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ABSTRACT Fire detection technologies remain a critical component of building automation. With the
recent significant advances in computer vision, visual fire detection methods have been developed and inte-
grated into building surveillance systems. Overfitting and accuracy challenges remain in fire detection when
training datasets are limited. In this work, we tackle these challenges by developing a deep convolutional
generative adversarial network (DCGAN) for highly accurate visual fire detection when training images are
limited. Our model addresses three types of errors in visual fire detection with small training datasets: model
overfitting, fire probability overestimation, and fire probability underestimation. The DCGAN includes a
generator of fake fire images for self-supervised learning (SSL) and a discriminator for image classification.
We designed computational experiments with high-quality datasets to test and validate our model against
other supervised learning approaches. We also benchmarked the performance of the DCGAN against a best-
in-class deep visual fire detection model. The results show that our model significantly outperforms other
fire detection models on all performance metrics when trained with the same small dataset. The results
demonstrate that the DCGAN effectively mitigates the three types of error when the training dataset is
limited.

INDEX TERMS Deep convolutional generative adversarial network, self-supervised learning, visual fire
detection.

I. INTRODUCTION
Fire detection technologies remain a critical component
of building automation and information systems. They are
essential for monitoring both indoors and outdoors for fire
signatures such as smoke, heat, and radiation, and to identify
early signs of fires to trigger appropriate responses. Sig-
nificant progress has been made with these technologies in
the last decades in part due to advances in sensor design
and related technology [1]–[8]. Nonetheless, important chal-
lenges with fire detection remain, and these can roughly be
subsumed under two broad headings, insufficient sensitiv-
ity on the one hand, and elevated false alarm rates on the
other hand [9]. These overlap with and are related to chal-
lenges with the reliability, accuracy, and specificity of these
technologies.
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With the recent significant advances in computational
power, computer vision [10], [11], [12], and machine learn-
ing (ML), visual fire detection methods have been devel-
oped [13]–[15] and integrated into buildings and outdoors
camera surveillance systems. Deep learning (DL) is a key
enabler of these applications. It uses deep artificial neu-
ral architecture to fulfill complex regression, classifica-
tion, and some unsupervised functions. DL can be prior
assumption-free and has significant potential to improve
model accuracy and tease out more latent information from
the raw data compared with shallow ML. One of the most
common DL technologies is convolutional neural network
(CNN), which uses convolutional and pooling layers to ana-
lyze high-dimensional data, such as pictures and videos.
Advanced CNN, such as AlexNet [16], GoogLeNet [17],
and DenseNet [18], are used for image classification, and
they provide excellent performance in a host of applications.
Advanced CNNs have the potential to be an effective solution
for accurate visual fire detection. In this work, we develop a
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novel, highly accurate visual fire detection method, based on
state-of-the-art deep convolutional neural networkwith a gen-
erative adversarial network, which significantly outperforms
existing methods when training data are limited.

Some background is required in order to understand the
context and the challenges our method overcomes.We briefly
discuss those next.

For DL and CNN visual fire detection, the quality of
the training data can significantly affect the accuracy of the
model. A poor-quality training set can degrade the model
accuracy and result in errors, such as overfitting and group
bias [19], [20]. In visual fire detection applications, one criti-
cal problem is the quality of the training images. Although
fire images are abundant, high-quality training images are
limited, and in some cases rarely available (e.g., fire images
in micro-gravity environment). This limited availability of
high-quality training images can cause overfitting, and it
degrades the model accuracy. Three types of errors are rec-
ognized in visual fire detection when the training images are
limited: (1) model overfitting, (2) fire probability overesti-
mating, and (3) fire probability underestimating. First, model
overfitting is caused by insufficient high-quality training
dataset. Overfitting leads to and is reflected by a significant
gap between training and testing accuracy. In this situation,
one can achieve perfect training accuracy, but the testing
accuracy (fire detection on new data not seen in the training)
will be degraded. Second, for the fire probability overestima-
tion error, the model has better accuracy of fire than non-fire
image detection. When the training size is limited, these
models are not trained by images with diverse fire scenarios.
The image discrimination model would consider images with
only partial characteristics of the flame, such as red color,
as a fire image. Images with environmental disturbances,
such as a red board in the background, can have these partial
characteristics. Consequently, the discriminator can wrongly
classify them into the fire category. This fire probability over-
estimation error leads to high false alarm rates in real-world
applications. Third, for the fire probability underestimation
error, this can be caused by a disparity between fire and
non-fire image classification accuracies. This can be the
result of, as noted previously, a limited (in size and diversity)
training dataset. The image discriminator in this case would
consider images without the full set of features of fires as
non-fires, thus wrongly classifying them. This fire probability
underestimation error leads to high missed detection rates in
real-world applications.

In this work, we propose to overcome these three types
of errors in visual fire detection when training images are
limited. To accomplish this task, we leverage self-supervised
learning (SSL), which is a subcategory of ML designed
for applications when the training data is insufficient. More
specifically, we use generative learning to produce fake
fire images to improve the training efficiency and miti-
gate the overfitting problem. Generative learning originally
aims at generating realistic fake images in computer vision.
Goodfellow et al. [21] developed generative adversarial

network (GAN) using two neural networks architecture
(generator and discriminator) for a min-max optimization.
GAN and its variants, such as deep convolutional genera-
tive adversarial network (DCGAN) [22] and BigGAN [23],
provide excellent performance in image generative tasks.
Furthermore, GAN can also be used with the image discrimi-
nator training to prevent overfitting and improve discrimina-
tion accuracy when high-quality labeled data is limited. For
example, Ravanbakhsh et al. [24] used GAN to improve the
training of the discriminator for the identification of abnormal
crowd behavior when the truth data for supervised learning
is lacking or insufficient. They compared their results with
standard benchmarks data and showed that the GAN dis-
criminator can outperform previous state-of-the-art models in
abnormal crowd behavior detection. We follow a somewhat
related path, and instead of abnormal crowed behavior, we are
concerned with visual fire detection. The objective of this
work is to develop an SSL architecture with DCGAN for
visual fire detection, with an advanced discriminator network
that overcomes the three types of errors in visual fire detection
noted previously when training images are limited. We dis-
cuss the details in the next subsections.

The main contribution of this work is the development
and validation of a highly accurate visual fire detection DL
method when the training dataset is limited. Our method
leverages Generative Adversarial Network, and it overcomes
the three common types of errors found in visual fire detec-
tion discussed previously within a ‘‘small data’’ context.

The remainder of the article is as follows. A brief literature
review is provided in Section II. Our DCGAN architecture
along with its details is discussed in Section III. The compu-
tational experiments and results of DCGAN are discussed in
Section IV, along with a comparative performance analysis
with other visual fire detection methods. Finally, Section V
concludes this work.

II. BRIEF LITERATURE REVIEW
Visual fire detection, as noted previously, is becoming
increasingly popular and gradually integrated into surveil-
lance systems. Initially, researchers sought to develop hand-
crafted techniques for fire detection by focusing on the
color and motion properties of the flame. For example,
Chen et al. [25] leveraged both the chromatic and dynamic
properties of fire and smoke in their visual fire detection
scheme. Similarly, Çelik et al. [26] sought to distinguish fires
from (non-fire) environmental disturbances by leveraging
two different color spaces, RGB and YCbCr, to devise a
more accurate classification model. Flame motion is another
fire visual signature that has been used as the criterion to
detect fires. For example, Rafiee et al. [27] and Rinsurongka-
wong et al. [28] used the properties of the flame and smoke to
visually detect fires. Although computationally efficient and
can be easily deployed on readily-available hardware, these
approaches to visual fire detection suffer from two thorny
drawbacks: low detection accuracy and elevated false alarm
rates when (non-fire) environmental disturbances are present.
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FIGURE 1. Overview of the architecture and training of the DCGAN.

To overcome these drawbacks, some researchers have
leveraged DL models for visual fire detection, and different
approaches have been proposed for this task. For exam-
ple, Zhang et al. [29] utilized fire patches detection with a
fine-tuned pre-trained AlexNet [16] for forest fire detection.
Sharma et al. [30] proposed a DL fire detection approach
based on VGG16 [31] and Resnet50 [32] architectures.
Muhammad et al. fine-tuned different variants of CNNs,
such as AlexNet [33], SqueezeNet [34], GoogleNet [35],
and MobileNetV2 [36]. They reported excellent visual fire
detection accuracy using these advanced DL models for both
fire and non-fire images.

These DL visual fire detection models can effectively
solve the problems of limited accuracy and elevated false
alarm rate of the traditional models. However, to achieve this
level of performance, all these DL models require signifi-
cantly large datasets of fire and non-fire images for train-
ing. Jadon et al. [15] noted that the datasets for visual fire
detection training can be low-quality and have a lack of
balance between fire and non-fire images, which in turn can
lead to inaccuracies and the three types of errors discussed
previously.

III. DCGAN FOR VISUAL FIRE DETECTION:
ARCHITECTURE AND ANALYTICS
This section introduces our proposed architecture, the
DCGAN, and its underlying analytics for overcoming the
challenges discussed previously in visual fire detection when
the number (or data size) of training images is limited.
We first present a high-level overview of the DCGAN for
visual fire detection, which includes a discriminator and a
generator of fire images. Next, we present the details of the
fire image discriminator. Finally, we discuss the details of
the generator and its training, as well as the datasets used in
this work. In the next sections, we examine the computational
experiments, and the results obtained with this DCGAN and
other methods for visual fire detection for a comparative
performance analysis.

A. DCGAN ARCHITECTURE: AN OVERVIEW
Recall our primary objective is to develop an accurate visual
fire detection model when training images are limited. The
DCGAN, which implements a form of self-supervised learn-
ing or SSL, is our proposed approach. Its architecture is
shown in Fig. 1. The details are discussed in the next sub-
sections.

The DCGAN consists of two major parts: (1) a discrimi-
nator network, and (2) a generator network. The functions of
these networks can be fulfilled by different models.

For the discriminator, we use two different models, first a
naïve CNN, and second a more advanced deep CNN termed
fire detection SqueezeNet. The purpose of having two options
is to assess the relative performance advantage of the fire
detection method with either a naïve CNN or a fire detection
SqueezeNet for the discriminator, if any.

For the generator, we use a transposed convolutional net-
work, or TCNN, to produce fake fire images. The genera-
tor only captures partial characteristics of real fire images,
such as light spots but without detailed flame shapes for
example. These fake images, in turn, assist in the training of
the discriminator and enable it to improve its performance
when the training dataset is limited. The use of this generator
is meant to improve the accuracy of the classification task
and to reduce overfitting. The details of the generator and
discriminator are discussed in the next subsections, and the
computational experiments and results in section V.

As shown in Fig. 1, in each iteration of the training process,
we generate a random latent vector (z) and use it as an input
to the generator. In our model, z has a dimension of 50 for
a large latent space. This is similar to the optimal latent
size recommended in Ref. [37]. Next, the generator uses the
latent vector (z) to generate fake fire images (xf ). Following
this, three different types of images are used as input to the
discriminator, real-world fire image (xr ), non-fire image (xn),
and fake fire images (xf ). The discriminator then classifies
these images and provides estimated labels (ŷ) as fire, non-
fire, or fake. Finally, this label is compared with the ground
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truth, and we calculate loss functions for both the generator
and discriminator. We use the binary cross-entropy (BCE)
loss function, as shown in Eq. 1, for the backpropagation and
training of the generator and discriminator. The generator loss
is calculated as shown in Eq. 2, where ŷf is the estimated
label of for fake images. We penalize the generator when the
fake fire images are correctly identified by the discriminator.
The discriminator loss is calculated as shown in Eq. 3, where
ŷr and ŷn are the estimated labels for fire and non-fire real
images. We penalize the discriminator when (1) it incorrectly
classifies the real fire images as non-fire or fake images, (2) it
incorrectly classifies non-fire as fire images, and (3) it incor-
rectly classifies fake images as real fire images. We conduct
backpropagation with the ADAM optimizer on the loss func-
tions [38] and train the generator and discriminator simulta-
neously. We terminate the overall DCGAN training when the
loss function of the discriminator stops decreasing (no further
improvement in the discriminator output). During the training
process, we supervise the generator error, which can become
unstable. This potential instability in the generator training is
mitigated by the reinforcement mechanism and adding image
noise, discussed shortly.

BCE(y, ŷ) = −
1
N

N∑
i=1

[yi log
(
ŷi
)
+(1−yi) log

(
1−ŷi

)
] (1)

lossg = BCE(1, ŷf ) (2)

lossd = BCE
(
1, ŷr

)
+BCE

(
0, ŷn

)
+BCE(0, ŷf ) (3)

B. TWO MODELS FOR THE DISCRIMINATOR: NAÏVE CNN
AND FIRE DETECTION SQUEEZENET
In this subsection, we develop the two different networks for
the discriminator noted previously: first, a naïve CNN for a
simple fire image discrimination model (with small hardware
memory requirement); second a more advanced fire detection
SqueezeNet (with larger memory requirement).

1) NAÏVE CNN FOR THE FIRE IMAGE DISTRIMINATOR
Our simple fire image discriminator with small model com-
plexity is a naïve CNN shown in Fig. 2, where ‘‘Conv’’ stands
for convolutional layer and ‘‘Den’’ for the fully connected
dense layer.

This naïve CNN discriminator operates as follows. First,
we input the 3 channels RBG images with a resolution of
64 × 64 into the network. We use two convolutional layers
to map the original images to hidden states with a size of
4×4×64. Next, we use two dense layers to transfer the hidden
states (the input of Den1 and Den2) to one latent variable
(the input of Sigmoid). We use the sigmoid function to map
this latent variable to the probability of fire image as the
output of this naïve CNN.We use the Leaky-ReLU activation
function [39] as shown in Eq. 4 to add nonlinearity to the
discrimination model, with α = 0.2 as the slope when x < 0.
We discuss the details of the weight function of each layer
of this naïve CNN in Appendix A. The weight of the CNN
parameters takes the memory of 0.260Mb and the processing

FIGURE 2. Structure of the fire detection naïve CNN discrimination model
in the DCGAN for visual fire detection. The numbers 3, 16, and 64 indicate
the number of channels of the input or the output of the convolutional
layer.

FIGURE 3. Structure of the fire detection SqueezeNet discrimination
model in the DCGAN for visual fire detection.

memory per image is 0.067Mb.

f (x) =

{
x when x > 0
−αx when x < 0

(4)

2) SQUEEZENET FOR THE FIRE IMAGE DISCRIMINATOR
Iandola et al. [40] developed SqueezeNet and noted that it
provided excellent classification accuracy, as good as that of
the award-winning AlexNet [16] while requiring 50 times
fewer parameters than AlexNet. In order to tailor SqueezeNet
to our fire detection and further improve the accuracy of
this general model in our specific application, we modified
the original model and developed a dedicated fire detection
SqueezeNet. The structure of our fire detection SqueezeNet
is shown in Fig. 3.
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This fire detection SqueezeNet image discrimination oper-
ates as follows. First, we input the 3 channels RGB images
with a size of 64 × 64 into the network. Then, we use
convolutional layers, maxpoolings, and fire models (details
in Appendix B) to map the input to a hidden vector of size
1024. Second, we use two dense layers to transfer the output
of the global maxpool to a latent variable and use the sigmoid
activation function to map this latent variable to the probabil-
ity of fire. We discuss the weight function of each layer and
the overall memory size of this fire detection SquezzeNet in
Appendix C. The weight size of this SqueezeNet fire detec-
tion model is 5.24Mb, and the overall processing memory
per image is 0.82Mb, roughly an order of magnitude larger
than the memory requirements with the previous naïve CNN
discriminator.

To improve its fire detection accuracy, we implemented
three important modifications to the original SqueezeNet
model. First, we modified the classification problem with
1000 outputs in the original SqueezeNet to a single output
ranging from 0 to 1 as the probability of fire. This is achieved
by using two fully connected dense layers. Second, we added
Leaky-ReLU activation function to better model nonlinear-
ities and to avoid the vanishing gradient problem in model
training. Third, we modified the global average pool in the
original model to the global maxpool (after Conv10). The rea-
son for this modification is as follows: light spots in images
can be used as possible fire signatures, and they can be repre-
sented as maximum values in the output of the Conv10 layer.
The global average pool in the original SqueezeNet can
smooth out or eliminate this useful information for fire
image discrimination. We mitigate this effect by using the
global maxpool. These three modifications can effectively
improve the accuracy of the fire detection SqueezeNet in our
computational experiments. We examine these implications
in section IV.

C. GENERATOR: TRANSPOSED CONVOLUTIONAL NEURAL
NETWORK AND TRAINING REINFORCEMENT
In this subsection, we introduce the transposed convolutional
neural network (TCNN) generatormodel and discuss its train-
ing reinforcement mechanism.

1) TRANSPOSED CONVOLUTIONAL NEURAL NETWORK
The TCNN consists of transposed convolutional layers and
fully connected dense layers. The transpose convolutional
layer (TCL), also known as the deconvolutional layer, is a
widely popular upsampling method used to generate an out-
put feature map with a dimension larger than that of the input
feature map. In our work, we use TCL to enlarge the input
spatial size and decrease the channel number from 128 to 3 for
the RBG information of the generated images. More details
on TCL and its applications can be found in Ref. [41].

The structure of our TCNN generator is shown in Fig. 4,
where ‘‘T-conv’’ stands for the TCL. This generator consists
of three dense layers and nine TCLs to convert the input hid-
den variable z to a 64×64×3 RBG fake fire images. We use

FIGURE 4. Structure of the TCNN generator in the DCGAN for fire
detection.

the Leaky-ReLU activation function in the TCNN as well
for nonlinearity in the image generation. The parameters and
model complexity in this TCNN are discussed inAppendixD.

In our overall approach to the DCGAN, we focus more
on training the discriminator to achieve better classifica-
tion accuracy than training a more complex generator to
generate more realistic fake images. We obtain a relatively
low-resolution generator that captures some characteristics of
fire but without the full details of the flame. The generated
fake fire images are used to prevent the discriminator from
considering the images with partial flame characteristics as
real fire images. This helps mitigate the model overfitting
and the overestimation of fire probability when the training
images are insufficient.

2) GENERATOR TRAINING REINFORCEMENT MECHANISM
In the standard DCGAN scheme, the generator is trained to
generate highly realistic fake images [22]. Our approach is
different for a number of reasons. First, we note that the
training of a generator in a DCGAN is always a delicate
matter, and it requires a careful balancing of art, heuristics,
and trial and errors. We briefly share here our approach to this
balancing act, which ultimately provided excellent results as
discussed in section V.

In our DCGAN, we train the generator to produce partial
characteristics of flames to mitigate the overfitting of the
discriminator. This requirement for capturing some charac-
teristics of flames increases the difficulty and the likelihood
of instability in the TCNN training. Because this instabil-
ity can ‘‘discourage’’ the generator from improving its per-
formance, and it may lead to the production of useless or
nonsense images, it is an important problem to tackle in all
DCGAN training in general, and ours in particular. To solve
or pre-empt this issue from occurring, we developed the
following reinforcement mechanism for the training of the
generator.
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FIGURE 5. Generator training reinforcement mechanism.

Our approach is inspired by the imitation learning model
in reinforcement learning [31], and it consists in supervised
learning by real fire images to ‘‘teach’’ the generator to
generate some characteristics of flames, as shown in Fig. 5.

First, we set the reinforcement mechanism parameter n
and use z = I to n × I , where I is a 50 dimensions vector
of all-ones, as the input of the generator network. In our
computational experiments, we use n equals to the training
size of real fire images. The generator converts the input z
to generated images xf . Second, we randomly select n real
fire images from a training set, and we use them for the
reinforcement mechanism in the training of the generator.
We compare the generated and selected real fire images,
and we calculate the pixel-based mean square error (MSE)
loss. Finally, we conduct backpropagation of the MSE loss
through the generator network with ADAM optimizer [38].
The limited model complexity of this TCNN generator con-
strains the generated fake image to capture only partial char-
acteristics of the fire without much flame details, even with
the assistance of the reinforcement mechanism. We use this
reinforcement mechanism to initialize the generator and in
each training iteration of the DCGAN. An additional, com-
plementary approach to solving or pre-empting the likelihood
of instability in the TCNN training is discussed next.

D. IMAGE NOISING
As noted previously, the generator in a DCGAN is diffi-
cult to train. The reinforcement mechanism just discussed is
meant to facilitate this task. To further address or mitigate
this problem, we apply an additional popular method that
adds artificial noise to the real fire images. In the training
process, we gradually decay the noise level for more resolved
flame details to improve the accuracy and precision of the
discriminator network. More specifically, we add pixel-based
Gaussian random noise to the real fire images of the dis-
criminator input, as shown in Eq. 5, where ε is the random
noise, e is a random variable sampled from the standard
Gaussian distribution, and m is the noise magnitude. The
noisemagnitude gradually decays during the training process,
as shown in Eq. 6, where m0 is the initial noise magnitude,
t the training epoch number, and p the decay period. This
magnitude of pixel-based random noise decays 100 times

after every p epochs, and finally, it approaches zero. We set
m0 = 10−2 in our computational experiments based on trial
and error (higher values tended to degrade the discriminator
training, and lower values lead to instabilities in the generator
training in our computational experiments).

ε = m× e (5)

m = m0 × 100−t/p (6)

E. DATASETS FOR TRAINING AND TESTING THE DCGAN
Jadon et al. [15] discussed the importance of high quality
and diverse set of images for fire detection model training
and testing. The authors pointed out that the widely used
training datasets are not diverse enough, even though they
are vast. They created a diverse dataset by recording fire
and non-fire images from various challenging environments,
for example, non-fire images with fire like objects in the
background. They collected 1,124 fire and 1,301 non-fire
images for training their FireNet visual fire detection model.
They also collected 593 diverse fire and 278 non-fire images
for testing. Figure 6 shows some sample images from this
dataset. Readers can download this dataset from https://drive.
google.com/drive/folders/1HznoBFEd6yjaLFlSmkUGARw
CUzzG4whq [15]. For more details of the dataset, the reader
is referred to [15].

In this work, we combine the training and testing fire
images provided in ref. [15], which results in 1,717 fire
images and 1,579 non-fire images overall [15]. We then
randomly split this dataset into Set 1 (20%) and Set 2 (80%),
the former for training and the latter for testing our DCGAN.
We vary the size of the training set from 30 to 300 images
in our computational experiments to assess the performance
of the DCGAN and other visual fire detection methods when
training images are limited (our primary objective).

IV. VISUAL FIRE DETECTION PERFORMANCE:
RESULTS AND DISCUSSION
In this section, we discuss the performance results of our
DCGAN, and we compare them with those obtained with
other traditional supervised learning methods. We then com-
pare the performance of our model with a current best-
in-class network for visual fire detection, FireNet [15].

The computational experiments are conducted on a Pytorch
platform onWindows 10machine with AMDRyzen 7 8 cores
CPU processor and 31.9 GB system memory. The system
is equipped with an NVIDIA GeForce RTX 2070 graphical
card.

A. FIRE AND NON-FIRE IMAGES DISCRIMINATION
ACCURACY
In our computational experiments, we examine the perfor-
mance of visual fire detection methods when training images
are limited. We conduct the training with datasets of varying
sizes shown in Table 1.

The training and testing accuracy of different DL mod-
els, and with different training dataset sizes, are provided
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FIGURE 6. Samples of the fire and non-fire image dataset [15].

FIGURE 7. Training and testing accuracy of different DL models, and with different training dataset sizes.

in Fig. 7.We label the (standalone) supervised naïve CNNfire
detection as CNN, the (standalone) supervised fire detection
SqueezeNet as SQN, theDCGANwith the naïve CNN for dis-
criminator as DCCNN, and the DCGANwith the SqueezeNet
for a discriminator as DCSQN in Fig. 7.

We first note that different DL models have different test-
ing performance characteristics in three different regions:
when the training dataset is insufficient (≤ 30 images); when
the training dataset is small (50 to 250 images); and when
the training dataset is adequate (≥ 300 images). We label
the boundaries of these regions with vertical dashed lines

in Fig. 7 and Fig. 8. The most salient results are discussed
next by region:

1) Within the insufficient (training dataset) region, all
visual fire detection methods tested have poor or
degraded performance. This exceedingly small training
dataset causes significant overfitting, and as a result,
while the training accuracy is (near) perfect, the testing
accuracy (i.e., on images not seen during the training)
is significantly degraded. The overall testing accu-
racy varies between 0.6 and 0.8 for all methods (bot-
tom right panel in Fig. 7). The accuracy on fires and
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FIGURE 8. Testing fire probability estimation of different DL models, and
with different training dataset sizes. The ground truth of fire image rate is
0.516 labeled by the horizontal dashed line.

TABLE 1. Number of training images for different computational
experiments.

non-fire images vary between the different detection
methods: for example, the SQN performs better on
fire images (accuracy 0.8) than on non-fire images
(accuracy 0.4); whereas the DCCNN performs better
on the non-fire images (accuracy 0.9) than on the fire
images (accuracy 0.4). Figure 8 provides additional
nuance to these observations. For example, the naïve
CNN and SqueezeNet (CNN, SQN) overestimate the
testing probability of fire, as seen in the insufficient
(training dataset) region in Fig. 8 (left portion of the
figure). In contrast, the DCGAN with a naïve CNN
as a discriminator underestimates the probability of
fire. The overall testing accuracy of the DCSQN is
the best among all methods considered here within
this insufficient (training dataset) region, as seen in
the bottom right panel in Fig. 7. The fire probability
underestimation of the DCSQN is less pronounced
than that of DCCNN because of the increased model
complexity of the SqueezeNet over the naïve CNN
as discriminators. This increased model complexity
enables the SqueezeNet and the DCSQN to resolve
more details of the images provided. This higher model
resolution is useful to recognize fires within a small
range of pixels in the image. This feature of the fire
detection SqueezeNet mitigates the underestimation
problem when the training dataset is exceedingly small
as in this insufficient (training dataset) region.

2) In the small (training dataset) region, the gap between
the training and testing accuracy shrinks with increas-
ing size of the training dataset. Overfitting is reduced
when the training dataset increases from 30 to 250. This
is expected for all detection methods. For the naïve
CNN and the fire detection SqueezeNet with super-
vised learning, they both overestimate the testing fire
probability when the training dataset includes fewer
than 100 images. Although they both achieve good
accuracywith fire image detection, their ability to accu-
rately identify non-fire images remains rather poor. For
the DCCNN, the fire image discrimination accuracy
is degraded due to the insufficient model complexity
and resolution. In contrast, the testing accuracy of the
DCSQN with both fire and non-fires images (and over-
all accuracy) is the best among the methods considered
here within this small (training dataset) region. The use
of the DCSQN model effectively mitigates the model
overfitting error, and the fire detection SqueezeNet
discriminator has sufficient model complexity to accu-
rately resolve the details of images to prevent the under-
estimation error.

3) In the adequate (training dataset) region, the overfit-
ting error is significantly reduced for all four models.
The firedetection SqueezeNet (SQN) and our DCSQN
models achieve excellent accuracy (> 0.9) for both fire
and non-fire images. The fire detection SqueezeNet is
more complex than the naïve CNN, and this leads to its
superior testing accuracy. Additionally, in this region,
the advantages of DCSQN over the SQN are less signif-
icant than in the two previous regions because the size
of the training dataset is no longer the driving factor for
model accuracy.

As a side note, these results can serve as rules-of-thumb or
heuristics for informing the selection of the training scheme
and the discriminator model under the following circum-
stances: (1) if sufficient memory is available to meet the
SqueezeNet requirement, and the training dataset is limited
(≤ 300 images), we recommend using the DCSQN; (2) if
memory is significantly constrained, and the training dataset
is plentiful, we recommend the naïve CNN with supervised
learning.

Overall, Fig. 7 and 8 demonstrate that our DCGAN with
the adapted fire detection SqueezeNet for a discrimina-
tor (DCSQN) achieves the best testing accuracy in all three
regions of training dataset sizes (Insufficient, small, and ade-
quate). In the next subsection, we compare the performance
of our DCSQNwith a current best-in-class network for visual
fire detection, FireNet [15].

B. DCSQN VERSUS FIRENET: BEST-IN-CLASS DEEP
LEARNING MODELS FOR VISUAL FIRE DETECTION
Here, we benchmark the performance of the DCSQN against
FireNet in terms of the overall fire detection accuracy,
false positives, false negatives, recall, precision, and F-score.
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TABLE 2. Test Performance of DCSQN Versus FireNet.

We compare the performance of both models with the same
fire and non-fire image dataset. The results are provided
in Table 2.

There are several ways of reading and interpreting these
results. The most important are the following:

1) Within the shaded area (same size of the training and
testing datasets), the DCSQN significantly outperforms
FireNet on all performance metrics when trained with
the same dataset size (300; 300). For example, overall
accuracy and the F-score of the DCSQN are improved
by about 8 percentage points, and precision by 10 per-
centage points over those of FireNet. False positives are
reduced by about 4.5 percentage points, and false neg-
atives by 1.5 percentage point. The DCSQN improves
on FireNet’s accuracy for both fire and non-fire
classification;

2) When FireNet is trained with the original larger dataset
(1,124; 1,301) [15], the DCSQN trained with the
smaller dataset (300; 300) still outperforms its rival.
While the false negatives with FireNet remain around
4% when the training dataset is reduced from (1,124;
1,301) to (300; 300), the false positives are signifi-
cantly degraded (from ∼ 2% to 5.5%). This indicates
that overfitting occurs with FireNet when the training
dataset size is reduced (more non-fires are falsely iden-
tified as fires).

Collectively, the results in this section indicate that our
DCSQN effectively addresses the three types of errors in
visual fire detection noted in the Introduction when the
dataset size of training images is limited.

V. CONCLUSION
In this work, we developed a deep convolutional generative
adversarial network (DCGAN) for highly accurate visual
fire detection when training images are limited. Our model
addressed three types of error in visual fire detection when
training data is limited, namely model overfitting, fire prob-
ability overestimation, and fire probability underestimation
errors. Our DCGAN includes a generator of fake fire images

TABLE 3. The Memory Requirement of Naïve CNN.

for self-supervised learning (SSL), and a discriminator to
classify the images as fire, non-fire, and fake. We designed
computational experiments with a diverse and high-quality
fire detection image dataset to validate our model against
other supervised learning approaches.We examined the accu-
racy of four models, the supervised naïve CNN, the super-
vised fire detection SQN, our DCGAN with a CNN for dis-
criminator (DCCNN), and our DCGAN with a fire detection
SqueezeNet for discriminator (DCSQN), with training size
ranging from 30 to 300 images. The DCSQN achieved the
best testing accuracy over all training dataset sizes. We then
benchmarked the performance of our DCSQN against a
best-in-class deep visual fire detection model, FireNet.
The results of our computational experiments showed that:
(1) the DCSQN significantly outperforms FireNet on all
performance metrics (accuracy, false positive, false negative,
precision, recall, and F-score) when trained with the same
dataset size; (2) the DCSQN model effectively mitigates
overfitting when the training dataset is limited; (3) and more
generally, the results indicate that the DCSQN effectively
addresses the three types of errors in visual fire detection
when training images are limited.

This work should be considered in light of its limita-
tions, and these constitute fruitful venues for future work.
First, we only considered a naïve CNN and a fire detection
SqueezeNet for the DCGAN discriminator. There is a broader
range of options for the discriminator, such as AlexNet [16],
GoogleNet [17], and ResNet [32]. In future work, we pro-
pose to examine the performance of our DCGAN with these
deep learning networks for discriminators. Second, we used
DCGAN to mitigate the overfitting error when the training
dataset size is limited. We propose to leverage other machine
learning generative models, such as variational autoencoder
(VAE) [42] to explore further mitigation of the overfit-
ting problem. Third, we trained and tested our model with
2D RGB colored pictures. In real-world applications, fire
detection video can be available from surveillance systems.
We propose to upgrade our system with 3D convolutional
layer to enable it to handle visual fire detection with video.
Fourth, another important future work of our proposed visual
fire detection is a detailed training computational cost anal-
ysis. We plan to conduct a trade-off analysis for accuracy
versus training complexity for different types of generator
and discriminator in DCGAN. Finally, we propose to adapt
our visual fire detection system for aerospace applications.
In particular, we plan to create a high-quality fire detection
image dataset in micro-gravity condition and apply our mod-
els to this situation.
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FIGURE 9. Organization of convolution filters in the fire model. In this
example, s1×1 = 3, e1×1 = 4, and e3×3 = 4. We illustrate the convolution
filters but not the activations [40].

TABLE 4. The Memory Requirement of Fire Detection SqueezeNet.

TABLE 5. The Memory Requirement of TCNN Generator.

APPENDIX
A. WEIGHT PARAMETERS OF NAÏVE CNN
Here, we introduce the details of the output size, memory
requirement per image, and the number of the weight of
the naïve CNN discriminator of fire detection as shown
in Table 3.

B. FIRE MODEL IN THE FIRE DETECTION SqueezeNet
We introduced the fire model as shown in Fig. 9 since it is
extensively used in the SqueezeNet, where s1×1, e1×1, and
e3×3 stand for the number of squeeze layers, the number of
1 × 1 expand layer, and the number of 3 × 3 expand layers,
respectively.

In our fire detection SqueezeNet, we set s1×1, e1×1, and
e3×3 as 1. We switch the activation function of the fire model

from ReLU in the original model to LeakyReLU for more
nonlinearity and preventing vanishing gradient problem for
negative input.

C. WEIGHT PARAMETERS OF FIRE DETECTION
SqueezeNet
Here, we introduce the details of the weight of fire detection
SqueezeNet as shown in Table 4.

D. WEIGHT PARAMETERS OF TCNN GENERATOR
Here, we introduce the weight parameters of the generator
TCNN network used in the SSL DCGAN framework as
shown in Table 5.
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