ‘‘Incre-
mental multiset hash functions and their application to memory integrity
checking,’’ in Proc. Int. Conf. theory Appl. Cryptol. Inf. Secur. Berlin,
Germany: Springer, 2003, pp. 188–207.

[43] G. E. Suh, D. Clarke, B. Gasend, M. van Dijk, and S. Devadas, ‘‘Efficient
memory integrity verification and encryption for secure processors,’’ in
Proc. 22nd Digit. Avionics Syst. Conf., Dec. 2003, pp. 339–350.

VOLUME 9, 2021 4503



D. Shim, D. H. Lee: SOTPM to Protect Shared Memory on ARM Trustzone

[44] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, ‘‘Using address inde-
pendent seed encryption and bonsai merkle trees to make secure processors
OS- and performance-friendly,’’ in Proc. 40th Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Dec. 2007, pp. 183–196.

[45] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger,
D. Boneh, J. Dwoskin, and D. R. K. Ports, ‘‘Overshadow: A virtualization-
based approach to retrofitting protection in commodity operating systems,’’
ACM SIGOPS Operating Syst. Rev., vol. 42, no. 2, pp. 2–13, Mar. 2008.

DONGWOOK SHIM received the B.S. degree
from the Engineering Division of Electronics
and Electrical and Computer, Hanyang Univer-
sity, Seoul, South Korea, in 2006. He is currently
pursuing the M.S. degree in information security
with the Graduate School of Information Security,
Korea University, Seoul. Since 2005, he has been
working with Mobile Communication Business,
Samsung Electronics Corporation, Suwon, South
Korea. His research interests include embedded

system security, trusted execution environment, applied cryptography, and
software security.

DONG HOON LEE (Member, IEEE) received the
B.S. degree from the Department of Economics,
Korea University, Seoul, in 1985, and the M.S.
and Ph.D. degrees in computer science from The
University of Oklahoma, Norman, in 1988 and
1992, respectively. Since 1993, he has been with
the Faculty of Computer Science and Information
Security, Korea University. He is currently a Pro-
fessor and the Director of the Graduate School
of Information Security, Korea University. His

research interests include the design and analysis of cryptographic protocols
in key agreement, encryption, signatures, embedded device security, and
privacy-enhancing technology.

4504 VOLUME 9, 2021


