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ABSTRACT This paper studies the single server repairable queueing system with variable service rate and
failure rate. The rule of variation of the service rate is that the service rate changes when the number of
customers in the system reaches a certain value. The server may fail at any time, and the failure rates of idle
periods and busy periods are different. The system has one reliable repairman to repair the failure server. The
steady-state joint distribution of the customers number and server states is obtained by the matrix geometric
solution method, the steady-state availability of the server and significant queue performances measures are
evaluated. Two special cases are analyzed, and some numerical experiments are given for the illustrations of
the parameters effect.

INDEX TERMS Repairable queueing system, service rate, failure rate, availability, matrix geometric
solution.

I. INTRODUCTION
Repairable queuing model is an important model of queu-
ing theory research, it can be applied to a variety of real
situations, such as computer networks, telecommunications,
aircraft maintenance, high-speed railway maintenance, and
many others. The latest studies usually assume that the system
parameters such as the service rate, repair rate and failure
rate are invariable, but the fact of the system parameters
are variable or adjustable is an actual universal phenomenon
in many service systems, even multiple parameters are
variable or adjustable simultaneously in one system. For
repairable queuing system, the models with fixed parameters
and other different characteristics of conditions were studied
in [1]–[3], and rich research achievements obtained. In addi-
tion, many more flexible service and maintenance strategies
reflect the characteristics of the actual systems that were
applied to the models of repairable queueing systems [4]–[8].
Recently, Gao et al. [9] analyzed a retrial queue with two-type
breakdowns and delayed repairs, one type of the breakdowns
cannot be repaired immediately. Sikha and Manivasakan [10]
deal with a two-type vacation queue system with queue-
length dependent service, the two types of vacation distri-
butions are deterministic and exponential. Lyu et al. [11]

The associate editor coordinating the review of this manuscript and

approving it for publication was Shihong Ding .

studied the M/M/2 queue system with flexible service policy,
they assumed that the two servers can service one customer
collectively at the same time. Lv [12] considered a machine
repairable model with flexible repair policy that the two
repairmen can repair one failure machine collectively at the
same time.

In many real service systems, the service rate may be
affected by the number of customers in the system. On the one
hand, the managers try to improve the efficiency when large
amounts of customers are waiting in the system, so they can
take the initiative to improve the service rate if the working
conditions permit. On the other hand, passive fall of service
rate may happen as a result of the change of working envi-
ronment due to a large number of customers in the backlog.

For the failure rate, modern control or service systems
have been becoming extensively integrated and complex,
along with growth of the running time, components in the
service systems are degrading with age and the failure rate
will increase. On the other hand, the development of fault
detection and diagnosis techniques will enhance the incipient
fault diagnosis level and reduce the risk of serious accidents in
the entire systems [13], [14], so the the rate of minor failures
will increase and the rate of major failures will decrease.
In short, the failure rate is variable because of objective
reasons or subjective reasons is a general phenomenon in
every kind of service or control system. Further, an obvious
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fact is that the service systems are more prone to failure due to
various external factors like overloading, unexpected distur-
bances and environmental changes when they are in working
condition, while the system is relatively stable during the idle
period. Therefore, the equipment has different failure rates at
working time and idle time is quite a common phenomenon.

From the above discussion, we know that system param-
eters are variable is a general fact [15], but few researchers
considered this characteristic in the past. Although some
researchers have considered this feature, they assume that
only one parameter is changeable in the service or control
systems, and the research about systems with two variable
parameters is very rare.

In this paper, we study a single server repairable system
with variable service rate and failure rate. The server may
fail at any time, but the failure rates in idle periods and
busy periods are different. This kind of change of the failure
rate is passive generally. Further, the service rate is variable
depending on the customers’ number in the system. This
kind of change of service rate can be active or passive.
A reliable repairman is responsible for the repair of the server
failure, and the repairman begins to repair immediately after
the server failed. Such a repairable queue system arises in
various practical fields such as communication networks and
manufacturing systems. We obtain analytical solution in term
of closed form expression, and evaluate the reliability and the
queue performance measures of the considered system which
may be suited to many practical service systems. The basic
findings of the paper and their significance are outlined as
follows:
• We introduce a new repairable queue model with vari-

able service rate and failure rate, in which the service
rate and failure rate depend on the working condition.
Such models reflect the features of many actual systems.

• We give the stable condition of the system, the steady-
state joint distribution of the number of customers and
the server’s states.

• Wegive the expressions of important steady-state perfor-
mances of the system such as steady-state availability of
the server and the steady-state queueing length.

• We analysed two special cases and gave the explicit
results of the two special cases, and verified that the
model of this paper is a more general model which can
reflect the actual conditions of the service system more
factually.

The steady-state joint distribution of the customers’ num-
ber and the server’s states is obtained by the matrix geometric
solution method of quasi-birth-and-death(QBD) processes,
which are a class of two-dimensional Markov processes aris-
ing in many fields of science, engineering and business. The
QBD processes are of particular theoretical and practical
importance, often occurring directly or through decomposi-
tion of higher-dimensional processes. It is well known that
the invariant distributions of QBD processes to have a matrix-
geometric form under appropriate conditions. Based on the

steady-state joint distribution of the system, the other steady-
state performances are obtained. The influences of the system
parameters on the system steady-state indexes are illustrated
by some numerical experiments.

The rest of this paper is organized as follows. Section 2
gives the system description and the transfer rate matrix of
the QBD process. Section 3 analyses the stable condition of
the system. Section 4 focuses on the steady-state probability
of the system. Section 5 presents the steady-state performance
indexes of the system. Section 6 gives the explicit results of
two special cases and carries out the general analysis of our
model. Section 7 gives some numerical examples to illustrate
the features of our model.

II. MODEL DESCRIPTION
The repairable system has a repairable server and a reliable
repairman. The arrival of the customers is a Poisson process
with the parameter of λ(λ > 0). The server service time is
exponential distribution, the service rate changes depend on
the number of customers in the system. The service rate is
µ1(µ1 > 0) when the number of customers in the system is
less than m(m > 0). The service rate is µ2(µ2 > 0) when
the number of customers is greater than or equal to m. The
server will be idle when the server is not at failure state and
there is no customer in the system. The server may fail at
any time, the occurrence of the failure is a Poisson process
with variable failure rate. The failure rate is ξ1(ξ1 > 0) when
the server is idle, and the failure rate is ξ2(ξ2 > 0) when the
server is busy. The customer whose service is interrupted by
the server failure becomes the head of the queue, and will be
serviced again immediately after the server is repaired.

LetN (t) denote the number of customers at the time t in the
system, and J (t) denote the number of available server at the
time t , then {N (t), J (t)} is a QBD process rely to the arrival
interval, the service time, the failure time and themaintenance
time are exponentially distributed. Thus the space of the
system states is

� = {(i, j), i = 0, 1, · · · ; j = 0, 1} .

Arranging the states in lexicographic order [17], the state
transfer rate matrix of block tridiagonal is obtained as
follows:

Q =

1

...

m

...



A0 C
B1 A1 C

. . .
. . .

. . .

B1 A1 C
B A C

B A C
. . .

. . .
. . .


,

where

A0 =
[
−(λ+ η) η

ξ1 −(λ+ ξ1)

]
, C =

[
λ 0
0 λ

]
,

B1 =
[
0 0
0 µ1

]
, B =

[
0 0
0 µ2

]
,
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A1 =
[
−(λ+ η) η

ξ2 −(λ+ µ1 + ξ2)

]
,

A =
[
−(λ+ η) η

ξ2 −(λ+ µ2 + ξ2)

]
.

III. THE STEADY-STATE CONDITION
Theorem 1: The matrix equation R2B + RA + C = 0 has

the least nonnegative solution

R =


λξ2 + λµ2

(λ+ η)µ2

λ

µ2
λξ2

(λ+ η)µ2

λ

µ2

 .
Proof:We set

R =
[
r11 r12
r21 r22

]
,

substitute it into the matrix equation R2B + RA + C = 0,
we obtain
−(λ+ η)r11 + ξ2r12 + λ = 0,
µ2(r11r12 + r12r22)+ ηr11 − (λ+ µ2 + ξ2)r12 = 0,
−(λ+ η)r21 + ξ2r22 = 0,
µ2(r12r21 + r222)+ ηr21 − (λ+ µ2 + ξ2)r22 + λ = 0.

Mathematica software is used to solve the above equations,
and the minimum non-negative solution is R.

Further, the QBD process {N (t), J (t)} is positive recurrent,
if and only if the spectral radius of R denoted by sp(R) meets
the condition of sp(R) < 1 [17].
Theorem 2: Let R is the minimum nonnegative solution

of matrix equation R2 B+ RA+ C = 0, sp(R) is the spectral
radius of R, sp(R) < 1 is equivalent to

λ

µ2
<

η

η + ξ2
. (1)

Proof:We solve the following equations

|φE − R| = 0,

then∣∣∣∣∣∣∣
φ −

λξ2 + λµ2

(λ+ η)µ2
−
λ

µ2

−
λξ2

(λ+ η)µ2
φ −

λ

µ2

∣∣∣∣∣∣∣
= φ2 − [

λξ2 + λµ2

(λ+ η)µ2
+
λ

µ2
]φ +

λ2

(λ+ η)µ2
= 0. (2)

while

1 = [
λξ2 + λµ2

(λ+ η)µ2
+
λ

µ2
]2 −

4λ2

(λ+ η)µ2

=
λ2[(λ+ η + µ2 + ξ2)2 − 4(λ+ η)µ2]

(λ+ η)2µ22
.

Since

(λ+ η)2 + µ2
2
≥ 2(λ+ η)µ2,

so we have

(λ+ η)2 + µ2
2
+ 2(λ+ η)µ2 + ξ2

2
+ 2(λ+ η)ξ2 + 2ξ2µ2

≥ 4(λ+ η)µ2,

it is

(λ+ η + µ2 + ξ2)2 ≥ 4(λ+ η)µ2.

Then the equation Eq.(2) has two different solutions as
follows:

φ1 =

[
λξ2 + λµ2

(λ+ η)µ2
+
λ

µ2
]+8

2
,

φ2 =

[
λξ2 + λµ2

(λ+ η)µ2
+
λ

µ2
]−8

2
,

where

8 =

√
[
λξ2 + λµ2

(λ+ η)µ2
+
λ

µ2
]
2
−

4λ2

(λ+ η)µ2
.

So sp(R) = max {|φi| , i = 1, 2} < 1, is

φ1 < 1,

[
λξ2 + λµ2

(λ+ η)µ2
+
λ

µ2
]2 −

4λ2

(λ+ η)µ2

<
(λµ2 + 2ηµ2 − λ

2
− λη − λξ2)

2

[(λ+ η)µ2]2
,

λ2(λ+ η + µ2 + ξ2)2 − 4λ2(λ+ η)µ2

< (λµ2 + 2ηµ2 − λ
2
− λη − λξ2)2,

λ(η + ξ2) < µ2η,

λ

µ2
<

η

η + ξ2
.

Since the QBD process {N (t), J (t)} process is invertible,
we got the theorem and know that the steady-state condition
is Eq.(1).

IV. THE STEADY-STATE PROBABILITY
We define the steady-state probability as follows:

πij = lim
t→∞

P {N (t) = i, J (t) = j} , (i, j) ∈ �.

Corresponding to Q, the steady-state probability vector π is

π =
(
π0, π1, π2, · · ·

)
,

where

πi =
(
πi0, πi1

)
(i ≥ 0).

If sp(R) < 1, we can calculate the steady-state probability
vector π as follows [17]:

(π0,π1,π2, · · · , πm−1,πm)B [R] = 0,
m−1∑
k=0

πke+ πm(I − R)−1e = 1,

πk = πmRk−m, k ≥ m,

(3)
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where

B [R] =



A0 C
B1 A1 C

B1 A1 C
. . .

. . .
. . .

B1 A1 C
B RB+ A


,

(π0, π1, π2, · · · , πm−1, πm) is a vector of 2(m+1)-dimension,
B [R] is irreducible and aperiodic.
Since

D0 = A0 =
[
−(λ+ η) η

ξ1 −(λ+ ξ1)

]
,

then

|D0| = |A0| =

∣∣∣∣−(λ+ η) η

ξ1 −(λ+ ξ1)

∣∣∣∣
= (λ+ η)(λ+ ξ1)− ηξ1
= λ(λ+ ξ1 + η) 6= 0,

so D0 is invertible. More over

D1=A1 − B1D
−1
0 C

=

 −(λ+ η) η

ξ2 +
ξ1µ1

η + λ+ ξ1

µ1(λ+ η)
η + λ+ ξ1

− (λ+ µ1 + ξ2)

 ,
then

|D1| = λ(λ+ η + ξ2)+
λξ1µ1

η + λ+ ξ1
6= 0.

So D1 is invertible. Further, all Di = A1 − B1D
−1
i−1C(1 ≤ i ≤

m− 1) are invertible by recursion. From Eq. (3) we obtain:

πi = −πi+1B1D
−1
i , (0 ≤ i < m− 1),

πm−1 = πmBD
−1
m−1,

πm = −πm−1C(RB+ A)−1,

then

π0 = −π1B1D
−1
0 = (−1)2π2B1D

−1
1 B1D

−1
0

= · · · = (−1)mπmBD
−1
m−1

m−2
5
j=0

B1D
−1
j ,

π1 = −π2B1D
−1
1 = (−1)2π3B1D

−1
2 B1D

−1
1

= · · · = (−1)m−1πmBD
−1
m−1

m−2
5
j=1

B1D
−1
j ,

· · ·

πi = (−1)m−iπmBD
−1
m−1

m−2
5
j=i

B1D
−1
j , (2 ≤ i ≤ m− 2),

· · ·

πm−1 = −πmBD
−1
m−1.

Let

Mi = (−1)m−iBD−1m−1
m−2
5
j=i

B1D
−1
j , (0 ≤ i ≤ m− 2),

then

πi = πmMi, (0 ≤ i ≤ m− 2).

If
λ

µ2
<

η

η + ξ2
, the boundary probability vector is{
πi = πmMi(0 ≤ i ≤ m− 2),
πm−1 = −πmBD

−1
m−1,

where πm is obtained from the following equations:
πm(

m−2∑
i=0

Mi − BD
−1
m−1 + (I − R)

−1e) = 1 ,

πm−1C + πm (RB+ A) = 0.

V. STEADY-STATE PERFORMANCE INDEXES
OF THE SYSTEM
A. STEADY-STATE DISTRIBUTION OF QUEUEING LENGTH

P(L = k) =


πmMke, 0 ≤ k ≤ m− 2,
−πmBD

−1
m−1e, k = m− 1,

πmRk−me, k ≥ m,

where e = (1, 1)T .

B. STEADY-STATE AVAILABILITY OF THE SERVER

A = P(J = 1)

=

m−2∑
i=0

πmMie2 + πm−1e2 + πm(I − R)−1e2, (4)

where e2 = (0, 1)T .

C. MEAN QUEUEING LENGTH

E(Q) =
m−2∑
i=0

iπmMie+ (m− 1)πm−1e

+

∞∑
i=0

[(m+ i)πmRi]e

=

m−2∑
i=0

iπmMie+ (m− 1)πm−1e

+πm[m
∞∑
i=0

Ri + R
∞∑
i=1

iRi−1]e

=

m−2∑
i=0

iπmMie+ (m− 1)πm−1e

+πm[m(I − R)−1 + R(
∞∑
i=1

Ri)′]e

=

m−2∑
i=0

iπmMie+ (m− 1)πm−1e

+πm[m(I − R)−1 + R(I − R)−2]e. (5)
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D. MEAN WAITING QUEUEING LENGTH

E(QW ) = E(Q)− 1+ π0e.

VI. SPECIAL CASES
A. THE CASE OF m = 1
Letting m = 1, the service rate of the server is fixed as
µ2, and the model of this paper turns into the model of
M/M/1 repairable queue system with variable failure rate.

1) THE AVAILABILITY OF THE SERVER
From Eq. (4) we obtain the availability of the server as
follows:

A =
ηµ2 + λ (ξ1 − ξ2)

µ2 (η + ξ1)
,

this result is consistent with the conclusion obtained in
literature [7].

If ξ1 = ξ2, then we have

A =
η

η + ξ1
, (6)

this is the availability of the general model of the
M/M/1 repairable queue system [18].

2) THE MEAN QUEUE LENGTH
For the mean queue length, from Eq. (5) we obtain:

E(Q)=π1[(I − R)−1 + R(I − R)−2]e

=

∞∑
i=1

πie+π1R(I−R)−2e=1−π0e+π1R(I−R)−2e

=
λ(λ(ξ2 − ξ1)+ µ2ξ1 + (ξ1 + η)(ξ2 + η))

(η + ξ1)(µ2η − λη − λξ2)
.

This result is consistent with the conclusion obtained in
literature [7].

B. THE CASE OF m = 2
Letting m = 2, the service rate will change when the number
of customers in the system reaches 2. The model of this case
is the simplest model of M/M/1 repairable queue system with
variable failure rate and service rate.

1) THE AVAILABILITY OF THE SERVER
From Eq. (4), we obtain the availability of the server as
follows:

A = {ηλµ2 (η + λ+ ξ1)− µ1[−η (η + λ)µ2

+ λ
(
−λξ1 + η

2
+ ξ2η + λη + λξ2

)
]}

× {λµ2 (η + ξ2) (η + λ+ ξ1)

+µ1 [µ2(η + λ) (η + ξ1)

− λ (η + ξ2) (η + λ+ ξ1)]}−1 (7)

If µ1 = µ2 and ξ1 = ξ2, Eq.(7) becomes as follows:

A =
η

η + ξ1
,

it is the same as Eq.(6).

FIGURE 1. The availability of the server for
m = 1(µ1 = 0.5, ξ1 = 0.01, η = 0.1, λ = 1.2).

2) THE MEAN QUEUE LENGTH
For the mean queue length, from Eq. (5) we obtain:

E(Q) = π1e+ π2[2(I − R)−1 + R(I − R)−2]e

= π1e+ 2π2(I − R)−1e+ π2R(I − R)−2e

= π1e+ 2
∞∑
i=2

πie+ π2R(I − R)−2e

= π1e+ 2(1− π0 − π1)e+ π2R(I − R)−2e

= 2− 2π0e− π1e+ π2R(I − R)−2e

= 1+
(µ2η − λη − λξ2)91 + λ

292

(µ2η − λη − λξ2)9
,

where

91 = λ(η + µ2 + ξ2)[λ(λ+ η + µ1 + ξ2)−
λµ1(λ+ η)
λ+ η + ξ1

]

− λ2µ2(λ+ η)− µ1(λ+ η)(µ2η − λη − λξ2),

92 = [µ2(η + µ2 + ξ2 − λ)+ (η + ξ2)2 + µ2ξ2]

·[λ(λ+ η + µ1 + ξ2)−
λµ1(λ+ η)
λ+ η + ξ1

]

− λµ2(λ+ η)(η + µ2 + ξ2 − λ),

9 = µ2(λ+ η)[λ(η + µ1 + ξ2)−
λµ1(λ+ η)
λ+ η + ξ1

]

+µ1(λ+ η)(µ2η − λη − λξ2).

VII. NUMERICAL EXPERIMENTS
Letting µ1 = 0.5, ξ1 = 0.01, η = 0.1, the numerical
experiments were carried out in different groups for other
parameters’ values of m = 1, 2, λ = 1.2, 1.4 and ξ2 =
0.02, 0.03. The rang of the service rate µ2 is 3 ≤ µ2 ≤ 8.
All parameters values in the set ranges satisfy the steady-state
condition.

First, we give the numerical results of the steady-state
availability of the server. In Fig.1 and Fig.2, the availability
of the server decreases with the increase of ξ2, it is in line
with our intuition. On the other hand, the availability of the
server increases with the increase of µ2, that is because of
the idle period failure rate ξ1(= 0.01) is less than the busy
period failure rate ξ2(> 3), so the more idle time the higher
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FIGURE 2. The availability of the server for
m = 2(µ1 = 0.5, ξ1 = 0.01, η = 0.1, λ = 1.2).

FIGURE 3. The mean queue length for ξ2 = 0.02(ξ1 = 0.01, η = 0.1).

FIGURE 4. The mean queue length for ξ2 = 0.03(ξ1 = 0.01, η = 0.1).

availability due to the idle period failure rate is low, and the
higher the service rate the longer the idle period.

Secondly, we give the numerical results of the steady-state
performance measures of the queueing length. In Fig.3 and
Fig.4, the mean queueing length decreases and tends to be
stable with the increase of µ2. In the same figure, for the

FIGURE 5. The mean queue length for
m = 1(µ1 = 0.5, ξ1 = 0.01, η = 0.1, λ = 1.2).

FIGURE 6. The mean queue length for
m = 2(µ1 = 0.5, ξ1 = 0.01, η = 0.1, λ = 1.2).

same value of busy period failure rate ξ2 and the same value
of m, the mean queueing length is positively correlated with
the value of input rate λ, that is consistent with our intuitive.
As well, for the same value of input rate λ, the mean queueing
length is positively correlated with the threshold value of m,
that is because of the value of µ1 = 0.5, it is less than the
least value of µ2(3 ≤ µ2 ≤ 8), and the larger value of m
means the less working time of the service rate µ2. On the
contrary, we should note that if the value of µ1 is greater than
the maximum value of µ2, the mean queueing length will be
negatively correlated with the value of m. We know that µ1
is greater than µ2 is possible in actual systems for objective
reasons.

Comparing Fig.3 and Fig.4, it can be seen that the mean
queueing length is positively correlated with the busy period
failure rate ξ2, that is consistent with our intuitive. In addition,
Fig.5 shows the joint effect of µ2 and ξ2 on the mean queue
length for the other parameters’ values of m = 1(µ1 =

0.5, ξ1 = 0.01, η = 0.1, λ = 1.2). Fig.6 shows the joint
effect of µ2 and ξ2 on the mean queue length for the other
parameters’ values of m = 2(µ1 = 0.5, ξ1 = 0.01, η =
0.1, λ = 1.2). The curved surface of Fig.5 and Fig.6 coincide
with the curves of Fig.3 and Fig.4 respectively.
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VIII. CONCLUSION
In this paper, the M/M/1 repairable queueing model with
variable service rate and failure rate was studied. For this
model, we analyzed the stable condition for the system, and
obtained the steady-state probability distribution of the sys-
tem states by the matrix geometric solution method. Based on
the steady-state probability distribution of the system states,
some significant performance indexes such as the steady-
state availability and steady-state queue length indexes were
obtained. For the special cases of the service rate thresholds
m = 1 and m = 2, the explicit results of the availability
of the server and the mean queueing length of the system
were given. Some numerical examples were given to study
the effect of the parameters on the reliability index and the
queue length of the model. The experimental results showed
that the variety of the service rate and failure rate had a sig-
nificant effect on the system indexes. Therefore, the research
in this paper can provide theoretical basis and data analysis
reference for the design and optimization of some relevant
service systems in practice. As one direction of further future
research, it is very interesting to develop the model which the
repairable rate is variable simultaneously, the reason is that
three parameters are variable ismore feasible to some actually
service systems. Another direction of future research, one
can consider the optimization design of the model. Since the
variety of the service rate is controllable in many practical
systems, and different rates of service incur different costs,
to find the balance of the cost of service and the loss of
customers’ delay is an important issue.
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